Detecting nanoparticles by “listening”

Haonan Chang, Jun Zhang

PDF(8289 KB)
PDF(8289 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (5) : 53602. DOI: 10.1007/s11467-023-1287-1
TOPICAL REVIEW
TOPICAL REVIEW

Detecting nanoparticles by “listening”

Author information +
History +

Abstract

In the macroscopic world, we can obtain some important information through the vibration of objects, that is, listening to the sound. Likewise, we can also get some information of the nanoparticles that we want to know by the means of “listening” in the microscopic world. In this review, we will introduce two sensing methods (cavity optomechanical sensing and surface-enhanced Raman scattering sensing) which can be used to detect the nanoparticles. The cavity optomechanical systems are mainly used to detect sub-gigahertz nano particle or cavity vibrations, while surface-enhanced Raman scattering is a well-known technique to detect molecular vibrations whose frequency generally exceeds terahertz. Therefore, the vibrational information of nanoparticles from low-frequency to high-frequency could be obtained by these two methods. The size of the viruses is at the nanoscale and we can regard it as a kind of nanoparticles. Rapid and ultrasensitive detection of the viruses is the key strategies to break the spread of the viruses in the community. Cavity optomechanical sensing enables rapid, ultrasensitive detection of nanoparticles through the interaction of light and mechanical oscillators and surface-enhanced Raman scattering is an attractive qualitatively analytical technique for chemical sensing and biomedical applications, which has been used to detect the SARS-CoV-2 infected. Hence, investigation in these two fields is of vital importance in preventing the spread of the virus from affecting human’s life and health.

Graphical abstract

Keywords

ultrasensitive sensing / cavity optomechanics / surface-enhanced Raman scattering

Cite this article

Download citation ▾
Haonan Chang, Jun Zhang. Detecting nanoparticles by “listening”. Front. Phys., 2023, 18(5): 53602 https://doi.org/10.1007/s11467-023-1287-1

