Recent developments in CVD growth and applications of 2D transition metal dichalcogenides

Hui Zeng, Yao Wen, Lei Yin, Ruiqing Cheng, Hao Wang, Chuansheng Liu, Jun He

PDF(34183 KB)
PDF(34183 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (5) : 53603. DOI: 10.1007/s11467-023-1286-2
REVIEW ARTICLE

Recent developments in CVD growth and applications of 2D transition metal dichalcogenides

Author information +
History +

Abstract

Two-dimensional (2D) transition metal dichalcogenides (TMDs) with fascinating electronic energy band structures, rich valley physical properties and strong spin–orbit coupling have attracted tremendous interest, and show great potential in electronic, optoelectronic, spintronic and valleytronic fields. Stacking 2D TMDs have provided unprecedented opportunities for constructing artificial functional structures. Due to the low cost, high yield and industrial compatibility, chemical vapor deposition (CVD) is regarded as one of the most promising growth strategies to obtain high-quality and large-area 2D TMDs and heterostructures. Here, state-of-the-art strategies for preparing TMDs details of growth control and related heterostructures construction via CVD method are reviewed and discussed, including wafer-scale synthesis, phase transition, doping, alloy and stacking engineering. Meanwhile, recent progress on the application of multi-functional devices is highlighted based on 2D TMDs. Finally, challenges and prospects are proposed for the practical device applications of 2D TMDs.

Graphical abstract

Keywords

two-dimensional (2D) semiconductor / transition metal dichalcogenides (TMDs) / chemical vapor deposition (CVD) / heterostructures / device applications

Cite this article

Download citation ▾
Hui Zeng, Yao Wen, Lei Yin, Ruiqing Cheng, Hao Wang, Chuansheng Liu, Jun He. Recent developments in CVD growth and applications of 2D transition metal dichalcogenides. Front. Phys., 2023, 18(5): 53603 https://doi.org/10.1007/s11467-023-1286-2

