On the question of quark confinement in the Abelian U(1) QED gauge interaction

Cheuk-Yin Wong

PDF(9270 KB)
PDF(9270 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (6) : 64401. DOI: 10.1007/s11467-023-1288-0
VIEW & PERSPECTIVE
VIEW & PERSPECTIVE

On the question of quark confinement in the Abelian U(1) QED gauge interaction

Author information +
History +

Abstract

If we approximate light quarks as massless and apply the Schwinger confinement mechanism to light quarks, we will reach the conclusion that a light quark q and its antiquark q¯ will be confined as a qq¯ boson in the Abelian U(1) QED gauge interaction in (1+1)D, as in an open string. From the work of Coleman, Jackiw, and Susskind, we can infer further that the Schwinger confinement mechanism persists even for massive quarks in (1+1)D. Could such a QED-confined qq¯ one-dimensional open string in (1+1)D be the idealization of a flux tube in the physical world in (3+1)D, similar to the case of QCD-confined qq¯ open string? If so, the QED-confined qq¯ bosons may show up as neutral QED mesons in the mass region of many tens of MeV [Phys. Rev. C 81, 064903 (2010) & J. High Energy Phys. 2020(8), 165 (2020)]. Is it ever possible that a quark and an antiquark be produced and interact in QED alone to form a confined QED meson? Is there any experimental evidence for the existence of a QED meson (or QED mesons)? The observations of the anomalous soft photons, the X17 particle, and the E38 particle suggest that they may bear the experimental evidence for the existence of such QED mesons. Further confirmation and investigations on the X17 and E38 particles will shed definitive light on the question of quark confinement in QED in (3+1)D. Implications of quark confinement in the QED interaction are discussed.

Graphical abstract

Keywords

quark confinement / QCD interaction / QED interaction / Schwinger model / open string model of mesons / QCD molecular states

Cite this article

Download citation ▾
Cheuk-Yin Wong. On the question of quark confinement in the Abelian U(1) QED gauge interaction. Front. Phys., 2023, 18(6): 64401 https://doi.org/10.1007/s11467-023-1288-0