References

[1]
L. He , Ş. K. Özdemir , J. Zhu , W. Kim , L. Yang . Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat. Nanotechnol., 2011, 6(7): 428
CrossRef ADS Google scholar
[2]
L. Shao , X. F. Jiang , X. C. Yu , B. B. Li , W. R. Clements , F. Vollmer , W. Wang , Y. F. Xiao , Q. Gong . Detection of single nanoparticles and lentiviruses using microcavity resonance broadening. Adv. Mater., 2013, 25(39): 5616
CrossRef ADS Google scholar
[3]
W. Chen , Ş. Kaya Özdemir , G. Zhao , J. Wiersig , L. Yang . Exceptional points enhance sensing in an optical microcavity. Nature, 2017, 548(7666): 192
CrossRef ADS Google scholar
[4]
M. D. Baaske , P. S. Neu , M. Orrit . Label-free plasmonic detection of untethered nanometer-sized Brownian particles. ACS Nano, 2020, 14(10): 14212
CrossRef ADS Google scholar
[5]
W. Yu , W. C. Jiang , Q. Lin , T. Lu . Cavity optomechanical spring sensing of single molecules. Nat. Commun., 2016, 7(1): 12311
CrossRef ADS Google scholar
[6]
C. Cao , J. Zhang , S. Li , Q. Xiong . Intelligent and ultrasensitive analysis of mercury trace contaminants via plasmonic metamaterial‐based surface‐enhanced Raman spectroscopy. Small, 2014, 10(16): 3252
CrossRef ADS Google scholar
[7]
C. Cao , J. Zhang , X. Wen , S. L. Dodson , N. T. Dao , L. M. Wong , S. Wang , S. Li , A. T. Phan , Q. Xiong . Metamaterials-based label-free nanosensor for conformation and affinity biosensing. ACS Nano, 2013, 7(9): 7583
CrossRef ADS Google scholar
[8]
S. Sbarra , L. Waquier , S. Suffit , A. Lemaître , I. Favero . Multimode optomechanical weighting of a single nanoparticle. Nano Lett., 2022, 22(2): 710
CrossRef ADS Google scholar
[9]
S. X. Leong , Y. X. Leong , E. X. Tan , H. Y. F. Sim , C. S. L. Koh , Y. H. Lee , C. Chong , L. S. Ng , J. R. T. Chen , D. W. C. Pang , L. B. T. Nguyen , S. K. Boong , X. Han , Y. C. Kao , Y. H. Chua , G. C. Phan-Quang , I. Y. Phang , H. K. Lee , M. Y. Abdad , N. S. Tan , X. Y. Ling . Noninvasive and point-of-care surface-enhanced raman scattering (SERS)-based breathalyzer for mass screening of coronavirus disease 2019 (COVID-19) under 5 min. ACS Nano, 2022, 16(2): 2629
CrossRef ADS Google scholar
[10]
E. Gil-Santos , J. J. Ruz , O. Malvar , I. Favero , A. Lemaître , P. M. Kosaka , S. García-López , M. Calleja , J. Tamayo . Optomechanical detection of vibration modes of a single bacterium. Nat. Nanotechnol., 2020, 15(6): 469
CrossRef ADS Google scholar
[11]
L. Wang , X. Wang , Y. Wu , M. Guo , C. Gu , C. Dai , D. Kong , Y. Wang , C. Zhang , D. Qu , C. Fan , Y. Xie , Z. Zhu , Y. Liu , D. Wei . Rapid and ultrasensitive electromechanical detection of ions, biomolecules and SARS-CoV-2 RNA in unamplified samples. Nat. Biomed. Eng., 2022, 6(3): 276
CrossRef ADS Google scholar
[12]
J. Zhang , C. Cao , X. Xu , C. Liow , S. Li , P. Tan , Q. Xiong . Tailoring alphabetical metamaterials in optical frequency: Plasmonic coupling, dispersion, and sensing. ACS Nano, 2014, 8(4): 3796
CrossRef ADS Google scholar
[13]
P. Wang , S. Chen , M. Guo , S. Peng , M. Wang , M. Chen , W. Ma , R. Zhang , J. Su , X. Rong , F. Shi , T. Xu , J. Du . Nanoscale magnetic imaging of ferritins in a single cell. Sci. Adv., 2019, 5(4): eaau8038
CrossRef ADS Google scholar
[14]
D. Le Sage , K. Arai , D. R. Glenn , S. J. DeVience , L. M. Pham , L. Rahn-Lee , M. D. Lukin , A. Yacoby , A. Komeili , R. L. Walsworth . Optical magnetic imaging of living cells. Nature, 2013, 496: 486
CrossRef ADS Google scholar
[15]
X. Jiang , A. J. Qavi , S. H. Huang , L. Yang . Whispering-gallery sensors. Matter, 2020, 3(2): 371
CrossRef ADS Google scholar
[16]
K. Ekinci . Electromechanical transducers at the nanoscale: Actuation and sensing of motion in nanoelectromechanical systems (NEMS). Small, 2005, 1(8-9): 786
CrossRef ADS Google scholar
[17]
M. P. Blencowe . Nanoelectromechanical systems. Contemp. Phys., 2005, 46(4): 249
CrossRef ADS Google scholar
[18]
C. Anichini , W. Czepa , D. Pakulski , A. Aliprandi , A. Ciesielski , P. Samorì . Chemical sensing with 2D materials. Chem. Soc. Rev., 2018, 47(13): 4860
CrossRef ADS Google scholar
[19]