References

[1]
S. B. Desai, S. R. Madhvapathy, A. B. Sachid, J. P. Llinas, Q. Wang, G. H. Ahn, G. Pitner, M. J. Kim, J. Bokor, C. Hu, H. S. P. Wong, A. Javey. MoS2 transistors with 1-nanometer gate lengths. Science, 2016, 354(6308): 99
CrossRef ADS Google scholar
[2]
J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, X. Xu. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat. Nanotechnol., 2014, 9(4): 268
CrossRef ADS Google scholar
[3]
F. Zhang, H. Zhang, S. Krylyuk, C. A. Milligan, Y. Zhu, D. Y. Zemlyanov, L. A. Bendersky, B. P. Burton, A. V. Davydov, J. Appenzeller. Electric-field induced structural transition in vertical MoTe2- and Mo1–xWxTe2-based resistive memories. Nat. Mater., 2019, 18(1): 55
CrossRef ADS Google scholar
[4]
T.AkamatsuT. IdeueL.ZhouY.DongS.Kitamura M.YoshiiD. YangM.OngaY.NakagawaK.Watanabe T.TaniguchiJ. LaurienzoJ.HuangZ.YeT.Morimoto H.YuanY. Iwasa, A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect, Science 372(6537), 68 (2021)
[5]
L. A. Benítez, J. F. Sierra, W. Savero Torres, A. Arrighi, F. Bonell, M. V. Costache, S. O. Valenzuela. Strongly anisotropic spin relaxation in graphene–transition metal dichalcogenide heterostructures at room temperature. Nat. Phys., 2018, 14(3): 303
CrossRef ADS Google scholar
[6]
K. F. Mak, K. L. McGill, J. Park, P. L. McEuen. The valley Hall effect in MoS2 transistors. Science, 2014, 344(6191): 1489
CrossRef ADS Google scholar
[7]
J. Lu, O. Zheliuk, I. Leermakers, N. F. Yuan, U. Zeitler, K. T. Law, J. Ye. Evidence for two-dimensional Ising superconductivity in gated MoS2. Science, 2015, 350(6266): 1353
CrossRef ADS Google scholar
[8]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. e. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666
CrossRef ADS Google scholar
[9]
J. Wang, X. Xu, T. Cheng, L. Gu, R. Qiao, Z. Liang, D. Ding, H. Hong, P. Zheng, Z. Zhang, Z. Zhang, S. Zhang, G. Cui, C. Chang, C. Huang, J. Qi, J. Liang, C. Liu, Y. Zuo, G. Xue, X. Fang, J. Tian, M. Wu, Y. Guo, Z. Yao, Q. Jiao, L. Liu, P. Gao, Q. Li, R. Yang, G. Zhang, Z. Tang, D. Yu, E. Wang, J. Lu, Y. Zhao, S. Wu, F. Ding, K. Liu. Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire. Nat. Nanotechnol., 2022, 17(1): 33
CrossRef ADS Google scholar
[10]
X. Xu, Z. Zhang, L. Qiu, J. Zhuang, L. Zhang, H. Wang, C. Liao, H. Song, R. Qiao, P. Gao, Z. Hu, L. Liao, Z. Liao, D. Yu, E. Wang, F. Ding, H. Peng, K. Liu. Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply. Nat. Nanotechnol., 2016, 11(11): 930
CrossRef ADS Google scholar
[11]
C. Liu, X. Xu, L. Qiu, M. Wu, R. Qiao, L. Wang, J. Wang, J. Niu, J. Liang, X. Zhou, Z. Zhang, M. Peng, P. Gao, W. Wang, X. Bai, D. Ma, Y. Jiang, X. Wu, D. Yu, E. Wang, J. Xiong, F. Ding, K. Liu. Kinetic modulation of graphene growth by fluorine through spatially confined decomposition of metal fluorides. Nat. Chem., 2019, 11(8): 730
CrossRef ADS Google scholar
[12]
H. U. Kim, V. Kanade, M. Kim, K. S. Kim, B. S. An, H. Seok, H. Yoo, L. E. Chaney, S. I. Kim, C. W. Yang, G. Y. Yeom, D. Whang, J. H. Lee, T. Kim. Wafer-scale and low‐temperature growth of 1T‐WS2 film for efficient and stable hydrogen evolution reaction. Small, 2020, 16(6): 1905000
CrossRef ADS Google scholar
[13]
Y. C. Lin, C. H. Yeh, H. C. Lin, M. D. Siao, Z. Liu, H. Nakajima, T. Okazaki, M. Y. Chou, K. Suenaga, P. W. Chiu. Stable 1T tungsten disulfide monolayer and its junctions: Growth and atomic structures. ACS Nano, 2018, 12(12): 12080