References

[1]
J. Schwinger. Gauge invariance and mass II. Phys. Rev., 1962, 128(5): 2425
CrossRef ADS Google scholar
[2]
J.Schwinger, Gauge theory of vector particles, in: Theoretical Physics, Trieste Lectures, 1962 (IAEA, Vienna, 1963), page 89
[3]
S. Coleman, R. Jackiw, L. Susskind. Charge shielding and quark confinement in the massive Schwinger model. Ann. Phys., 1975, 93(1−2): 267
CrossRef ADS Google scholar
[4]
S. Coleman. More about the massive Schwinger model. Ann. Phys., 1976, 101(1): 239
CrossRef ADS Google scholar
[5]
A. M. Polyakov. Quark confinement and topology of gauge theories. Nucl. Phys. B, 1977, 120(3): 429
CrossRef ADS Google scholar
[6]
A.M. Polyakov, Gauge Fields and Strings, Hardwood Academic Publishers, Switzerland, 1987
[7]
K. G. Wilson. Confinement of quarks. Phys. Rev. D, 1974, 10(8): 2445
CrossRef ADS Google scholar
[8]
J. Kogut, L. Susskind. Hamiltonian formulation of Wilson’s lattice gauge theories. Phys. Rev. D, 1975, 11(2): 395
CrossRef ADS Google scholar
[9]
S. Mandelstam. Vortices and quark confinement in non-Abelian gauge theories. Phys. Lett. B, 1975, 53(5): 476
CrossRef ADS Google scholar
[10]
T. Banks, B. Myerson, J. Kogut. Phase transitions in Abelian lattice gauge theories. Nucl. Phys. B, 1977, 129(3): 493
CrossRef ADS Google scholar
[11]
J. Glimm, A. Jaffe. Instantons in a U(1) lattice gauge theory: A Coulomb dipole gas. Commun. Math. Phys., 1977, 56(3): 195
CrossRef ADS Google scholar
[12]
M. E. Peskin. Mandelstam−’t Hooft duality in Abelian lattice models. Ann. Phys., 1978, 113(1): 122
CrossRef ADS Google scholar
[13]
A. Guth. Existence proof of a nonconfining phase in four-dimensional U(1) lattice gauge theory. Phys. Rev. D, 1980, 21(8): 2291
CrossRef ADS Google scholar
[14]
K. I. Kondo. Existence of confinement phase in quantum electrodynamics. Phys. Rev. D, 1998, 58(8): 085013
CrossRef ADS Google scholar
[15]
G.MagnificoT. FelserP.SilviS.Montangero, Lattice quantum electrodynamics in (3+1)-dimensions at finite density with tensor networks, Nat. Commun. 12(1), 3600 (2021), arXiv: 2011.10658
[16]
S. D. Drell, H. R. Quinn, B. Svetitsky, M. Weinstein. Quantum electrodynamics on a lattice: A Hamiltonian variational approach to the physics of the weak-coupling region. Phys. Rev. D, 1979, 19(2): 619
CrossRef ADS Google scholar
[17]
G.ArnoldB. BunkT.LippertK.Schilling, Compact QED under scrutiny: It’s first order, Nucl. Phys. B Proc. Suppl. 119, 864 (2003), arXiv: hep-lat/0210010
[18]
L.C. LoveridgeO.OliveiraP.J. Silva, Lattice pure gauge compact QED in the Landau gauge: The photon propagator, the phase structure, and the presence of Dirac strings, Phys. Rev. D 104(11), 114511 (2021), and references cited therein
[19]
J. Schwinger. On Gauge Invariance and Vacuum Polarization. Phys. Rev., 1951, 82(5): 664
CrossRef ADS Google scholar
[20]
C.Y. Wong, Introduction to High-Energy Heavy-Ion Collisions, World Scientific Publisher, 1994
[21]
H.Georgi, The Schwinger point, J. High Energy Phys. 11, 057 (2019), arXiv: 1905.09632
[22]
H.GeorgiB. Noether, Non-perturbative effects and unparticle physics in generalized Schwinger models, arXiv: 1908.03279v3 (2019)
[23]
H.GeorgiB. Warner, Generalizations of the Sommerfield and Schwinger models, J. High Energy Phys. 01, 047 (2020), arXiv: 1907.12705v2
[24]
H.Georgi, Automatic fine-tuning in the two-flavor Schwinger model, Phys. Rev. Lett. 125(18), 181601 (2020), arXiv: 2007.15965
[25]
H.Georgi, Mass perturbation theory in the 2-flavor Schwinger Model with opposite masses, J. High Energy Phys. 2022(10), 119 (2022), arXiv: 2206.14691
[26]
R.DempseyI. R. KlebanovS.S. PufuB.Zan, Discrete chiral symmetry and mass shift in lattice Hamiltonian approach to Schwinger model, arXiv: 2206.05308 (2022)
[27]
C.Y. Wong, Anomalous soft photons in hadron production, Phys. Rev. C 81(6), 064903 (2010), arXiv: 1001.1691
[28]
C.Y. Wong, Anomalous soft photons associated with hadron production in string fragmentation, Talk presented at the IX International Conference on Quark Confinement and Hadron Spectrum, Madrid, Spain, Aug. 30−Sep. 3, 2010, AIP Conf. Proc. 1343, 447 (2011), arXiv: 1011.6265
[29]
C.Y. Wong, An overview of the anomalous soft photons in hadron production, Talk presented at International Conference on the Structure and the Interactions of the Photon, 20−24 May 2013, Paris, France, PoS Photon 2013, 002 (2014), arXiv: 1404.0040
[30]
C.Y. Wong, Open string QED meson description of the X17 particle and dark matter, J. High Energy Phys. 2020(8), 165 (2020), arXiv: 2001.04864
[31]
C.Y. Wong, On the stability of the open-string QED neutron and dark matter, Europhys. J. A 58, 100 (2022), arXiv: 2010.13948
[32]
C.Y. Wong, QED mesons, the QED neutron, and the dark matter, in: Proceedings of the 19th International Conference on Strangeness in Quark Matter, EPJ Web Confer. 259, 13016 (2022), arXiv: 2108.00959
[33]
C.Y. Wong, QED meson description of the X17 and other anomalous particles, in: Proceedings of the Workshop of “Shedding Light on X17”, September 6−8, 2021, Centro Ricerche Enrico Fermi, Rome, Italy, arXiv: 2201.09764
[34]
C.Y. WongA. Koshelkin, Dynamics of quarks and gauge fields in the lowest-energy states in QCD and QED, arXiv: 2111.14933 (2021)
[35]
A.KoshelkinC. Y. Wong, Dynamics of quarks and gauge fields in the lowest-energy states in QCD and QED, in Proceedings of the 41st International Conference in High Energy Physics, 6−13 July, 2022, Bologna, Italy, PoS 414, 302 (2022), arXiv: 2212.11749
[36]
P. V. Chliapnikov, E. A. De Wolf, A. B. Fenyuk, L. N. Gerdyukov, Y. Goldschmidt-Clermont, V. M. Ronjin, A. Weigend. Observation of direct soft photon production in πp interactions at 280 GeV/c. Phys. Lett. B, 1984, 141(3−4): 276
CrossRef ADS Google scholar
[37]
F. Botterweck, . (EHS-NA22 Collaboration). . Direct soft photon production in K+p and π+p interactions at 250 GeV/c. Z. Phys. Chem., 1991, 51: 541
[38]
S. Banerjee, . (SOPHIE/WA83 Collaboration). . Observation of direct soft photon production in πp interactions at 280 GeV/c. Phys. Lett. B, 1993, 305(1−2): 182
CrossRef ADS Google scholar
[39]
A. Belogianni, W. Beusch, T. J. Brodbeck, D. Evans, B. R. French, A. Jacholkowski, J. B. Kinson, A. Kirk, V. Lenti, R. A. Loconsole, V. Manzari, I. Minashvili, V. Perepelitsa, N. Russakovich, P. Sonderegger, M. Spyropoulou-Stassinaki, G. Tchlatchidze, G. Vassiliadis, I. Vichou, O. Villalobos-Baillie (WA91 Collaboration). Confirmation of a soft photon signal in excess of QED expectations in πp interactions at 280 GeV/c. Phys. Lett. B, 1997, 408(1−4): 487