Y. Ohno , K. Maehashi , K. Matsumoto . Label-free biosensors based on aptamer-modified graphene field-effect transistors. J. Am. Chem. Soc., 2010, 132(51): 18012
CrossRef ADS Google scholar
[20]
J. M. Lai , Y. J. Sun , Q. H. Tan , P. H. Tan , J. Zhang . Laser cooling of a lattice vibration in van der Waals semiconductor. Nano Lett., 2022, 22(17): 7129
CrossRef ADS Google scholar
[21]
J. M. Lai , M. U. Farooq , Y. J. Sun , P. H. Tan , J. Zhang . Multiphonon process in Mn-doped ZnO nanowires. Nano Lett., 2022, 22(13): 5385
CrossRef ADS Google scholar
[22]
J. Zhang , Q. Zhang , X. Wang , L. C. Kwek , Q. Xiong . Resolved-sideband Raman cooling of an optical phonon in semiconductor materials. Nat. Photonics, 2016, 10(9): 600
CrossRef ADS Google scholar
[23]
J. J. Li , K. D. Zhu . Nonlinear optical mass sensor with an optomechanical microresonator. Appl. Phys. Lett., 2012, 101(14): 141905
CrossRef ADS Google scholar
[24]
S. Liu , B. Liu , J. Wang , T. Sun , W. X. Yang . Realization of a highly sensitive mass sensor in a quadratically coupled optomechanical system. Phys. Rev. A, 2019, 99(3): 033822
CrossRef ADS Google scholar
[25]
B. B. Li , L. Ou , Y. Lei , Y. C. Liu . Cavity optomechanical sensing. Nanophotonics, 2021, 10(11): 2799
CrossRef ADS Google scholar
[26]
Y. W. Hu , Y. F. Xiao , Y. C. Liu , Q. Gong . Optomechanical sensing with on-chip microcavities. Front. Phys., 2013, 8(5): 475
CrossRef ADS Google scholar
[27]
F. Liu , S. Alaie , Z. C. Leseman , M. Hossein-Zadeh . Sub-pg mass sensing and measurement with an optomechanical oscillator. Opt. Express, 2013, 21(17): 19555
CrossRef ADS Google scholar
[28]
P. Djorwe , Y. Pennec , B. Djafari-Rouhani . Exceptional point enhances sensitivity of optomechanical mass sensors. Phys. Rev. Appl., 2019, 12(2): 024002
CrossRef ADS Google scholar
[29]
M. Sansa , M. Defoort , A. Brenac , M. Hermouet , L. Banniard , A. Fafin , M. Gely , C. Masselon , I. Favero , G. Jourdan , S. Hentz . Optomechanical mass spectrometry. Nat. Commun., 2020, 11(1): 3781
CrossRef ADS Google scholar
[30]
F. Liu , M. Hossein-Zadeh . Mass sensing with optomechanical oscillation. IEEE Sens. J., 2013, 13(1): 146
CrossRef ADS Google scholar
[31]
L.LanY.GaoX.FanM.LiQ.HaoT.Qiu, The origin of ultrasensitive SERS sensing beyond plasmonics, Front. Phys. 16(4), 43300 (2021)
[32]
M. Aspelmeyer , T. J. Kippenberg , F. Marquardt . Cavity optomechanics. Rev. Mod. Phys., 2014, 86(4): 1391
CrossRef ADS Google scholar
[33]
H. Chang , J. Zhang . From cavity optomechanics to cavity-less exciton optomechanics: A review. Nanoscale, 2022, 14(45): 16710
CrossRef ADS Google scholar
[34]
Y. F. Gao , J. M. Lai , J. Zhang . Optical control of bulk phonon modes in crystalline solids. Adv. Quantum Technol., 2022, 5(2): 2100103
CrossRef ADS Google scholar
[35]
D. Yu , M. Humar , K. Meserve , R. C. Bailey , S. N. Chormaic , F. Vollmer . Whispering-gallery-mode sensors for biological and physical sensing. Nat. Rev. Methods Primers, 2021, 1(1): 83
CrossRef ADS Google scholar
[36]
H.MiaoK.SrinivasanV.Aksyuk, A microelectromechanically controlled cavity optomechanical sensing system, New J. Phys. 14(7), 075015 (2012)
[37]
X. Han , W. Fu , C. Zhong , C. L. Zou , Y. Xu , A. A. Sayem , M. Xu , S. Wang , R. Cheng , L. Jiang , H. X. Tang . Cavity piezo-mechanics for superconducting-nanophotonic quantum interface. Nat. Commun., 2020, 11(1): 3237
CrossRef ADS Google scholar
[38]
C. Bekker , R. Kalra , C. Baker , W. P. Bowen . Injection locking of an electro-optomechanical device. Optica, 2017, 4(10): 1196
CrossRef ADS Google scholar
[39]
J. Chae , S. An , G. Ramer , V. Stavila , G. Holland , Y. Yoon , A. A. Talin , M. Allendorf , V. A. Aksyuk , A. Centrone . Nanophotonic atomic force microscope transducers enable chemical composition and thermal conductivity measurements at the nanoscale. Nano Lett., 2017, 17(9): 5587
CrossRef ADS Google scholar
[40]
A.G. KrauseM.WingerT.D. BlasiusQ.LinO.Painter, A high-resolution microchip optomechanical accelerometer, Nat. Photonics 6(11), 768 (2012)
[41]
X. Liu , W. Liu , Z. Ren , Y. Ma , B. Dong , G. Zhou , C. Lee . Progress of optomechanical micro/nano sensors: A review. Int. J. Optomechatronics, 2021, 15(1): 120
