Robust beam splitter with fast quantum state transfer through a topological interface

Jia-Ning Zhang, Jin-Xuan Han, Jin-Lei Wu, Jie Song, Yong-Yuan Jiang

PDF(7720 KB)
PDF(7720 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (5) : 51303. DOI: 10.1007/s11467-023-1289-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Robust beam splitter with fast quantum state transfer through a topological interface

Author information +
History +

Abstract

The Su−Schrieffer−Heeger (SSH) model, commonly used for robust state transfers through topologically protected edge pumping, has been generalized and exploited to engineer diverse functional quantum devices. Here, we propose to realize a fast topological beam splitter based on a generalized SSH model by accelerating the quantum state transfer (QST) process essentially limited by adiabatic requirements. The scheme involves delicate orchestration of the instantaneous energy spectrum through exponential modulation of nearest neighbor coupling strengths and onsite energies, yielding a significantly accelerated beam splitting process. Due to properties of topological pumping and accelerated QST, the beam splitter exhibits strong robustness against parameter disorders and losses of system. In addition, the model demonstrates good scalability and can be extended to two-dimensional crossed-chain structures to realize a topological router with variable numbers of output ports. Our work provides practical prospects for fast and robust topological QST in feasible quantum devices in large-scale quantum information processing.

Graphical abstract

Keywords

quantum state transfer / beam splitter / topological router

Cite this article

Download citation ▾
Jia-Ning Zhang, Jin-Xuan Han, Jin-Lei Wu, Jie Song, Yong-Yuan Jiang. Robust beam splitter with fast quantum state transfer through a topological interface. Front. Phys., 2023, 18(5): 51303 https://doi.org/10.1007/s11467-023-1289-z