CrossRef ADS Google scholar
[40]
A. Belogianni, . (WA102 Collaboration). . Further analysis of a direct soft photon excess in πp interactions at 280-GeV/c. Phys. Lett. B, 2002, 548(3−4): 122
CrossRef ADS Google scholar
[41]
A. Belogianni, W. Beusch, T. J. Brodbeck, F. S. Dzheparov, B. R. French, P. Ganoti, J. B. Kinson, A. Kirk, V. Lenti, I. Minashvili, V. F. Perepelitsa, N. Russakovich, A. V. Singovsky, P. Sonderegger, M. Spyropoulou-Stassinaki, O. Villalobos Baillie (WA102 Collaboration). Observation of a soft photon signal in excess of QED expectations in pp interactions. Phys. Lett. B, 2002, 548(3−4): 129
CrossRef ADS Google scholar
[42]
V.Perepelitsa, Anomalous soft photons in hadronic decays of Z0, Proceedings of the XXXIX International Symposium on Multiparticle Dynamics, Gomel, Belarus, September 4−9, 2009, published in: Nonlin. Phenom. Complex Syst. 12, 343 (2009)
[43]
J.Abdallah, . (DELPHI Collaboration), Evidence for an excess of soft photons in hadronic decays of Z0, Eur. Phys. J. C 47(2), 273 (2006), arXiv: hep-ex/0604038
[44]
J. Abdallah, . (DELPHI Collaboration). . Observation of the muon inner bremsstrahlung at LEP1. Eur. Phys. J. C, 2008, 57(3): 499
CrossRef ADS Google scholar
[45]
J. Abdallah, . (DELPHI Collaboration). . Study of the dependence of direct soft photon production on the jet characteristics in hadronic Z0 decays. Eur. Phys. J. C, 2010, 67(3−4): 343
CrossRef ADS Google scholar
[46]
A.J. KrasznahorkayM.CsatlósL. CsigeZ.GácsiJ.GulyásM.Hunyadi I.KutiB. M. NyakóL.Stuhl J.TimárT.G. TornyiZ.Vajta T.J. KetelA. Krasznahorkay, Observation of anomalous internal pair creation in 8Be: A possible indication of a light, neutral boson, Phys. Rev. Lett. 116(4), 042501 (2016), arXiv: 1504.01527
[47]
A.J. Krasznahorkay, ., New evidence supporting the existence of the hypothetical X17 particle, arXiv: 1910.10459 (2019)
[48]
A.J. KrasznahorkayM.CsatlósL. CsigeJ.GulyásA.KrasznahorkayB.M. NyakóI.RajtaJ.TimárI.Vajda N.J. Sas, New anomaly observed in 4He supports the existence of the hypothetical X17 particle, Phys. Rev. C 104(4), 044003 (2021), arXiv: 2104.10075
[49]
A.J. Krasznahorkay, ., X17: Staus and experiments on 8Be and 4He, presented at the Workshop of “Shedding Light on X17”, September 6−8, 2021, Centro Ricerche Enrico Fermi, Rome, Italy
[50]
N.J. SasA. J. KrasznahorkayM.CsatlósJ.GulyásB.KertészA. KrasznahorkayJ.MolnárI.RajtaJ.TimárI.VajdaM.N. Harakeh, Observation of the X17 anomaly in the 7Li(p, e+e)8Be direct proton-capture reaction, arXiv: 2205.07744 (2022)
[51]
A.J. Krasznahorkay, ., New anomaly observed in 12C supports the existence and the vector character of the hypothetical X17 boson, arXiv: 2209.10795 (2022)
[52]
K.AbraamyanA. B. AnisimovM.I. BaznatK.K. GudimaM.A. NazarenkoS.G. ReznikovA.S. Sorin, Observation of the E(38)-boson, arXiv: 1208.3829v1 (2012)
[53]
K. Abraamyan, C. Austin, M. Baznat, K. Gudima, M. Kozhin, S. Reznikov, A. Sorin. Check of the structure in photon pairs spectra at the invariant mass of about 38 MeV/c2. EPJ Web of Conferences, 2019, 204: 08004
CrossRef ADS Google scholar
[54]
Proceedingsof the Workshop on “Shedding Light on X17”September 6−82021Ricerche Enrico Fermi CentroEds.: MRomeItaly;. Raggi, P. Valente, M. Nardecchia, A. Frankenthal, G. Cavoto, published in: D. S. M. Alves, et al., Eur. Phys. J. C 83, 230 (2023)
[55]
A.J. Krasznahorkay (for the ATOMKI Collaboration), X17: Status of the experiments on 8Be and 4He, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]
[56]
Kh.U. AbraamyanCh.AustinM.I. BaznatK.K. GudimaM.A. KozhinS.G. ReznikovA.S. Sorin (Dubna Collaboration), Private communications
[57]
Y.S. ChengH. Z. HuangG.Wang (STAR Collaboration), Private communications
[58]
A.Papa (for the MEGII Collaboration), X17 search with the MEGII apparatus, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]
[59]
H. N. da Luz (for the TU Prague Collaboration), Measurements of internal pair creation with a time projection chamber-based setup, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]
[60]
C.Gustavino (for the nTOF Collaboration), The search for 4 He anomaly at n_TOF experiment, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]
[61]
E.Depero (for the NA64 Collaboration), X17 in the NA64 experiment, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]
[62]
L.DarméM.RaggiE.Nardi, (for the INFNRome Collabration), X17 production mechanism at accelerators, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]
[63]
E.Goudzovski (for the NA48 Collaboration), Search for dark photon in π0 decays by NA48/2 at CERN, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]
[64]
A.K. Perrevoort (for the Mu3e Collaboration), Prospects for Dark Photon Searches in the Mu3e Experiment, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]
[65]
L.Doria (for the MAGIX Collaboration), Dark Matter and X17 Searches at MESA 4.4. 2 Light Dark Matter, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]
[66]
A.Gasparian (for the JLAB-PAC50 Collaboration), A Direct Detection Search for Hidden Sector New Particles in the 3−60 MeV Mass Range, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]
[67]
A.Ahmidouch, . (for the JLAB-PAC50 Collaboration), A Direct Detection Search for Hidden Sector New Particles in the 3–60 MeV Mass Range, arXiv: 2108.13276 (2021)
[68]
V.Kozhuharov (for the PADME Collaboration), Searching X17 with positrons at PADME, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]
[69]
E.Cline, . (for the DarkLight Collaboration), Searching for New Physics with DarkLight at the ARIEL Electron-Linac, arXiv: 2208.04120 (2022)
[70]
P.Navrátil, ARIEL experiments and theory, arXiv: 2210.08438 (2022)
[71]
S.Huang (for the LUXE Collaboration), Probing new physics at the LUXE experiment, Proceedings of 41st International Conference on High Energy physics - ICHEP2022, 6−13 July, 2022, arXiv: 2211.11045
[72]
G. Azuelos, D. Bryman, W. C. Chen, H. de Luz, L. Doria, A. Gupta, L. A. Hamel, M. Laurin, K. Leach, G. Lefebvre, J. P. Martin, A. Robinson, N. Starinski, R. Sykora, D. Tiwari, U. Wichoski, V. Zacek. Status of the X17 search in Montreal. J. Phys. Conf. Ser., 2022, 2391(1): 012008
CrossRef ADS Google scholar
[73]
M. Gell-Mann. The interpretation of the new particles as displaced charge multiplets. Nuovo Cim., 1956, 4(S2): 848
CrossRef ADS Google scholar
[74]