CrossRef ADS Google scholar
[42]
W. Xiang , C. Lee . Nanophotonics sensor based on microcantilever for chemical analysis. IEEE J. Sel. Top. Quantum Electron., 2009, 15(5): 1323
CrossRef ADS Google scholar
[43]
T. T. Mai , F. L. Hsiao , C. Lee , W. Xiang , C. C. Chen , W. Choi . Optimization and comparison of photonic crystal resonators for silicon microcantilever sensors. Sens. Actuators A Phys., 2011, 165(1): 16
CrossRef ADS Google scholar
[44]
D. Yang , X. Liu , X. Li , B. Duan , A. Wang , Y. Xiao . Photoic crystal nanobeam cavity devices for on-chip integrated silicon photonics. J. Semicond., 2021, 42(2): 023103
CrossRef ADS Google scholar
[45]
F. J. Giessibl . Advances in atomic force microscopy. Rev. Mod. Phys., 2003, 75(3): 949
CrossRef ADS Google scholar
[46]
Z. Zhao , H. Chang , R. Wang , P. Du , X. He , J. Yang , X. Zhang , K. Huang , D. Fan , Y. Wang , X. Pan , M. Lei . Activity origin and catalyst design principles for electrocatalytic oxygen evolution on layered transition metal oxide with halogen doping. Small Struct., 2021, 2(9): 2100069
CrossRef ADS Google scholar
[47]
Y. Chen , Z. Shen , X. Xiong , C. H. Dong , C. L. Zou , G. C. Guo . Mechanical bound state in the continuum for optomechanical microresonators. New J. Phys., 2016, 18(6): 063031
CrossRef ADS Google scholar
[48]
M. Zhao , K. Fang . Mechanical bound states in the continuum for macroscopic optomechanics. Opt. Express, 2019, 27(7): 10138
CrossRef ADS Google scholar
[49]
Y. Yu , X. Xi , X. Sun . Observation of mechanical bound states in the continuum in an optomechanical microresonator. Light Sci. Appl., 2022, 11(1): 328
CrossRef ADS Google scholar
[50]
S. Liu , H. Tong , K. Fang . Optomechanical crystal with bound states in the continuum. Nat. Commun., 2022, 13(1): 3187
CrossRef ADS Google scholar
[51]
S. Zanotto , G. Conte , L. Bellieres , A. Griol , D. Navarro-Urrios , A. Tredicucci , A. Martínez , A. Pitanti . Optomechanical modulation spectroscopy of bound states in the continuum in a dielectric metasurface. Phys. Rev. Appl., 2022, 17(4): 044033
CrossRef ADS Google scholar
[52]
H. Chang , Z. Li , W. Lou , Q. Yao , J. M. Lai , B. Liu , H. Ni , Z. Niu , K. Chang , J. Zhang . Terahertz cavity optomechanics using a topological nanophononic superlattice. Nanoscale, 2022, 14(36): 13046
CrossRef ADS Google scholar
[53]
M. Esmann , F. Lamberti , A. Harouri , L. Lanco , I. Sagnes , I. Favero , G. Aubin , C. Gomez-Carbonell , A. Lemaitre , O. Krebs , P. Senellart , N. D. Lanzillotti-Kimura . Brillouin scattering in hybrid optophononic Bragg micropillar resonators at 300 GHz. Optica, 2019, 6(7): 854
CrossRef ADS Google scholar
[54]
A. Rodriguez , P. Priya , O. Ortiz , P. Senellart , C. Gomez-Carbonell , A. Lemaitre , M. Esmann , N. Lanzillotti-Kimura . Fiber-based angular filtering for high-resolution Brillouin spectroscopy in the 20−300 GHz frequency range. Opt. Express, 2021, 29(2): 2637
CrossRef ADS Google scholar
[55]
Y.M. Bar-On, A. Flamholz, R. Phillips, and R. Milo, SARS-CoV-2 (COVID-19) by the numbers, elife 9, e57309 (2020)
[56]
J. C. Sankey , C. Yang , B. M. Zwickl , A. M. Jayich , J. G. Harris . Strong and tunable nonlinear optomechanical coupling in a low-loss system. Nat. Phys., 2010, 6(9): 707
CrossRef ADS Google scholar
[57]
G. Brawley , M. Vanner , P. E. Larsen , S. Schmid , A. Boisen , W. Bowen . Nonlinear optomechanical measurement of mechanical motion. Nat. Commun., 2016, 7(1): 10988
CrossRef ADS Google scholar
[58]
R. Burgwal , J. del Pino , E. Verhagen . Comparing nonlinear optomechanical coupling in membrane-in-the-middle and single-cavity systems. New J. Phys., 2020, 22(11): 113006
CrossRef ADS Google scholar
[59]
K. Børkje , A. Nunnenkamp , J. Teufel , S. Girvin . Signatures of nonlinear cavity optomechanics in the weak coupling regime. Phys. Rev. Lett., 2013, 111(5): 053603
CrossRef ADS Google scholar
[60]
C. Doolin , B. Hauer , P. Kim , A. MacDonald , H. Ramp , J. Davis . Nonlinear optomechanics in the stationary regime. Phys. Rev. A, 2014, 89(5): 053838
CrossRef ADS Google scholar
[61]