References

[1]
J. I. Cirac, P. Zoller, H. J. Kimble, H. Mabuchi. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett., 1997, 78(16): 3221
CrossRef ADS Google scholar
[2]
D. N. Matsukevich, A. Kuzmich. Quantum state transfer between matter and light. Science, 2004, 306(5696): 663
CrossRef ADS Google scholar
[3]
M. Christandl, N. Datta, A. Ekert, A. J. Landahl. Perfect state transfer in quantum spin networks. Phys. Rev. Lett., 2004, 92(18): 187902
CrossRef ADS Google scholar
[4]
L. Banchi, T. J. G. Apollaro, A. Cuccoli, R. Vaia, P. Verrucchi. Long quantum channels for high-quality entanglement transfer. New J. Phys., 2011, 13(12): 123006
CrossRef ADS Google scholar
[5]
Y. D. Wang, A. A. Clerk. Using interference for high fidelity quantum state transfer in optomechanics. Phys. Rev. Lett., 2012, 108(15): 153603
CrossRef ADS Google scholar
[6]
S. Tan, R. W. Bomantara, J. Gong. High-fidelity and long-distance entangled-state transfer with Floquet topological edge modes. Phys. Rev. A, 2020, 102(2): 022608
CrossRef ADS Google scholar
[7]
M. Ouyang, D. D. Awschalom. Coherent spin transfer between molecularly bridged quantum dots. Science, 2003, 301(5636): 1074
CrossRef ADS Google scholar
[8]
A. D. Greentree, J. H. Cole, A. R. Hamilton, L. C. L. Hollenberg. Coherent electronic transfer in quantum dot systems using adiabatic passage. Phys. Rev. B, 2004, 70(23): 235317
CrossRef ADS Google scholar
[9]
B. Chen, Q. H. Shen, W. Fan, Y. Xu. Long-range adiabatic quantum state transfer through a linear array of quantum dots. Sci. China Phys. Mech. Astron., 2012, 55(9): 1635
CrossRef ADS Google scholar
[10]
Y. He, Y. M. He, Y. J. Wei, X. Jiang, K. Chen, C. Y. Lu, J. W. Pan, C. Schneider, M. Kamp, S. Höfling. Quantum state transfer from a single photon to a distant quantum-dot electron spin. Phys. Rev. Lett., 2017, 119(6): 060501
CrossRef ADS Google scholar
[11]
Y. P. Kandel, H. Qiao, S. Fallahi, G. C. Gardner, M. J. Manfra, J. M. Nichol. Adiabatic quantum state transfer in a semiconductor quantum-dot spin chain. Nat. Commun., 2021, 12(1): 2156
CrossRef ADS Google scholar
[12]
A. Perez-Leija, R. Keil, A. Kay, H. Moya-Cessa, S. Nolte, L. C. Kwek, B. M. Rodríguez-Lara, A. Szameit, D. N. Christodoulides. Coherent quantum transport in photonic lattices. Phys. Rev. A, 2013, 87(1): 012309
CrossRef ADS Google scholar
[13]
R. J. Chapman, M. Santandrea, Z. Huang, G. Corrielli, A. Crespi, M. H. Yung, R. Osellame, A. Peruzzo. Experimental perfect state transfer of an entangled photonic qubit. Nat. Commun., 2016, 7(1): 11339
CrossRef ADS Google scholar
[14]
W. Liu, C. Wu, Y. Jia, S. Jia, G. Chen, F. Chen. Observation of edge-to-edge topological transport in a photonic lattice. Phys. Rev. A, 2022, 105(6): L061502
CrossRef ADS Google scholar
[15]
L. F. Wei, J. R. Johansson, L. X. Cen, S. Ashhab, F. Nori. Controllable coherent population transfers in superconducting qubits for quantum computing. Phys. Rev. Lett., 2008, 100(11): 113601
CrossRef ADS Google scholar
[16]
F. Mei, G. Chen, L. Tian, S. L. Zhu, S. Jia. Robust quantum state transfer via topological edge states in superconducting qubit chains. Phys. Rev. A, 2018, 98(1): 012331
CrossRef ADS Google scholar
[17]
X. Li, Y. Ma, J. Han, T. Chen, Y. Xu, W. Cai, H. Wang, Y. P. Song, Z. Y. Xue, Z. Yin, L. Sun. Perfect quantum state transfer in a superconducting qubit chain with parametrically tunable couplings. Phys. Rev. Appl., 2018, 10(5): 054009
CrossRef ADS Google scholar
[18]
G. M. A. Almeida, F. Ciccarello, T. J. G. Apollaro, A. M. C. Souza. Quantum-state transfer in staggered coupled-cavity arrays. Phys. Rev. A, 2016, 93(3): 032310
CrossRef ADS Google scholar
[19]
W. Qin, F. Nori. Controllable single-photon transport between remote coupled-cavity arrays. Phys. Rev. A, 2016, 93(3): 032337
CrossRef ADS Google scholar
[20]
V. Balachandran, J. Gong. Adiabatic quantum transport in a spin chain with a moving potential. Phys. Rev. A, 2008, 77(1): 012303