CrossRef ADS Google scholar
[14]
J. Gao, Y. D. Kim, L. Liang, J. C. Idrobo, P. Chow, J. Tan, B. Li, L. Li, B. G. Sumpter, T. M. Lu, V. Meunier, J. Hone, N. Koratkar. Transition‐metal substitution doping in synthetic atomically thin semiconductors. Adv. Mater., 2016, 28(44): 9735
CrossRef ADS Google scholar
[15]
S.UmraoJ. JeonS.M. JeonY.J. ChoiS.Lee, A homogeneous atomic layer MoS2(1−x) Se2x alloy prepared by low-pressure chemical vapor deposition, and its properties, Nanoscale 9(2), 594 (2017)
[16]
Y. Yoo, Z. P. Degregorio, J. E. Johns. Seed crystal homogeneity controls lateral and vertical heteroepitaxy of monolayer MoS2 and WS2. J. Am. Chem. Soc., 2015, 137(45): 14281
CrossRef ADS Google scholar
[17]
Y. Gao, Y. L. Hong, L. C. Yin, Z. Wu, Z. Yang, M. L. Chen, Z. Liu, T. Ma, D. M. Sun, Z. Ni, X. L. Ma, H. M. Cheng, W. Ren. Ultrafast growth of high‐quality monolayer WSe2 on Au. Adv. Mater., 2017, 29(29): 1700990
CrossRef ADS Google scholar
[18]
J. Chen, X. Zhao, G. Grinblat, Z. Chen, S. J. Tan, W. Fu, Z. Ding, I. Abdelwahab, Y. Li, D. Geng, Y. Liu, K. Leng, B. Liu, W. Liu, W. Tang, S. A. Maier, S. J. Pennycook, K. P. Loh. Homoepitaxial growth of large‐scale highly organized transition metal dichalcogenide patterns. Adv. Mater., 2018, 30(4): 1704674
CrossRef ADS Google scholar
[19]
S. Y. Kim, J. Kwak, C. V. Ciobanu, S. Y. Kwon. Recent developments in controlled vapor‐phase growth of 2D group 6 transition metal dichalcogenides. Adv. Mater., 2019, 31(20): 1804939
CrossRef ADS Google scholar
[20]
H. Li, X. Wang, X. Zhu, X. Duan, A. Pan. Composition modulation in one-dimensional and two-dimensional chalcogenide semiconductor nanostructures. Chem. Soc. Rev., 2018, 47(20): 7504
CrossRef ADS Google scholar
[21]
S. L. Shang, G. Lindwall, Y. Wang, J. M. Redwing, T. Anderson, Z. K. Liu. Lateral versus vertical growth of two-dimensional layered transition-metal dichalcogenides: Thermodynamic insight into MoS2. Nano Lett., 2016, 16(9): 5742
CrossRef ADS Google scholar
[22]
Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, P. M. Ajayan. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater., 2014, 13(12): 1135
CrossRef ADS Google scholar
[23]
P. Yang, X. Zou, Z. Zhang, M. Hong, J. Shi, S. Chen, J. Shu, L. Zhao, S. Jiang, X. Zhou, Y. Huan, C. Xie, P. Gao, Q. Chen, Q. Zhang, Z. Liu, Y. Zhang. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun., 2018, 9(1): 979
CrossRef ADS Google scholar
[24]
L. Yu, D. El-Damak, U. Radhakrishna, X. Ling, A. Zubair, Y. Lin, Y. Zhang, M. H. Chuang, Y. H. Lee, D. Antoniadis, J. Kong, A. Chandrakasan, T. Palacios. Design, modeling, and fabrication of chemical vapor deposition grown MoS2 circuits with E-mode FETs for large-area electronics. Nano Lett., 2016, 16(10): 6349
CrossRef ADS Google scholar
[25]
R. Cheng, F. Wang, L. Yin, Z. Wang, Y. Wen, T. A. Shifa, J. He. High-performance, multifunctional devices based on asymmetric van der Waals heterostructures. Nat. Electron., 2018, 1(6): 356
CrossRef ADS Google scholar
[26]
H. Xue, Y. Dai, W. Kim, Y. Wang, X. Bai, M. Qi, K. Halonen, H. Lipsanen, Z. Sun. High photoresponsivity and broadband photodetection with a band-engineered WSe2/SnSe2 heterostructure. Nanoscale, 2019, 11(7): 3240
CrossRef ADS Google scholar
[27]
L. Yin, P. He, R. Cheng, F. Wang, F. Wang, Z. Wang, Y. Wen, J. He. Robust trap effect in transition metal dichalcogenides for advanced multifunctional devices. Nat. Commun., 2019, 10(1): 4133