S. Shahidani , M. Naderi , M. Soltanolkotabi . Control and manipulation of electromagnetically induced transparency in a nonlinear optomechanical system with two movable mirrors. Phys. Rev. A, 2013, 88(5): 053813
CrossRef ADS Google scholar
[62]
S. Shahidani , M. Naderi , M. Soltanolkotabi , S. Barzanjeh . Steady-state entanglement, cooling, and tristability in a nonlinear optomechanical cavity. J. Opt. Soc. Am. B, 2014, 31(5): 1087
CrossRef ADS Google scholar
[63]
M. R. Vanner . Selective linear or quadratic optomechanical coupling via measurement. Phys. Rev. X, 2011, 1(2): 021011
CrossRef ADS Google scholar
[64]
M. Tan , X. Xu , J. Wu , T. G. Nguyen , S. T. Chu , B. E. Little , R. Morandotti , A. Mitchell , D. J. Moss . Photonic radio frequency channelizers based on Kerr optical micro-combs. J. Semicond., 2021, 42(4): 041302
CrossRef ADS Google scholar
[65]
J. F. Rhoads , S. W. Shaw . The impact of nonlinearity on degenerate parametric amplifiers. Appl. Phys. Lett., 2010, 96(23): 234101
CrossRef ADS Google scholar
[66]
K. Wódkiewicz , M. S. Zubairy . Effect of laser fluctuations on squeezed states in a degenerate parametric amplifier. Phys. Rev. A, 1983, 27(4): 2003
CrossRef ADS Google scholar
[67]
M. Bhattacharya , H. Uys , P. Meystre . Optomechanical trapping and cooling of partially reflective mirrors. Phys. Rev. A, 2008, 77(3): 033819
CrossRef ADS Google scholar
[68]
S. Huang , G. Agarwal . Electromagnetically induced transparency from two-phonon processes in quadratically coupled membranes. Phys. Rev. A, 2011, 83(2): 023823
CrossRef ADS Google scholar
[69]
J. Thompson , B. Zwickl , A. Jayich , F. Marquardt , S. Girvin , J. Harris . Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature, 2008, 452(7183): 72
CrossRef ADS Google scholar
[70]
D. Xu , Y. F. Xiao . Listening to the sound of a bacterium. Nat. Nanotechnol., 2020, 15(6): 420
CrossRef ADS Google scholar
[71]
Y. Li , L. Zhao , Y. Yao , X. Guo . Single-molecule nanotechnologies: An evolution in biological dynamics detection. ACS Appl. Bio Mater., 2020, 3(1): 68
CrossRef ADS Google scholar
[72]
L. A. Lyon , C. D. Keating , A. P. Fox , B. E. Baker , L. He , S. R. Nicewarner , S. P. Mulvaney , M. J. Natan . Raman spectroscopy. Anal. Chem., 1998, 70(12): 341
CrossRef ADS Google scholar
[73]
X. Zhang , X. F. Qiao , W. Shi , J. B. Wu , D. S. Jiang , P. H. Tan . Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev., 2015, 44(9): 2757
CrossRef ADS Google scholar
[74]
R. S. Das , Y. Agrawal . Raman spectroscopy: Recent advancements, techniques and applications. Vib. Spectrosc., 2011, 57(2): 163
CrossRef ADS Google scholar
[75]
Z. Movasaghi , S. Rehman , I. U. Rehman . Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev., 2007, 42(5): 493
CrossRef ADS Google scholar
[76]
L. M. Malard , M. A. Pimenta , G. Dresselhaus , M. S. Dresselhaus . Raman spectroscopy in graphene. Phys. Rep., 2009, 473(5-6): 51
CrossRef ADS Google scholar
[77]
X. X. Han , R. S. Rodriguez , C. L. Haynes , Y. Ozaki , B. Zhao . Surface-enhanced Raman spectroscopy. Nat. Rev. Methods Primers, 2022, 1(1): 87
CrossRef ADS Google scholar
[78]
E. S. Allakhverdiev , V. V. Khabatova , B. D. Kossalbayev , E. V. Zadneprovskaya , O. V. Rodnenkov , T. V. Martynyuk , G. V. Maksimov , S. Alwasel , T. Tomo , S. I. Allakhverdiev . Raman spectroscopy and its modifications applied to biological and medical research. Cells, 2022, 11(3): 386
CrossRef ADS Google scholar
[79]
J. Plou , P. S. Valera , I. García , C. D. de Albuquerque , A. Carracedo , L. M. Liz-Marzán . Prospects of surface-enhanced Raman spectroscopy for biomarker monitoring toward precision medicine. ACS Photonics, 2022, 9(2): 333
CrossRef ADS Google scholar
[80]
R. Maher , C. Galloway , E. Le Ru , L. Cohen , P. Etchegoin . Vibrational pumping in surface enhanced Raman scattering (SERS). Chem. Soc. Rev., 2008, 37(5): 965
CrossRef ADS Google scholar
[81]
R. F. Aroca . Plasmon enhanced spectroscopy. Phys. Chem. Chem. Phys., 2013, 15(15): 5355
CrossRef ADS Google scholar
[82]
M. Li , S. K. Cushing , N. Wu . Plasmon-enhanced optical sensors: a review. Analyst (Lond.), 2015, 140(2): 386
CrossRef ADS Google scholar
[83]