M. Tanabashi, . (Particle Data Group). . Review of particle physics. Phys. Rev. D, 2019, 98: 030001
CrossRef ADS Google scholar
[75]
A. Abashian, N. E. Booth, K. M. Crowe. Possible anomaly in meson production in p+d collisions. Phys. Rev. Lett., 1960, 5(6): 258
CrossRef ADS Google scholar
[76]
N. E. Booth, A. Abashian, K. M. Crowe. Anomaly in meson production in p+d collisions. Phys. Rev. Lett., 1961, 7(1): 35
CrossRef ADS Google scholar
[77]
J. Banaigs, J. Berger, L. Goldzahl, T. Risser, L. Vu-Hai, M. Cottereau, C. Le Brun. “ABC” and “DEF” effects in the reaction d + p → He3 + (mm)0: Position, width, isospin, angular and energy distributions. Nucl. Phys. B, 1973, 67(1): 1
CrossRef ADS Google scholar
[78]
P. Adlarson. . Abashian−Booth−Crowe effect in basic double-pionic fusion: A new resonance?. Phys. Rev. Lett., 2011, 106(24): 242302
CrossRef ADS Google scholar
[79]
M. Bashkanov, H. Clement, T. Skorodko. Examination of the nature of the ABC effect. Nucl. Phys. A, 2017, 958: 129
CrossRef ADS Google scholar
[80]
V.I. Komarov, ., Resonance-like coherent production of a pion pair in the reaction pdpdππ in the GeV region, Eur. Phys. J. A 54, 206 (2018), arXiv: 1805.01493
[81]
C. Y. Wong. The Wigner function of produced particles in string fragmentation. Phys. Rev. C, 2009, 80(5): 054917
CrossRef ADS Google scholar
[82]
A.V. KoshelkinC.Y. Wong, The compactification of QCD4 to QCD2 in a flux tube, Phys. Rev. D 86(12), 125026 (2012), arXiv: 1212.3301
[83]
J.D. Bjorken, Lectures presented in the 1973 Proceedings of the Summer Institute on Particle Physics, edited by Zipt, SLAC-167 (1973)
[84]
A. Casher, J. Kogut, L. Susskind. Vacuum polarization and the absence of free quarks. Phys. Rev. D, 1974, 10(2): 732
CrossRef ADS Google scholar
[85]
Y.Nambu, Quark model of the factorization of the Veneziano Amplitude, in Lectures at the Copenhagen Symposium: Symmetry and Quark Models, edited by R. Chand, Gordon and Breach, 1970, page 269
[86]
Y. Nambu. Strings, monopoles, and gauge fields. Phys. Rev. D, 1974, 10(12): 4262
CrossRef ADS Google scholar
[87]
T.Goto, Relativistic quantum mechanics of one-dimensional mechanical continuum and subsidiary condition of dual resonance model, Prog. Theor. Phys, 46, 1560 (1971), arXiv: hep-th/9302104
[88]
G. ’t Hooft. Topology of the gauge condition and new confinement phases in non-Abelian gauge theories. Nucl. Phys. B, 1981, 190(3): 455
CrossRef ADS Google scholar
[89]
L. V. Belvedere, J. A. Swieca, K. D. Rothe, B. Schroer. Generlaized two-dimensional Abelian gauge theories and confinement. Nucl. Phys. B, 1979, 153: 112
CrossRef ADS Google scholar
[90]
T.SekidoK. IshiguroY.KomaY.MoriT.Suzuki, Abelian dominance and the dual Meissner effect in local unitary gauges in SU(2) gluodynamics, Phys. Rev. C 75, 064906 (2007), arXiv: hep-ph/0703002
[91]
T.SuzukiK. IshiguroY.KomaT.Sekido, Gauge-independent Abelian mechanism of color confinement in gluodynamics, Phys. Rev. D 77, 034502 (2008), arXiv: 0706.4366
[92]
H.SuganumaH. Ohata Local correlation among the chiral condensate, monopoles, and color magnetic fields in Abelian projected QCD, arXiv: 2108.08499 (2021)
[93]
G. ’t Hooft. A planar diagram theory for strong interactions. Nucl. Phys. B, 1974, 72(3): 461
CrossRef ADS Google scholar
[94]
G. ’t Hooft. A two-dimensional model for mesons. Nucl. Phys. B, 1974, 75(3): 461
CrossRef ADS Google scholar
[95]
S. Huang, J. W. Negele, J. Polonyi. Meson structure in QCD2. Nucl. Phys. B, 1988, 307(4): 669
CrossRef ADS Google scholar
[96]
G. S. Bali, H. Neff, T. Duessel, T. Lippert, K. Schilling (SESAM). Observing long colour flux tubes in SU(2) lattice gauge theory. Phys. Rev. D, 2005, 71: 114513
CrossRef ADS Google scholar
[97]
L.CosmaiP. CeaF.CuteriA.Papa, Flux tubes in QCD with (2+1) HISQ fermions, Pos, 4th annual International Symposium on Lattice Field Theory, 24−30 July 2016, University of Southampton, UK, arXiv: 1701.03371 (2017)
[98]
N.CardosoM. CardosoP.Bicudo, Inside the SU(3) quark−antiquark QCD flux tube: Screening versus quantum widening, Phys. Rev. D 88, 054504 (2013), arXiv: 1302.3633
[99]
P.BicudoN. Cardoso, Colour field densities of the quark−antiquark excited flux tubes in SU(3) lattice QCD, Phys. Rev. D 98 (2018) 11, 114507, arXiv: 1808.08815
[100]
P.BicudoN. CardosoM.Cardoso, Pure gauge QCD flux tubes and their widths at finite temperature, Nucl. Phys. B 940, 88 (2019), arXiv: 1702.03454
[101]
M.E. PeskinD. V. Schroeder, An Introduction to Quantum Field Theory, Addison-Wesley Publishing Company, 1995
[102]
M. B. Halpern. Quantum “solitons” which are SU(N) fermions. Phys. Rev. D, 1975, 12(6): 1684
CrossRef ADS Google scholar
[103]
J. Kogut, L. Susskind. Quark confinement and the puzzle of the ninth axial-vector current. Phys. Rev. D, 1974, 10(10): 3468
CrossRef ADS Google scholar
[104]
J. Kogut, L. Susskind. How quark confinement solve the η → 3π problem. Phys. Rev. D, 1975, 11(12): 3594
CrossRef ADS Google scholar
[105]
J. Kogut, D. K. Sinclair. Quark Confinement and the evasion of the Goldestone’s theorem in 1 + 1 dimensions. Phys. Rev. D, 1975, 12(6): 1742
CrossRef ADS Google scholar
[106]
E. Witten. Non-Abelian bosonization in two dimensions. Commun. Math. Phys., 1984, 92(4): 455
CrossRef ADS Google scholar
[107]
D. Gepner. Non-abelian bosonization and multiflavor QED and QCD in two dimensions. Nucl. Phys. B, 1985, 252: 481
CrossRef ADS Google scholar
[108]
J. Ellis, Y. Frishman, A. Hanany, M. Karliner. Quark solitons as constituents of hadrons. Nucl. Phys. B, 1992, 382(2): 189
CrossRef ADS Google scholar
[109]
Y.FrishmanJ. Sonnenschein, Bosonization and QCD in two dimensions, Phys. Rep. 223(6), 309 (1993)
[110]
Y.FrishmanA. HananyJ.Sonnenschein, Subtleties in QCD theory in two dimensions, Nucl. Phys. B 429(1), 75 (1994)
[111]
A.ArmoniJ. Sonnenschein, Mesonic spectra of bosonized QCD2 models, Nucl. Phys. B 457(1−2), 81 (1995)
[112]
A.ArmoniY. FrishmanJ.SonnenscheinU.Trittmann, The spectrum of multi-flavor QCD2 and the non-Abelian Schwinger equation, Nucl. Phys. B 537(1−3), 503 (1999)
[113]
A.AbrashkinY. FrishmanJ.Sonnenschein, The spectrum of states with one current acting on the adjoint vacuum of massless, Nucl. Phys. B 703(1–2), 320 (2004)
[114]
D.J. GrossI. R. KlebanovA.V. MatytsinA.V. Smilga, Screening vs. confinement in 1+1 dimensions, Nucl. Phys. B 461(1–2), 109 (1996), arXiv: hep-th/9511104
[115]
J. P. Vary, T. J. Fields, H. J. Pirner. Chiral perturbation theory in the Schwinger model. Phys. Rev. D, 1996, 53(12): 7231