CrossRef ADS Google scholar
[28]
M. Si, P. Y. Liao, G. Qiu, Y. Duan, P. D. Ye. Ferroelectric field-effect transistors based on MoS2 and CuInP2S6 two-dimensional van der Waals heterostructure. ACS Nano, 2018, 12(7): 6700
CrossRef ADS Google scholar
[29]
Y. Wang, X. Bai, J. Chu, H. Wang, G. Rao, X. Pan, X. Du, K. Hu, X. Wang, C. Gong, C. Yin, C. Yang, C. Yan, C. Wu, Y. Shuai, X. Wang, M. Liao, J. Xiong. Record-low subthreshold-swing negative-capacitance 2D field‐effect transistors. Adv. Mater., 2020, 32(46): 2005353
CrossRef ADS Google scholar
[30]
B. Zhou, Z. Li, J. Wang, X. Niu, C. Luan. Tunable valley splitting and an anomalous valley Hall effect in hole-doped WS2 by proximity coupling with a ferromagnetic MnO2 monolayer. Nanoscale, 2019, 11(28): 13567
CrossRef ADS Google scholar
[31]
A. Dankert, S. P. Dash. Electrical gate control of spin current in van der Waals heterostructures at room temperature. Nat. Commun., 2017, 8(1): 16093
CrossRef ADS Google scholar
[32]
O. L. Sanchez, D. Ovchinnikov, S. Misra, A. Allain, A. Kis. Valley polarization by spin injection in a light-emitting van der Waals heterojunction. Nano Lett., 2016, 16(9): 5792
CrossRef ADS Google scholar
[33]
J. Lee, K. F. Mak, J. Shan. Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotechnol., 2016, 11(5): 421
CrossRef ADS Google scholar
[34]
D. Schmitt, J. P. Bange, W. Bennecke, A. AlMutairi, G. Meneghini, K. Watanabe, T. Taniguchi, D. Steil, D. R. Luke, R. T. Weitz, S. Steil, G. S. M. Jansen, S. Brem, E. Malic, S. Hofmann, M. Reutzel, S. Mathias. Formation of moiré interlayer excitons in space and time. Nature, 2022, 608(7923): 499
CrossRef ADS Google scholar
[35]
Z. Zhang, P. Chen, X. Yang, Y. Liu, H. Ma, J. Li, B. Zhao, J. Luo, X. Duan, X. Duan. Ultrafast growth of large single crystals of monolayer WS2 and WSe2. Natl. Sci. Rev., 2020, 7(4): 737
CrossRef ADS Google scholar
[36]
M. C. Chang, P. H. Ho, M. F. Tseng, F. Y. Lin, C. H. Hou, I. Lin, H. Wang, P. P. Huang, C. H. Chiang, Y. C. Yang, I. T. Wang, H. Y. Du, C. Y. Wen, J. J. Shyue, C. W. Chen, K. H. Chen, P. W. Chiu, L. C. Chen. Fast growth of large-grain and continuous MoS2 films through a self-capping vapor-liquid-solid method. Nat. Commun., 2020, 11(1): 3682
CrossRef ADS Google scholar
[37]
Z. Zhang, X. Yang, K. Liu, R. Wang. Epitaxy of 2D materials toward single crystals. Adv. Sci. (Weinh.), 2022, 9(8): 2105201
CrossRef ADS Google scholar
[38]
T. Wu, X. Zhang, Q. Yuan, J. Xue, G. Lu, Z. Liu, H. Wang, H. Wang, F. Ding, Q. Yu, X. Xie, M. Jiang. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu–Ni alloys. Nat. Mater., 2016, 15(1): 43
CrossRef ADS Google scholar
[39]
H. Wang, X. Xu, J. Li, L. Lin, L. Sun, X. Sun, S. Zhao, C. Tan, C. Chen, W. Dang, H. Ren, J. Zhang, B. Deng, A. L. Koh, L. Liao, N. Kang, Y. Chen, H. Xu, F. Ding, K. Liu, H. Peng, Z. Liu. Surface monocrystallization of copper foil for fast growth of large single‐crystal graphene under free molecular flow. Adv. Mater., 2016, 28(40): 8968
CrossRef ADS Google scholar
[40]
L. Wang, X. Xu, L. Zhang, R. Qiao, M. Wu, Z. Wang, S. Zhang, J. Liang, Z. Zhang, Z. Zhang, W. Chen, X. Xie, J. Zong, Y. Shan, Y. Guo, M. Willinger, H. Wu, Q. Li, W. Wang, P. Gao, S. Wu, Y. Zhang, Y. Jiang, D. Yu, E. Wang, X. Bai, Z. J. Wang, F. Ding, K. Liu. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature, 2019, 570(7759): 91
CrossRef ADS Google scholar
[41]