F. Benz , M. K. Schmidt , A. Dreismann , R. Chikkaraddy , Y. Zhang , A. Demetriadou , C. Carnegie , H. Ohadi , B. De Nijs , R. Esteban , J. Aizpurua , J. J. Baumberg . Single-molecule optomechanics in “picocavities”. Science, 2016, 354(6313): 726
CrossRef ADS Google scholar
[84]
Y. S. Yamamoto , Y. Ozaki , T. Itoh . Recent progress and frontiers in the electromagnetic mechanism of surface-enhanced Raman scattering. J. Photochem. Photobiol. Photochem. Rev., 2014, 21: 81
CrossRef ADS Google scholar
[85]
B.SharmaR.R. FrontieraA.I. HenryE.RingeR.P. Van Duyne, SERS: Materials, applications, and the future, Mater. Today 15(1–2), 16 (2012)
[86]
X. Yu , H. Cai , W. Zhang , X. Li , N. Pan , Y. Luo , X. Wang , J. Hou . Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets. ACS Nano, 2011, 5(2): 952
CrossRef ADS Google scholar
[87]
L. Xia , M. Chen , X. Zhao , Z. Zhang , J. Xia , H. Xu , M. Sun . Visualized method of chemical enhancement mechanism on SERS and TERS. J. Spectrosc., 2014, 45: 533
[88]
B. Dong , L. Liu , H. Xu , M. Sun . Experimental and theoretical evidence for the chemical mechanism in SERRS of rhodamine 6G adsorbed on colloidal silver excited at 1064 nm. J. Spectrosc., 2010, 41: 719
CrossRef ADS Google scholar
[89]
P. Roelli , C. Galland , N. Piro , T. J. Kippenberg . Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering. Nat. Nanotechnol., 2016, 11(2): 164
CrossRef ADS Google scholar
[90]
R. Esteban , J. J. Baumberg , J. Aizpurua . Molecular optomechanics approach to surface-enhanced Raman scattering. Acc. Chem. Res., 2022, 55(14): 1889
CrossRef ADS Google scholar
[91]
Z. Huang , A. Zhang , Q. Zhang , D. Cui . Nanomaterial-based SERS sensing technology for biomedical application. J. Mater. Chem. B, 2019, 7(24): 3755
CrossRef ADS Google scholar
[92]
S. W. Joo , W. J. Kim , W. S. Yoon , I. S. Choi . Adsorption of 4, 4′‐biphenyl diisocyanide on gold nanoparticle surfaces investigated by surface‐enhanced Raman scattering. J. Raman Spectrosc., 2003, 34(4): 271
CrossRef ADS Google scholar
[93]
S. K. Venkata , S. A. Gaddam , V. S. Kotakadi , D. Gopal . Multifunctional silver nanoparticles by fruit extract of terminalia belarica and their therapeutic applications: A 3-in-1 system. Nano Biomed. Eng., 2018, 10(3): 279
CrossRef ADS Google scholar
[94]
S. Nie , S. R. Emory . Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 1997, 275(5303): 1102
CrossRef ADS Google scholar
[95]
C. Song , N. Zhou , B. Yang , Y. Yang , L. Wang . Facile synthesis of hydrangea flower-like hierarchical gold nanostructures with tunable surface topographies for single-particle surface-enhanced Raman scattering. Nanoscale, 2015, 7(40): 17004
CrossRef ADS Google scholar
[96]
H. Liang , Z. Li , W. Wang , Y. Wu , H. Xu . Highly surface‐roughened “flower‐like” silver nanoparticles for extremely sensitive substrates of surface‐enhanced Raman scattering. Adv. Mater., 2009, 21(45): 4614
CrossRef ADS Google scholar
[97]
C. Hu , J. Shen , J. Yan , J. Zhong , W. Qin , R. Liu , A. Aldalbahi , X. Zuo , S. Song , C. Fan , D. He . Highly narrow nanogap-containing Au@ Au core–shell SERS nanoparticles: Size-dependent Raman enhancement and applications in cancer cell imaging. Nanoscale, 2016, 8(4): 2090
CrossRef ADS Google scholar
[98]
J. Chang , A. Zhang , Z. Huang , Y. Chen , Q. Zhang , D. Cui . Monodisperse Au@Ag core-shell nanoprobes with ultrasensitive SERS-activity for rapid identification and Raman imaging of living cancer cells. Talanta, 2019, 198: 45
CrossRef ADS Google scholar
[99]
B. Chen , G. Meng , Q. Huang , Z. Huang , Q. Xu , C. Zhu , Y. Qian , Y. Ding . Green synthesis of large-scale highly ordered core@shell nanoporous Au@Ag nanorod arrays as sensitive and reproducible 3D SERS substrates. ACS Appl. Mater. Interfaces, 2014, 6(18): 15667
CrossRef ADS Google scholar
[100]
Y. Yang , Q. Zhang , Z. W. Fu , D. Qin . Transformation of Ag nanocubes into Ag–Au hollow nanostructures with enriched Ag contents to improve SERS activity and chemical stability. ACS Appl. Mater. Interfaces, 2014, 6(5): 3750
CrossRef ADS Google scholar
[101]
J. M. Li , Y. Yang , D. Qin . Hollow nanocubes made of Ag–Au alloys for SERS detection with sensitivity of 10− 8 M for melamine. J. Mater. Chem. C, 2014, 2(46): 9934