CrossRef ADS Google scholar
[21]
S. Yang, A. Bayat, S. Bose. Spin-state transfer in laterally coupled quantum-dot chains with disorders. Phys. Rev. A, 2010, 82(2): 022336
CrossRef ADS Google scholar
[22]
G. M. Nikolopoulos. Statistics of a quantum-state-transfer Hamiltonian in the presence of disorder. Phys. Rev. A, 2013, 87(4): 042311
CrossRef ADS Google scholar
[23]
S. Ashhab. Quantum state transfer in a disordered one-dimensional lattice. Phys. Rev. A, 2015, 92(6): 062305
CrossRef ADS Google scholar
[24]
C. Keele, A. Kay. Combating the effects of disorder in quantum state transfer. Phys. Rev. A, 2022, 105(3): 032612
CrossRef ADS Google scholar
[25]
Q. Niu, D. J. Thouless, Y. S. Wu. Quantized hall conductance as a topological invariant. Phys. Rev. B, 1985, 31(6): 3372
CrossRef ADS Google scholar
[26]
J. E. Moore. The birth of topological insulators. Nature, 2010, 464(7286): 194
CrossRef ADS Google scholar
[27]
X. L. Qi, S. C. Zhang. The quantum spin Hall effect and topological insulators. Phys. Today, 2010, 63(1): 33
CrossRef ADS Google scholar
[28]
C. K. Chiu, J. C. Y. Teo, A. P. Schnyder, S. Ryu. Classification of topological quantum matter with symmetries. Rev. Mod. Phys., 2016, 88(3): 035005
CrossRef ADS Google scholar
[29]
X. G. Wen. Colloquium: Zoo of quantum-topological phases of matter. Rev. Mod. Phys., 2017, 89(4): 041004
CrossRef ADS Google scholar
[30]
M. Z. Hasan, C. L. Kane. Colloquium: Topological insulators. Rev. Mod. Phys., 2010, 82(4): 3045
CrossRef ADS Google scholar
[31]
X. L. Qi, S. C. Zhang. Topological insulators and superconductors. Rev. Mod. Phys., 2011, 83(4): 1057
CrossRef ADS Google scholar
[32]
A. Bansil, H. Lin, T. Das. Colloquium: Topological band theory. Rev. Mod. Phys., 2016, 88(2): 021004
CrossRef ADS Google scholar
[33]
T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, I. Carusotto. Topological photonics. Rev. Mod. Phys., 2019, 91(1): 015006
CrossRef ADS Google scholar
[34]
J. Seo, P. Roushan, H. Beidenkopf, Y. S. Hor, R. J. Cava, A. Yazdani. Transmission of topological surface states through surface barriers. Nature, 2010, 466(7304): 343
CrossRef ADS Google scholar
[35]
N. Lang, H. P. Büchler. Topological networks for quantum communication between distant qubits. npj Quantum Inf., 2017, 3: 47
CrossRef ADS Google scholar
[36]
C. Dlaska, B. Vermersch, P. Zoller. Robust quantum state transfer via topologically protected edge channels in dipolar arrays. Quantum Sci. Technol., 2017, 2(1): 015001
CrossRef ADS Google scholar
[37]
M. A. Lemonde, V. Peano, P. Rabl, D. G. Angelakis. Quantum state transfer via acoustic edge states in a 2D optomechanical array. New J. Phys., 2019, 21(11): 113030
CrossRef ADS Google scholar
[38]
J. Cao, W. X. Cui, X. Yi, H. F. Wang. Topological phase transition and topological quantum state transfer in periodically modulated circuit-QED lattice. Ann. Phys., 2021, 533(9): 2100120
CrossRef ADS Google scholar
[39]
L. Y. Cheng, L. N. Zheng, R. Wu, H. F. Wang, S. Zhang. Change-over switch for quantum states transfer with topological channels in a circuit-QED lattice. Chin. Phys. B, 2022, 31(2): 020305
CrossRef ADS Google scholar
[40]
L. Qi, G. L. Wang, S. Liu, S. Zhang, H. F. Wang. Controllable photonic and phononic topological state transfers in a small optomechanical lattice. Opt. Lett., 2020, 45(7): 2018
CrossRef ADS Google scholar
[41]
L. Qi, G. L. Wang, S. Liu, S. Zhang, H. F. Wang. Dissipation-induced topological phase transition and periodic-driving-induced photonic topological state transfer in a small optomechanical lattice. Front. Phys., 2021, 16(1): 12503
CrossRef ADS Google scholar
[42]
A. Stern, N. H. Lindner. Topological quantum computation — from basic concepts to first experiments. Science, 2013, 339(6124): 1179
CrossRef ADS Google scholar
[43]
S. D. Sarma, M. Freedman, C. Nayak. Majorana zero modes and topological quantum computation. npj Quantum Inf., 2015, 1: 15001