CrossRef ADS Google scholar
[116]
Y. Hosotani, R. Rodriguez. Bosonized massive N-flavour Schwinger model. J. Phys. Math. Gen., 1998, 31(49): 9925
CrossRef ADS Google scholar
[117]
E.AbdallaM. C. B. AbdallaK.D. Rothe, Two Dimensional Quantum Field Theory, World Scientific Publishing Company, Singapore, 2001
[118]
S. Nagy. Massless fermions in mutiflavor QED. Phys. Rev. D, 2009, 79(4): 045004
CrossRef ADS Google scholar
[119]
J. Kovács, S. Nagy, I. Nandori, K. Sailer. Renormalization of QCD2. J. High Energy Phys., 2011, 2011(1): 126
CrossRef ADS Google scholar
[120]
S. Weinberg. Phenomenological Lagrangians. Physica A, 1979, 96(1−2): 327
CrossRef ADS Google scholar
[121]
E. Witten. Current algebra theorems for the U(1) Goldstone boson. Nucl. Phys. B, 1979, 156(2): 269
CrossRef ADS Google scholar
[122]
G. Veneziano, Construction of a crossing-simmetric. Regge-behaved amplitude for linearly rising trajectories. Nuovo Cim. A, 1968, 57(1): 190
CrossRef ADS Google scholar
[123]
X. Artru, G. Mennessier. String model and multiproduction. Nucl. Phys. B, 1974, 70(1): 93
CrossRef ADS Google scholar
[124]
A. M. Polyakov. Quantum geometry of bosonic strings. Phys. Lett. B, 1981, 103(3): 207
CrossRef ADS Google scholar
[125]
B.AnderssonG. GustafsonT.Sjöstrand, A general model for jet fragmentation, Zeit. für Phys. C 20, 317 (1983)
[126]
B.AnderssonG. GustafsonG.IngelmanT.Sjöstrand, Parton fragmentation and string dynamics, Phys. Rep. 97(2−3), 31 (1983)
[127]
T. SjöstrandM. Bengtsson., The Lund Monte Carlo for jet fragmentation and e+e physics − jetset version 6.3 − an update, Comput. Phys. Commun. 43(3), 367 (1987)
[128]
B.AnderssonG. GustafsonB.Nilsson-Almqvist, A model for low-pT hadronic reactions with generalizations to hadron−nucleus and nucleus−nucleus collisions, Nucl. Phys. B 281(1–2), 289 (1987)
[129]
G.GatoffC. Y. Wong, Origin of the soft pT spectra, Phys. Rev. D 46(3), 997 (1992)
[130]
C.Y. WongG. Gatoff, The transverse profile of a color flux tube, Phys. Rep. 242(4–6), 4 (1994)
[131]
C. Y. Wong, R. C. Wang, C. C. Shih. Study of particle production using two-dimensional bosonized QED. Phys. Rev. D, 1991, 44(1): 257
CrossRef ADS Google scholar
[132]
H.Aihara, . (TPC/Two_Gamma Collaboration), Charged hadron production in e+e annihilation at s = 29 GeV, Lawrence Berkeley Laboratory Report LBL-23737 (1988)
[133]
W. Hofmann. Particle composition in hadronic jets in e+e annihilation. Annu. Rev. Nucl. Part. Sci., 1988, 38(1): 279
CrossRef ADS Google scholar
[134]
A. Petersen, . (Mark II Collaboration). . Multihadronic events at ECM = 29 GeV and predictions of QCD models from ECM = 29 GeV to ECM = 93 GeV. Phys. Rev. D, 1988, 37: 1
CrossRef ADS Google scholar
[135]
K. Abe, . (SLD Collaboration). . Production of π+, K+, K0, K*0, ϕ, p, and Λ0 in hadronic Z0 decays. Phys. Rev. D, 1999, 59: 052001
CrossRef ADS Google scholar
[136]
K. Abreu, . (DELPHI Collaboration). . Energy dependence of inclusive spectra in e+e annihilation. Phys. Lett. B, 1999, 459: 397
CrossRef ADS Google scholar
[137]
H.Yang (BRAHMS Collaboration), Rapidity densities of π±, K±, p and p¯ in p+p and d+Au collisions at sNN = 200 GeV, J. Phys. G. 35, 104129 (2008)
[138]
K.Hagel (BRAHMS Collaboration), APS DNP 2008, Oakland, California, USA, Oct. 23–27, 2008
[139]
M. Gell-Mann, R. J. Oakes, B. Renner. Behavior of current divergences under SU(3)*SU(3). Phys. Rev., 1968, 175(5): 2195
CrossRef ADS Google scholar
[140]
T. Barnes, E. S. Swanson. Diagrammatic approach to meson−meson scattering in the nonrelativistic quark potential model. Phys. Rev. D, 1992, 46(1): 131
CrossRef ADS Google scholar
[141]
C. Y. Wong, E. S. Swanson, T. Barnes. Cross sections for π- and ρ-induced dissociation of J/ψ and ψ′. Phys. Rev. C Nucl. Phys., 2000, 62: 045201
CrossRef ADS Google scholar
[142]
C.Y. WongE. S. SwansonT.Barnes, Heavy quarkonium dissociation cross sections in relativistic heavy-ion collisions, Phy. Rev. C 65, 014903 (2002), arXiv: nucl-th/0106067
[143]
M. Baldicchi, A. V. Nesterenko, G. M. Prosperi, C. Simolo. QCD coupling below 1 GeV from quarkonium spectrum. Phys. Rev. D, 2008, 77(3): 034013
CrossRef ADS Google scholar
[144]
A.DeurS. J. BrodskyG.F. de Téramond, The QCD running coupling, Prog. Part. Nuc. Phys. 90, 1 (2016), arXiv: 1604.08082
[145]
F. Low. Bremsstrahlung of very low-energy quanta in elementary particle collisions. Phys. Rev., 1958, 110(4): 974
CrossRef ADS Google scholar
[146]
V.N. Gribov, Bremsstrahlung of hadrons at high energies, Yad. Fiz. 5, 399 (1967) [Sov. J. Nucl. Phys. 5, 280 (1967)]
[147]
L.Van Hove, Cold quark−gluon plasma and multiparticle production, Ann. Phys. 192(1), 66 (1989)
[148]
P.LichardL. Van Hove, The cold quark−gluon plasma as a source of very soft photons in high energy collisions, Phys. Lett. B 245(3–4), 605 (1990)
[149]
P. Lichard. Consistency of data on soft photon production in hadronic interactions. Phys. Rev. D, 1994, 50(11): 6824
CrossRef ADS Google scholar
[150]
E.KokoulinaA. KutovV.Nikitin, Gluon dominance model and cluster production, Braz. J. Phys. 37(2c), 785 (2007)
[151]
M.VolkovE. KokoulinaE.Kuraev, Gluon dominance model and cluster production, Ukr. J. Phys. 49, 1252 (2003)
[152]
S. Barshay. Anomalous soft photons from a coherent hadronic phase in high-energy collisions. Phys. Lett. B, 1989, 227(2): 279
CrossRef ADS Google scholar
[153]
E. Shuryak. The soft photon puzzle and pion modification in hadronic matter. Phys. Lett. B, 1989, 231(1−2): 175
CrossRef ADS Google scholar
[154]
V. Balek, N. Pisutova, J. Pisut. The puzzle of very soft photon production in hadronic Interactions. Acta Phys. Pol. B, 1990, 21: 149
[155]
W. Czyz, W. Florkowski. Soft photon production in the boost invariant color flux tube model. Z. Phys. Chem., 1994, 61: 171
[156]
O.Nachtmann, Nonperturbative QCD effects in high-energy collisions, arXiv: hep-ph/9411345 (1994)
[157]
G.W. BotzP. HaberlO.Nachtmann, Soft photons in hadron hadron collisions: Synchrotron radiation from the QCD vacuum? Z. Phys. Chem. 67, 143 (1995)
[158]
P.LebiedowiczO.NachtmannA.Szczurek, Soft-photon radiation in high-energy proton−proton collisions within the tensor-Pomeron approach: Bremsstrahlung, Phys. Rev. D 106, 034023 (2022), arXiv: 2206.03411
[159]
Y. Hatta, T. Ueda. Soft photon anomaly and gauge/string duality. Nucl. Phys. B, 2010, 837(1−2): 22
CrossRef ADS Google scholar
[160]