CrossRef ADS Google scholar
[102]
X. X. Han , W. Ji , B. Zhao , Y. Ozaki . Semiconductor-enhanced Raman scattering: Active nanomaterials and applications. Nanoscale, 2017, 9(15): 4847
CrossRef ADS Google scholar
[103]
T. Kang , S. M. Yoo , I. Yoon , S. Y. Lee , B. Kim . Patterned multiplex pathogen DNA detection by Au particle-on-wire SERS sensor. Nano Lett., 2010, 10(4): 1189
CrossRef ADS Google scholar
[104]
Z. Jiang , Q. Zhang , C. Zong , B. J. Liu , B. Ren , Z. Xie , L. Zheng . Cu–Au alloy nanotubes with five-fold twinned structure and their application in surface-enhanced Raman scattering. J. Mater. Chem., 2012, 22(35): 18192
CrossRef ADS Google scholar
[105]
P. K. Kannan , P. Shankar , C. Blackman , C. H. Chung . Recent advances in 2D inorganic nanomaterials for SERS sensing. Adv. Mater., 2019, 31(34): 1803432
CrossRef ADS Google scholar
[106]
X. Cai , X. Han , C. Zhao , C. Niu , Y. Jia . Tellurene: An elemental 2D monolayer material beyond its bulk phases without van der Waals layered structures. J. Semicond., 2020, 41(8): 081002
CrossRef ADS Google scholar
[107]
Z. Li , J. M. Lai , J. Zhang . Review of phonons in moiré superlattices. J. Semicond., 2023, 44(1): 011902
CrossRef ADS Google scholar
[108]
Z.LiS.JiangY.HuoT.NingA.LiuC.ZhangY.HeM.WangC.LiB.Man, 3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis, Nanoscale 10(13), 5897 (2018)
[109]
X. Liang , Y. S. Wang , T. T. You , X. J. Zhang , N. Yang , G. S. Wang , P. G. Yin . Interfacial synthesis of a three-dimensional hierarchical MoS2-NS@Ag-NP nanocomposite as a SERS nanosensor for ultrasensitive thiram detection. Nanoscale, 2017, 9(25): 8879
CrossRef ADS Google scholar
[110]
H. J. Park , S. Cho , M. Kim , Y. S. Jung . Carboxylic acid-functionalized, graphitic layer-coated three-dimensional SERS substrate for label-free analysis of Alzheimer’s disease biomarkers. Nano Lett., 2020, 20(4): 2576
CrossRef ADS Google scholar
[111]
E. Zhang , Z. Xing , D. Wan , H. Gao , Y. Han , Y. Gao , H. Hu , Z. Cheng , T. Liu . Surface-enhanced Raman spectroscopy chips based on two-dimensional materials beyond graphene. J. Semicond., 2021, 42(5): 051001
CrossRef ADS Google scholar
[112]
A. Idili , C. Parolo , R. Alvarez-Diduk , A. Merkoçi . Rapid and efficient detection of the SARS-CoV-2 spike protein using an electrochemical aptamer-based sensor. ACS Sens., 2021, 6(8): 3093
CrossRef ADS Google scholar
[113]
T. T. Tsai , T. H. Huang , C. A. Chen , N. Y. J. Ho , Y. J. Chou , C. F. Chen . Development a stacking pad design for enhancing the sensitivity of lateral flow immunoassay. Sci. Rep., 2018, 8(1): 17319
CrossRef ADS Google scholar
[114]
I. Montesinos , D. Gruson , B. Kabamba , H. Dahma , S. Van den Wijngaert , S. Reza , V. Carbone , O. Vandenberg , B. Gulbis , F. Wolff , H. Rodriguez-Villalobos . Evaluation of two automated and three rapid lateral flow immunoassays for the detection of anti-SARS-CoV-2 antibodies. J. Clin. Virol., 2020, 128: 104413
CrossRef ADS Google scholar
[115]
L. Anfossi , C. Baggiani , C. Giovannoli , G. D’Arco , G. Giraudi . Lateral-flow immunoassays for mycotoxins and phycotoxins: A review. Anal. Bioanal. Chem., 2013, 405(2-3): 467
CrossRef ADS Google scholar
[116]
D. Wang , S. He , X. Wang , Y. Yan , J. Liu , S. Wu , S. Liu , Y. Lei , M. Chen , L. Li , J. Zhang , L. Zhang , X. Hu , X. Zheng , J. Bai , Y. Zhang , Y. Zhang , M. Song , Y. Tang . Rapid lateral flow immunoassay for the fluorescence detection of SARS-CoV-2 RNA. Nat. Biomed. Eng., 2020, 4(12): 1150
CrossRef ADS Google scholar
[117]
R. Banerjee , A. Jaiswal . Recent advances in nanoparticle-based lateral flow immunoassay as a point-of-care diagnostic tool for infectious agents and diseases. Analyst (Lond. ), 2018, 143(9): 1970
CrossRef ADS Google scholar
[118]
F. Di Nardo , M. Chiarello , S. Cavalera , C. Baggiani , L. Anfossi . Ten years of lateral flow immunoassay technique applications: Trends, challenges and future perspectives. Sensors (Basel), 2021, 21(15): 5185
CrossRef ADS Google scholar
[119]