CrossRef ADS Google scholar
[44]
M. He, H. Sun, L. H. Qing. Topological insulator: Spintronics and quantum computations. Front. Phys., 2019, 14(4): 43401
CrossRef ADS Google scholar
[45]
K. Monkman, J. Sirker. Operational entanglement of symmetry-protected topological edge states. Phys. Rev. Res., 2020, 2(4): 043191
CrossRef ADS Google scholar
[46]
T. Dai, Y. Ao, J. Bao, J. Mao, Y. Chi, Z. Fu, Y. You, X. Chen, C. Zhai, B. Tang, Y. Yang, Z. Li, L. Yuan, F. Gao, X. Lin, M. G. Thompson, J. L. O’Brien, Y. Li, X. Hu, Q. Gong, J. Wang. Topologically protected quantum entanglement emitters. Nat. Photonics, 2022, 16(3): 248
CrossRef ADS Google scholar
[47]
J. X. Han, J. L. Wu, Y. Wang, Y. Xia, Y. Y. Jiang, J. Song. Large-scale Greenberger−Horne−Zeilinger states through a topologically protected zero-energy mode in a superconducting qutrit-resonator chain. Phys. Rev. A, 2021, 103(3): 032402
CrossRef ADS Google scholar
[48]
J. X. Han, J. L. Wu, Z. H. Yuan, Y. Xia, Y. Y. Jiang, J. Song. Fast topological pumping for the generation of large-scale Greenberger−Horne−Zeilinger states in a superconducting circuit. Front. Phys., 2022, 17(6): 62504
CrossRef ADS Google scholar
[49]
L. Qi, G. L. Wang, S. Liu, S. Zhang, H. F. Wang. Engineering the topological state transfer and topological beam splitter in an even-sized Su−Schrieffer−Heeger chain. Phys. Rev. A, 2020, 102(2): 022404
CrossRef ADS Google scholar
[50]
L. Qi, Y. Xing, X. D. Zhao, S. Liu, S. Zhang, S. Hu, H. F. Wang. Topological beam splitter via defect-induced edge channel in the Rice−Mele model. Phys. Rev. B, 2021, 103(8): 085129
CrossRef ADS Google scholar
[51]
L. Qi, Y. Yan, Y. Xing, X. D. Zhao, S. Liu, W. X. Cui, X. Han, S. Zhang, H. F. Wang. Topological router induced via long-range hopping in a Su−Schrieffer−Heeger chain. Phys. Rev. Res., 2021, 3(2): 023037
CrossRef ADS Google scholar
[52]
L. N. Zheng, X. Yi, H. F. Wang. Engineering a phase-robust topological router in a dimerized superconducting-circuit lattice with long-range hopping and chiral symmetry. Phys. Rev. Appl., 2022, 18(5): 054037
CrossRef ADS Google scholar
[53]
P. St-Jean, V. Goblot, E. Galopin, A. Lemaȋtre, T. Ozawa, L. Le Gratiet, I. Sagnes, J. Bloch, A. Amo. Lasing in topological edge states of a one-dimensional lattice. Nat. Photonics, 2017, 11(10): 651
CrossRef ADS Google scholar
[54]
M. Parto, S. Wittek, H. Hodaei, G. Harari, M. A. Bandres, J. Ren, M. C. Rechtsman, M. Segev, D. N. Christodoulides, M. Khajavikhan. Edge-mode lasing in 1D topological active arrays. Phys. Rev. Lett., 2018, 120(11): 113901
CrossRef ADS Google scholar
[55]
S. Longhi. Non-Hermitian gauged topological laser arrays. Ann. Phys., 2018, 530(7): 1800023
CrossRef ADS Google scholar
[56]
L. Qi, G. L. Wang, S. Liu, S. Zhang, H. F. Wang. Robust interface-state laser in non-Hermitian microresonator arrays. Phys. Rev. Appl., 2020, 13(6): 064015
CrossRef ADS Google scholar
[57]
T. H. Harder, M. Sun, O. A. Egorov, I. Vakulchyk, J. Beierlein, P. Gagel, M. Emmerling, C. Schneider, U. Peschel, I. G. Savenko, S. Klembt, S. Höfling. Coherent topological polariton laser. ACS Photonics, 2021, 8(5): 1377
CrossRef ADS Google scholar
[58]
M. Ezawa. Nonlinear non-Hermitian higher-order topological laser. Phys. Rev. Res., 2022, 4(1): 013195
CrossRef ADS Google scholar
[59]
S. Longhi. Topological pumping of edge states via adiabatic passage. Phys. Rev. B, 2019, 99(15): 155150
CrossRef ADS Google scholar
[60]
F. M. D’Angelis, F. A. Pinheiro, D. Guéry-Odelin, S. Longhi, F. Impens. Fast and robust quantum state transfer in a topological Su-Schrieffer-Heeger chain with next-to-nearest-neighbor interactions. Phys. Rev. Res., 2020, 2(3): 033475
CrossRef ADS Google scholar
[61]
I. Brouzos, I. Kiorpelidis, F. K. Diakonos, G. Theocharis. Fast, robust, and amplified transfer of topological edge modes on a time-varying mechanical chain. Phys. Rev. B, 2020, 102(17): 174312