S. M. Darbinian, K. A. Ispirian, A. T. Margarian. Unruh radiation of quarks and the soft photon puzzle in hadronic interactions. Sov. J. Nucl. Phys., 1991, 54: 364
[161]
Yu.A. Simonov, Di-pion decays of heavy quarkonium in the field correlator method, Phys. Atom. Nucl. 71, 1049 (2008), arXiv: hep-ph/07113626
[162]
Yu.A. Simonov, Di-pion emission in heavy quarkonia decays, JETP Lett. 87(3), 121 (2008)
[163]
Yu.A. SimonovA.I. Veselov, Bottomonium ϒ(5S) decays into BB and BBπ, JETP Lett. 88(1), 5 (2008)
[164]
Yu.A. SimonovA.I. Veselov, Strong decays and di-pion transitions of ϒ(5S), Phys. Lett. B 671(1), 55 (2009)
[165]
D. E. Kharzeev, F. Loshaj. Anomalous soft photon production from the induced currents in Dirac sea. Phys. Rev. D, 2014, 89(7): 074053
CrossRef ADS Google scholar
[166]
R. Hagedorn. Statistical thermodynamics of strong interactions at high energies. Nuo. Cim. Suppl., 1965, 3: 147
[167]
I. Abelev, . (STAR Collaboration). . Strange particle production in p+p collisions at s = 200 GeV. Phys. Rev. C, 2007, 75(6): 064901
CrossRef ADS Google scholar
[168]
I. Abelev, . (STAR Collaboration). . Systematic measurements of identified particle spectra in pp, d+Au, and Au+Au collisions at the STAR detector. Phys. Rev. C, 2009, 79: 034909
CrossRef ADS Google scholar
[169]
A. Adare, . (PHENIX Collaboration). . Measurement of neutral mesons in pp collisions at s=200 GeV. Phys. Rev. D, 2011, 83: 052004
CrossRef ADS Google scholar
[170]
A. T. D’yachenko, E. S. Gromova. Detection of particles of dark matter from the spectrum of secondary particles in high-energy proton−proton collisions in a thermodynamic model. J. Phys. Conf. Series, 2021, 2131: 022
[171]
A. T. D’yachenko, A. A. Verisokina, M. A. Verisokina. High-energy collisions of protons and nuclei and the possibility of detecting dark matter particles in the spectra of soft photons. Acta Phys. Pol. B Proc. Suppl., 2021, 14(4): 761
CrossRef ADS Google scholar
[172]
F. W. N. de Boer, O. Fröhlich, K. E. Stiebing, K. Bethge, H. Bokemeyer, A. Balanda, A. Buda, R. van Dantzig, T. W. Elze, H. Folger, J. van Klinken, K. A. Müller, K. Stelzer, P. Thee, M. Waldschmidt. A deviation in internal pair conversion. Phys. Lett. B, 1996, 388(2): 235
CrossRef ADS Google scholar
[173]
F. W. N. de Boer, R. van Dantzig, J. van Klinken, K. Bethge, H. Bokemeyer, A. Buda, K. A. Müller, K. E. Stiebing. Excess in nuclear pairs near 9 MeV/c2 invariant mass. J. Phys. G, 1997, 23(11): L85
CrossRef ADS Google scholar
[174]
F.W. N. de BoerK.BethgeH.BokemeyerR.van DantzigJ.van KlinkenV.Mironov K.A. MüllerK.E. Stiebing, Further search for a neutral boson with a mass around 9 MeV/c2, J. Phys. G 27(4), L29 (2001), arXiv: hep-ph/0101298v2
[175]
A. Vitéz, A. Krasznahorkay, J. Gulyás, M. Csatlós, L. Csige Z. Gácsi, A. Krasznahorkay Jr., B. M. Nyakó, F. W. N. de Boer, T. J. Ketel. 33 anomalous internal pair creation in 8Be as a signature of the decay of a new particle. Acta Phys. Pol., 2008, B39: 483
[176]
X. Zhang, G. A. Miller. Can nuclear physics explain the anomaly observed in the internal pair production in the Beryllium-8 nucleus?. Phys. Lett. B, 2017, 773: 159
CrossRef ADS Google scholar
[177]
J.Feng, ., Protophobic fifth force interpretation of the observed anomaly in 8Be nuclear transitions, Phys. Rev. Lett. 117, 071803 (2016) (2016)
[178]
J.FengB. FornalI.GalonS.GardnerJ.SmolinskyT.M. P. TaitP.Tanedo, Particle physics models for the 17 MeV anomaly in beryllium nuclear decays, Phys. Rev. D 95(3), 035017 (2017)
[179]
B. Fornal. Is there a sign of new physics in beryllium transitions?. Int. J. Mod. Phys. A, 2017, 32(25): 1730020
CrossRef ADS Google scholar
[180]
J. Batley, . (NA48/2 Collaboration). . Search for the dark photon in π0 decays. Phys. Lett. B, 2015, 746: 178
CrossRef ADS Google scholar
[181]
L.D. RoseS. KhalilS.Moretti, Explanation of the 17 MeV Atomki anomaly in a U(1)-extended two Higgs doublet model, Phys. Rev. D 96(11), 115024 (2017)
[182]
L.Delle RoseS.KhalilS.J. D. KingS.MorettiA.M. Thabt, Atomki anomaly in family-dependent U(1) extension of the standard model, Phys. Rev. D 99(5), 055022 (2019)
[183]
L.Delle RoseS.KhalilS.J. D. KingS.Moretti, New physics suggested by Atomki anomaly, Front. Phys. (Lausanne) 7, 73 (2019)
[184]
J.BordesH. M. ChanT.S. Tsun, Accommodating three low-scale anomalies (g-2, Lamb shift, and Atomki) in the framed standard model, Int. J. Mod. Phys. A 34 (25), 1830034 (2019), and references cited therein
[185]
H.M. ChanS. T. Tsou, Two variations on the theme of Yang and Mills - the SM and the FSM Invited contribution to the “Festschrift for the Yang Centenary” (edited by F. C. Chen, et al.), arXiv: 2201.12256 (2022)
[186]
U. Ellwanger, S. Moretti. Possible explanation of the electron positron anomaly at 17 MeV in 8Be transitions through a light pseudoscalar. J. High Energy Phys., 2016, 11(11): 39
CrossRef ADS Google scholar
[187]
D. S. M. Alves, N. J. Weiner. A viable QCD axion in the MeV mass range. J. High Energy Phys., 2018, 07(7): 92
CrossRef ADS Google scholar
[188]
V.KubarovskyJ.Rittenhouse WestS. J. Brodsky, Quantum chromodynamics resolution of the ATOMKI anomaly in 4He nuclear transitions, arXiv: 2206.14441 (2022)
[189]
M. Viviani, L. Girlanda, A. Kievsky, L. E. Marcucci. n+3H, p+3He, p+3H, and n+3He scattering with the hyper-spherical harmonic method. Phys. Rev. C, 2020, 102(3): 034007
CrossRef ADS Google scholar
[190]
M. Viviani, E. Filandri, L. Girlanda, C. Gustavino, A. Kievsky, L. E. Marcucci, R. Schiavilla. X17 boson and the H3(p, e+ e)He4 and He3(n, e+ e)He4 processes: A theoretical analysis. Phys. Rev. C, 2022, 105(1): 014001
CrossRef ADS Google scholar
[191]
M. Munch, O. Sølund Kirsebom, J. A. Swartz, K. Riisager, H. O. U. Fynbo. Measurement of the full excitation spectrum of the 7Li(p, γ)αα reaction at 441 keV. Phys. Lett. B, 2018, 782: 779
CrossRef ADS Google scholar
[192]
D.Banerjee, . (NA64 Collaboration), Search for a hypothetical 16.7 MeV gauge boson and dark photons in the NA64 Experiment at CERN, Phys. Rev. Lett. 120(23), 231802 (2018)
[193]
D.Banerjee, . (NA64 Collaboration), Improved limits on a hypothetical X(16.7) boson and a dark photon decaying into e+e pairs, arXiv: 1912.11389 (2019)
[194]
C.TaruggiA. GhoshalM.Raggi (for the PADME Collaboration), Searching for dark photons with the PADME experiment (Conference: C18-05-07.4, pp 17−21, pp 28−34, and pp 337−344), Frascati Phys. Ser. 67, 17, 28, and 334 (2018)
[195]
D.BarducciC. Toni, An updated view on the ATOMKI nuclear anomalies, arXiv: 2212.06453 (2022)