D. Paria , K. S. Kwok , P. Raj , P. Zheng , D. H. Gracias , I. Barman . Label-free spectroscopic SARS-CoV-2 detection on versatile nanoimprinted substrates. Nano Lett., 2022, 22(9): 3620
CrossRef ADS Google scholar
[120]
M. Walther , B. M. Fischer , A. Ortner , A. Bitzer , A. Thoman , H. Helm . Chemical sensing and imaging with pulsed terahertz radiation. Anal. Bioanal. Chem., 2010, 397(3): 1009
CrossRef ADS Google scholar
[121]
D. J. Tyree , P. Huntington , J. Holt , A. L. Ross , R. Schueler , D. T. Petkie , S. S. Kim , C. C. Grigsby , C. Neese , I. R. Medvedev . Terahertz spectroscopic molecular sensor for rapid and highly specific quantitative analytical gas sensing. ACS Sens., 2022, 7(12): 3730
CrossRef ADS Google scholar
[122]
M. Beruete , I. Jáuregui‐López . Terahertz sensing based on metasurfaces. Adv. Opt. Mater., 2020, 8(3): 1900721
CrossRef ADS Google scholar
[123]
H. B. Liu , H. Zhong , N. Karpowicz , Y. Chen , X. C. Zhang . Terahertz spectroscopy and imaging for defense and security applications. Proc. IEEE, 2007, 95(8): 1514
CrossRef ADS Google scholar
[124]
V. Vaks , V. Anfertev , M. Chernyaeva , E. Domracheva , A. Yablokov , A. Maslennikova , A. Zhelesnyak , A. Baranov , Y. Schevchenko , M. F. Pereira . Sensing nitriles with THz spectroscopy of urine vapours from cancers patients subject to chemotherapy. Sci. Rep., 2022, 12(1): 18117
CrossRef ADS Google scholar
[125]
A. Toma , S. Tuccio , M. Prato , F. De Donato , A. Perucchi , P. Di Pietro , S. Marras , C. Liberale , R. Proietti Zaccaria , F. De Angelis , L. Manna , S. Lupi , E. Di Fabrizio , L. Razzari . Squeezing terahertz light into nanovolumes: Nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots. Nano Lett., 2015, 15(1): 386
CrossRef ADS Google scholar
[126]
J. Liu , J. Dai , S. L. Chin , X. C. Zhang . Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases. Nat. Photonics, 2010, 4(9): 627
CrossRef ADS Google scholar
[127]
H. Chen , S. G. Park , N. Choi , H. J. Kwon , T. Kang , M. K. Lee , J. Choo . Sensitive detection of SARS-CoV-2 using a SERS-based aptasensor. ACS Sens., 2021, 6(6): 2378
CrossRef ADS Google scholar
[128]
S. Y. Chou , P. R. Krauss , P. J. Renstrom . Nanoimprint lithography. J. Vac. Sci. Technol. B, 1996, 14(6): 4129
CrossRef ADS Google scholar
[129]
Q. Zhu , C. Xu , D. Wang , B. Liu , F. Qin , Z. Zhu , Y. Liu , X. Zhao , Z. Shi . Femtomolar response of a plasmon-coupled ZnO/graphene/silver hybrid whispering-gallery mode microcavity for SERS sensing. J. Mater. Chem. C, 2019, 7(9): 2710
CrossRef ADS Google scholar
[130]
D. Conteduca , C. Reardon , M. G. Scullion , F. Dell’Olio , M. N. Armenise , T. F. Krauss , C. Ciminelli . Ultra-high Q/V hybrid cavity for strong light-matter interaction. APL Photonics, 2017, 2(8): 086101
CrossRef ADS Google scholar
[131]
X. Xiong , Y. F. Xiao . Hybrid plasmonic-photonic microcavity for enhanced light-matter interaction. Sci. Bull. (Beijing), 2022, 67(12): 1205
CrossRef ADS Google scholar
[132]
H. Zhang , W. Zhao , Y. Liu , J. Chen , X. Wang , C. Lu . Photonic-plasmonic hybrid microcavities: Physics and applications. Chin. Phys. B, 2021, 30(11): 117801
CrossRef ADS Google scholar
[133]
Z.LiH.ChangJ.M. LaiF.SongQ.YaoH.LiuH.NiZ.NiuJ.Zhang, Terahertz phononic crystal in plasmonic nanocavity, J. Semicond. (2023) (in press)
[134]
Q. Cheng , S. Wang , J. Lv , J. Wang , N. Liu . Highly sensitive nanoparticle sensing based on a hybrid cavity in a freely suspended microfiber. Nanotechnology, 2021, 32(20): 205203
CrossRef ADS Google scholar
[135]
B. Gökbulut , A. Inanç , G. Topcu , S. Ozcelik , M. M. Demir , M. N. Inci . Hybrid photonic-plasmonic mode-coupling induced enhancement of the spontaneous emission rate of CdS/CdSe quantum emitters. Physica E, 2022, 136: 115017
CrossRef ADS Google scholar

Acknowledgements

J. Z. acknowledges the National Key Research and Development Program of China (No. 2017YFA0303401), CAS Interdisciplinary Innovation Team, the National Natural Science Foundation of China (No. 12074371), and the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB28000000).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(8289 KB)

Accesses

Citations

Detail

Sections
Recommended

/