CrossRef ADS Google scholar
[62]
N. E. Palaiodimopoulos, I. Brouzos, F. K. Diakonos, G. Theocharis. Fast and robust quantum state transfer via a topological chain. Phys. Rev. A, 2021, 103(5): 052409
CrossRef ADS Google scholar
[63]
S. Hu, Y. Ke, C. Lee. Topological quantum transport and spatial entanglement distribution via a disordered bulk channel. Phys. Rev. A, 2020, 101(5): 052323
CrossRef ADS Google scholar
[64]
D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui, S. Martínez-Garaot, J. G. Muga. Shortcuts to adiabaticity: Concepts, methods, and applications. Rev. Mod. Phys., 2019, 91(4): 045001
CrossRef ADS Google scholar
[65]
S. Schmidt, J. Koch. Circuit QED lattices: Towards quantum simulation with superconducting circuits. Ann. Phys., 2013, 525(6): 395
CrossRef ADS Google scholar
[66]
L. Frunzio, A. Wallraff, D. Schuster, J. Majer, R. Schoelkopf. Fabrication and characterization of superconducting circuit QED devices for quantum computation. IEEE Trans. Appl. Supercond., 2005, 15(2): 860
CrossRef ADS Google scholar
[67]
D. L. Underwood, W. E. Shanks, J. Koch, A. A. Houck. Low-disorder microwave cavity lattices for quantum simulation with photons. Phys. Rev. A, 2012, 86(2): 023837
CrossRef ADS Google scholar
[68]
B. Peropadre, P. Forn-Díaz, E. Solano, J. J. García-Ripoll. Switchable ultrastrong coupling in circuit QED. Phys. Rev. Lett., 2010, 105(2): 023601
CrossRef ADS Google scholar
[69]
L. DiCarlo, J. M. Chow, J. M. Gambetta, L. S. Bishop, B. R. Johnson, D. I. Schuster, J. Majer, A. Blais, L. Frunzio, S. M. Girvin, R. J. Schoelkopf. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature, 2009, 460(7252): 240
CrossRef ADS Google scholar
[70]
X. Gu, A. F. Kockum, A. Miranowicz, Y. X. Liu, F. Nori. Microwave photonics with superconducting quantum circuits. Phys. Rep., 2017, 1: 718
CrossRef ADS Google scholar
[71]
Y. He, Y. Wang, Z. Yan. A tunable superconducting LC-resonator with a variable superconducting electrode capacitor bank for application in wireless power transfer. Supercond. Sci. Technol., 2019, 32(12): 12LT02
CrossRef ADS Google scholar
[72]
M. S. Allman, F. Altomare, J. D. Whittaker, K. Cicak, D. Li, A. Sirois, J. Strong, J. D. Teufel, R. W. Simmonds. RF-squid-mediated coherent tunable coupling between a superconducting phase qubit and a lumped-element resonator. Phys. Rev. Lett., 2010, 104: 177004
CrossRef ADS Google scholar
[73]
M. S. Allman, J. D. Whittaker, M. Castellanos-Beltran, K. Cicak, F. da Silva, M. P. DeFeo, F. Lecocq, A. Sirois, J. D. Teufel, J. Aumentado, R. W. Simmonds. Tunable resonant and nonresonant interactions between a phase qubit and LC resonator. Phys. Rev. Lett., 2014, 112(12): 123601
CrossRef ADS Google scholar
[74]
F. Wulschner, J. Goetz, F. R. Koessel, E. Hoffmann, A. Baust, P. Eder, M. Fischer, M. Haeberlein, M. J. Schwarz, M. Pernpeintner, E. Xie, L. Zhong, C. W. Zollitsch, B. Peropadre, J.-J. G. Ripoll, E. Solano, K. G. Fedorov, E. P. Menzel, F. Deppe, A. Marx, R. Gross. Tunable coupling of transmission-line microwave resonators mediated by an RF squid. EPJ Quantum Technol., 2016, 3: 8
CrossRef ADS Google scholar
[75]
A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, R. J. Schoelkopf. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A, 2004, 69(6): 062320
CrossRef ADS Google scholar
[76]
J. Clarke, F. K. Wilhelm. Superconducting quantum bits. Nature, 2008, 453(7198): 1031
CrossRef ADS Google scholar
[77]
J. Q. You, F. Nori. Atomic physics and quantum optics using superconducting circuits. Nature, 2005, 474: 589
CrossRef ADS Google scholar

Acknowledgements

The authors acknowledge the financial support by the National Natural Science Foundation of China (Grant No. 62075048) and the Natural Science Foundation of Shandong Province of China (Grant No. ZR2020MF129).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(7720 KB)

Accesses

Citations

Detail

Sections
Recommended

/