[196]
Kh. U. Abraamyan. . Resonance structure in the γγ invariant mass spectrum in pC and dC interactions. Phys. Rev. C, 2009, 80: 034001
CrossRef ADS Google scholar
[197]
Kh. U. Abraamyan, A. B. Anisimov, M. I. Baznat, K. K. Gudima, M. A. Kozhin, V. I. Kukulin, M. A. Nazarenko, S. G. Reznikov, A. S. Sorin. Diphoton and dipion productions at the Nuclotron/NICA. Eur. Phys. J. A, 2016, 52(8): 259
CrossRef ADS Google scholar
[198]
W. T. Donnelly, S. J. Freedman, R. S. Lytel, R. D. Peccei, M. Schwartz. Do axions exist?. Phys. Rev. D, 1978, 18(5): 1607
CrossRef ADS Google scholar
[199]
M. E. El-Nadi, O. E. Badawy. Production of a new light neutral boson in high-energy collisions. Phys. Rev. Lett., 1988, 61(11): 1271
CrossRef ADS Google scholar
[200]
M. E. El-Nadi. . External electron pair production in high-energy collisions. Nuo. Cim. A, 1996, 109: 1517
CrossRef ADS Google scholar
[201]
P. L. Jain, G. Singh. Search for new particles decaying into electron pairs of mass below 100 MeV/c2. J. Phys. G, 2007, 34(1): 129
CrossRef ADS Google scholar
[202]
F.W. N. de BoerC.A. Fields, A re-evaluation of evidence for light neutral bosons in nuclear emulsions, Int. J. Mod. Phys. E 20(8), 1787 (2011), arXiv: 1001.3897
[203]
J.BernhardK. Schönning, Test of OZI violation in vector meson production with COMPASS, arXiv: 1109.0272v2 (2011)
[204]
J.Bernhard, Exclusive vector meson production in pp collisions at the COMPASS experiment, Ph. D. Thesis, University of Mainz, 2014
[205]
T.Schlüter, The exotic ηπ wave in 190 GeV π−p → π−ηp at COMPASS, arXiv: 1108.6191v2 (2011)
[206]
T.Schlüter, The π−η and π−η′ systems in exclusive 190 GeV/c π−p Reactions at COMPASS, Ph. D. Thesis, Univ. München, 2012
[207]
J.BernhardJ. M. FriedrichT.SchlüterK.Schönning, Comment on “Material evidence of a 38 MeV boson”, arXiv: 1204.2349 (2012)
[208]
E.van BeverenG.Rupp, First indications of the existence of a 38 MeV light scalar boson arXiv: 1102.1863 (2011)
[209]
E.van BeverenG.Rupp, Material evidence of a 38 MeV boson, arXiv: 1202.1739 (2012)
[210]
E.van BeverenG.Rupp, Reply to Comment on “Material evidence of a 38 MeV boson”, arXiv: 1204.3287 (2012)
[211]
E.van BeverenG.Rupp, Z0(57) and E(38): possible surprises in the Standard Model, arXiv: 2005.08559 (2020) (accepted for publication in Acta Physica Polonica B Proc. Suppl.)
[212]
C. Y. Wong. Shells in a simple anisotropic harmonic oscillator. Phys. Lett. B, 1970, 14(8): 668
CrossRef ADS Google scholar
[213]
C. Y. Wong. Interaction barrier in charged-particle nuclear reactions. Phys. Rev. Lett., 1973, 31(12): 766
CrossRef ADS Google scholar
[214]
T.G. LeeO. BayrakC.Y. Wong, Pocket resonances in low-energy antineutrons reactions with nuclei, Phys. Lett. B 817, 136301 (2021), arXiv: 2102.06691
[215]
J. A. Wheeler. Molecular viewpoints in nuclear structure. Phys. Rev., 1937, 52(11): 1083
CrossRef ADS Google scholar
[216]
D. R. Tilley, H. R. Weller. Energy levels of light nuclei A=4. Nucl. Phys. A, 1992, 541: 1
CrossRef ADS Google scholar
[217]
D. R. Tilley, J. H. Kelley, J. L. Godwin, D. J. Millener, J. Purcell, C. G. Sheu, H. R. Weller. Energy levels of light nuclei. Nucl. Phys. A, 2004, 745(3−4): 155
CrossRef ADS Google scholar
[218]
J. L. Feng, T. M. P. Tait, C. B. Verharen. Dynamical evidence for a fifth force explanation of the ATOMKI nuclear anomalies. Phys. Rev. D, 2020, 102(3): 036016
CrossRef ADS Google scholar
[219]
W.B. HeY. G. MaX.G. CaoX.Z. CaiG.Q. Zhang, Dipole oscillation modes in light alpha-clustering nuclei, Phys. Rev. C 94(1), 014301 (2016), arXiv: 1602.08955
[220]
B. L. Berman, S. C. Fultz. Measurements of the giant dipole resonance with monoenergetic photons. Rev. Mod. Phys., 1975, 47(3): 713
CrossRef ADS Google scholar
[221]
J. H. Kelley, J. E. Purcell, C. G. Sheu. Energy levels of light nuclei A = 12. Nucl. Phys. A, 2017, 968: 71
CrossRef ADS Google scholar
[222]
L. D. Landau. The moment of a 2-photon system. Dokl. Akad. Nauk SSSR, 1948, 60: 207
[223]
C. N. Yang. Selection rules for the dematerialization of a particle into two photons. Phys. Rev., 1950, 77(2): 242
CrossRef ADS Google scholar
[224]
E.van BeverenG.Rupp, First indications of the existence of a 38 MeV light scalar boson, arXiv: 1102.1863 (2011)
[225]
E.van BeverenG.Rupp, Material evidence of a 38 MeV boson, arXiv: 1202.1739 (2012)
[226]
E.Guido (BaBar Collaboration), Lepton universality test in Upsilon(1S) decays at BABAR, Proceedings of the DPF-2009 Conference, Detroit, MI, July 27−31, 2009, arXiv: 0910.0423
[227]
A. Bauswein, N. U. F. Bastian, D. Blaschke, K. Chatziioannou, J. A. Clark, T. Fischer, M. Oertel. Identifying a first-order phase transition in neutron-star mergers through gravitational waves. Phys. Rev. Lett., 2019, 122(6): 061102
CrossRef ADS Google scholar
[228]
A. Bauswein, S. Blacker, V. Vijayan, N. Stergioulas, K. Chatziioannou, J. A. Clark, N. U. F. Bastian, D. B. Blaschke, M. Cierniak, T. Fischer. Equation of state constraints from the threshold binary mass for prompt collapse of neutron star mergers. Phys. Rev. Lett., 2020, 125(14): 141103
CrossRef ADS Google scholar
[229]
L. R. Weih, M. Hanauske, L. Rezzolla. Postmerger gravitational-wave signatures of phase transitions in binary mergers. Phys. Rev. Lett., 2020, 124(17): 171103
CrossRef ADS Google scholar
[230]
E. Annala, T. Gorda, A. Kurkela, J. Naettilae, A. Vuorinen. Evidence for quark-matter cores in massive neutron stars. Nat. Phys., 2020, 16(9): 907
CrossRef ADS Google scholar
[231]
R. Barate, . (ALPEPH Collaboration). . Inclusive production of neutral pions in hadronic Z decays. Z. Phys. C, 1997, 74: 451
CrossRef ADS Google scholar
[232]
C. Amsler, . (Particle Data Group). . Review of particle physics. Phys. Lett. B, 2008, 667(1−5): 1
CrossRef ADS Google scholar
[233]
V.M. Aulchenko, . (CMD-2 Collaboration), Measurement of the pion form factor in the range 1.04–1.38 GeV with the CMD-2 detector, JETP Lett. 82(12), 743 (2005) (Pisma Zh. Eksp. Teor. Fiz. 82, 841 (2005), arXiv: hep-ex/0603021
[234]
T.Aaltonen, . (CDF Collaboration), Precision measurement of the X(3872) mass in J/ψ π+π decays, Phys. Rev. Lett. 103, 152001 (2009), arXiv: 0906.5218
[235]
B.Aubert, . (BarBar Collaboration), Study of hadronic transitions between Υ states and observation of Υ(4S)→ηΥ(1S) decay, Phys. Rev. D 78, 112002 (2008), arXiv: 0807.2014
[236]
E.F. TaylorJ. A. Wheeler, Space-time Physics, W. H. Freeman and Co., 2nd Ed., 1992, page 20
[237]
C. N. Yang. Charge quantization, compactness of the gauge group, and flux quantization. Phys. Rev. D, 1970, 8(8): 2360
CrossRef ADS Google scholar
[238]
A.C. HayesJ. FriarG.M. HaleG.T. Garvey, Angular correlations in the e+e decay of excited states in 8Be, Phys. Rev. C 105(5), 055502 (2022), arXiv: 2106.06834
[239]
M. Lüscher. Symmetry breaking aspects of the roughening transition in gauge theories. Nucl. Phys. B, 1981, 180(2): 317
CrossRef ADS Google scholar
[240]
M. Lüscher, K. Symanzik, P. Weisz. Anomalies of the free loop wave equation in the WKB approximation. Nucl. Phys. B, 1980, 173(3): 365
CrossRef ADS Google scholar
[241]
J. Polchinski, A. Strominger. Effective string theory. Phys. Rev. Lett., 1991, 67(13): 1681
CrossRef ADS Google scholar
[242]
C.BonatiM. CaselleS.Morlacchi, The unreasonable effectiveness of effective string theory: The case of the 3D SU(2) Higgs model, Phys. Rev. D 104(5), 054501 (2021), arXiv: 2106.08784
[243]
M.BilloM. CaselleR.Pellegrini, New numerical results and novel effective string predictions for Wilson loops, J. High Energy Phys. 01(1), 104 (2012) [Erratum: J. High Energy Phys. 04, 097 (2013)], arXiv: 1107.4356
[244]
M.LüscherP.Weisz, String excitation energies in SU(N) gauge theories beyond the free-string approximation, J. High Energy Phys. 0407, 014 (2004), arXiv: hep-th/0406205
[245]
M.BilloM. Caselle, Polyakov loop correlators from D0-brane interactions in bosonic string theory, J. High Energy Phys. 0507, 038 (2005), arXiv: hep-th/0505201
[246]
M.BilloM. CaselleL.Ferro, The partition function of interfaces from the Nambu−Goto effective string theory, J. High Energy Phys. 0602, 070 (2006), arXiv: hep-th/0601191
[247]
H. Georgi. Unparticle physics. Phys. Rev. Lett., 2007, 98(22): 221601
CrossRef ADS Google scholar
[248]
H. Georgi, Y. Kats. Unparticle examples in 2D. Phys. Rev. Lett., 2008, 101(13): 131603
CrossRef ADS Google scholar
[249]
S.HellermanS. MaedaJ.MaltzI.Swanson, Effective string theory simplified, J. High Energy Phys. 09(9), 183 (2014), arXiv: 1405.6197
[250]
O.AharonyZ. Komargodski, The effective theory of long strings, J. High Energy Phys. 05(5), 118 (2013), arXiv: 1302.6257
[251]
E. Eichten, K. Gottfried, T. Kinoshita, J. B. Kogut, K. B. Lane, T. M. Yan. Spectrum of charmed quark−antiquark bound states. Phys. Rev. Lett., 1975, 34(6): 369
CrossRef ADS Google scholar
[252]
H.W. CraterJ. H. YoonC.Y. Wong, Singularity structures in Coulomb-type potentials in two body Dirac equations of constraint dynamics, Phys. Rev. D 79(3), 034011 (2009), arXiv: 0811.0732
[253]
M. Peshkin. Short distance analysis for heavy quark systems. 1. Diagrammatics. Nucl. Phys. B, 1979, 156(3): 365
CrossRef ADS Google scholar
[254]
G. Bhanot, M. Peshkin. Short distance analysis for heavy quark systems. 2. Applications. Nucl. Phys. B, 1979, 156(3): 391
CrossRef ADS Google scholar
[255]
S. K. Choi. . Observation of a narrow charmonium-like state in exclusive B± → K±π+π J/ψ decays. Phys. Rev. Lett., 2003, 91: 262001
CrossRef ADS Google scholar
[256]
C.Y. Wong, Molecular states of heavy quark mesons, Phys. Rev. C 69(5), 055202 (2004), arXiv: hep-ph/0311088
[257]
N. A. Tornqvist. Isospin breaking of the narrow charmonium state of Belle at 3872 MeV as a deuson. Phys. Lett. B, 2004, 590(3−4): 209
CrossRef ADS Google scholar
[258]
F. E. Close, P. R. Page. The D*0D0 threshold resonance. Phys. Lett. B, 2004, 578(1−2): 119
CrossRef ADS Google scholar
[259]
S. Pakvasa, M. Suzuki. On the hidden charm state at 3872 MeV. Phys. Lett. B, 2004, 579(1−2): 67
CrossRef ADS Google scholar
[260]
E. S. Swanson. Diagnostic decays of the X(3872). Phys. Lett. B, 2004, 598(3−4): 197
CrossRef ADS Google scholar
[261]
M. B. Voloshin. Interference and binding effects in decays of possible molecular component of X(3872). Phys. Lett. B, 2004, 579(3−4): 316
CrossRef ADS Google scholar
[262]
F. K. GuoC. Hanhart, U. G. Meißner, Q. Wang, Q. Zhao , B. S. Zou., Hadronic molecules, Rev. Mod. Phys. 90, 015004 (2018) [Erratum: Rev. Mod. Phys. 94(2), 029901 (2022)], arXiv: 1705.00141
[263]
B.YangL. MengS.L. Zhu, Possible molecular states composed of doubly charmed baryons with coupled-channel effect, Eur. Phys. J. A 56(2), 67 (2020), arXiv: 1906.04956
[264]
X.K. DongF. K. GuoB.S. Zou, A survey of heavy−antiheavy hadronic molecules, Progr. Phys. 41(2), 65 (2021), arXiv: 2101.01021
[265]
S.Q. LuoT. W. WuM.Z. LiuL.S. GengX.Liu, Triple-charm molecular states composed of D*D*D and D*D*D*, Phys. Rev. D 105(7), 074033 (2022), arXiv: 2111.15079
[266]
P. Adlarson, . (WASA-at-COSY Collaboration, SAID Data Analysis Center). . Evidence for a new resonance from polarized neutron−proton scattering. Phys. Rev. Lett., 2014, 112(20): 202301
CrossRef ADS Google scholar
[267]
P. Adlarson. . Neutron−proton scattering in the context of the d*(2380) resonance. Phys. Rev. C, 2014, 90(3): 035204
CrossRef ADS Google scholar
[268]
R. Workman. Poles in the SAID NN analysis. EPJ Web Conf., 2014, 81: 02023
[269]
R. L. Workman, W. J. Briscoe, I. I. Strakovsky. Sensitivity of the COSY dibaryon candidate to np elastic scattering measurements. Phys. Rev. C, 2016, 93(4): 045201
CrossRef ADS Google scholar
[270]
M. Bashkanov, S. J. Brodsky, H. Clement. Novel six-quark hidden-color dibaryon states in QCD. Phys. Lett. B, 2013, 727(4−5): 438
CrossRef ADS Google scholar
[271]
T. Goldman, K. Maltman, G. J. Stephenson, K. E. Schmidt, F. Wang. “Inevitable” nonstrange dibaryon. Phys. Rev. C, 1989, 39(5): 1889
CrossRef ADS Google scholar
[272]
J. L. Ping, H. X. Huang, H. R. Pang, F. Wang, C. W. Wong. Quark models of dibaryon resonances in nucleon−nucleon scattering. Phys. Rev. C, 2009, 79(2): 024001
CrossRef ADS Google scholar

Acknowledgements

The author is indebted to Prof. V. F. Perepelitsa whose talk at the International Symposium on Multiparticle Dynamics, in 2009 introduced the author to the subject of anomalous soft photons which raised author's interest on the question of quark confinement in the QED interaction. The author would like to thank Profs. Y. Jack Ng, A. Koshelkin, H. Sazdjian, Soren Sorensen, D. Blaschke, Kh. U. Abraamyan, Gang Wang, Xi-Guang Cao, G. Wilk, Y. Sharon, L. Zamick, and I-Yang Lee for helpful communications. The research was supported in part by the Division of Nuclear Physics, U.S. Department of Energy under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(9270 KB)

Accesses

Citations

Detail

Sections
Recommended

/