J. S. Lee, S. H. Choi, S. J. Yun, Y. I. Kim, S. Boandoh, J. H. Park, B. G. Shin, H. Ko, S. H. Lee, Y. M. Kim, Y. H. Lee, K. K. Kim, S. M. Kim. Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science, 2018, 362(6416): 817
CrossRef ADS Google scholar
[42]
K. A. N. Duerloo, Y. Li, E. J. Reed. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun., 2014, 5(1): 4214
CrossRef ADS Google scholar
[43]
X. Xu, S. Chen, S. Liu, X. Cheng, W. Xu, P. Li, Y. Wan, S. Yang, W. Gong, K. Yuan, P. Gao, Y. Ye, L. Dai. Millimeter-scale single-crystalline semiconducting MoTe2 via solid-to-solid phase transformation. J. Am. Chem. Soc., 2019, 141(5): 2128
CrossRef ADS Google scholar
[44]
X. Xu, Y. Pan, S. Liu, B. Han, P. Gu, S. Li, W. Xu, Y. Peng, Z. Han, J. Chen, P. Gao, Y. Ye. Seeded 2D epitaxy of large-area single-crystal films of the van der Waals semiconductor 2H MoTe2. Science, 2021, 372(6538): 195
CrossRef ADS Google scholar
[45]
G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, L. Colombo. Electronics based on two-dimensional materials. Nat. Nanotechnol., 2014, 9(10): 768
CrossRef ADS Google scholar
[46]
W. M. Arden. The international technology roadmap for semiconductors — Perspectives and challenges for the next 15 years. Curr. Opin. Solid State Mater. Sci., 2002, 6(5): 371
CrossRef ADS Google scholar
[47]
Z. Lin, Y. Liu, U. Halim, M. Ding, Y. Liu, Y. Wang, C. Jia, P. Chen, X. Duan, C. Wang, F. Song, M. Li, C. Wan, Y. Huang, X. Duan. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature, 2018, 562(7726): 254
CrossRef ADS Google scholar
[48]
K. Kaasbjerg, K. S. Thygesen, K. W. Jacobsen. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B, 2012, 85(11): 115317
CrossRef ADS Google scholar
[49]
N. Li, Q. Wang, C. Shen, Z. Wei, H. Yu, J. Zhao, X. Lu, G. Wang, C. He, L. Xie, J. Zhu, L. Du, R. Yang, D. Shi, G. Zhang. Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron., 2020, 3(11): 711
CrossRef ADS Google scholar
[50]
M. Seol, M. H. Lee, H. Kim, K. W. Shin, Y. Cho, I. Jeon, M. Jeong, H. I. Lee, J. Park, H. J. Shin. High‐throughput growth of Wafer-scale monolayer transition metal dichalcogenide via vertical ostwald ripening. Adv. Mater., 2020, 32(42): 2003542
CrossRef ADS Google scholar
[51]
Z. Cai, B. Liu, X. Zou, H. M. Cheng. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev., 2018, 118(13): 6091
CrossRef ADS Google scholar
[52]
L. H. Zeng, D. Wu, S. H. Lin, C. Xie, H. Y. Yuan, W. Lu, S. P. Lau, Y. Chai, L. B. Luo, Z. J. Li, Y. H. Tsang. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater., 2019, 29(1): 1806878
CrossRef ADS Google scholar
[53]
P. Lv, X. Zhang, X. Zhang, W. Deng, J. Jie. High-sensitivity and fast-response graphene/crystalline silicon Schottky junction-based near-IR photodetectors. IEEE Electron Device Lett., 2013, 34(10): 1337
CrossRef ADS Google scholar
[54]
Y.ZhangY. YuL.MiH.WangZ.Zhu Q.WuY.Zhang Y.Jiang, In situ fabrication of vertical multilayered MoS2/Si homotype heterojunction for high-speed visible-near-infrared photodetectors, Small 12(8), 1062 (2016)
[55]
K.NovoselovA. MishchenkoA.CarvalhoA.H. Castro Neto, 2D materials and van der Waals heterostructures, Science 353(6298), aac9439 (2016)
[56]
J. Shi, X. Chen, L. Zhao, Y. Gong, M. Hong, Y. Huan, Z. Zhang, P. Yang, Y. Li, Q. Zhang, Q. Zhang, L. Gu, H. Chen, J. Wang, S. Deng, N. Xu, Y. Zhang. Chemical vapor deposition grown wafer-scale 2D tantalum diselenide with robust charge-density-wave order. Adv. Mater., 2018, 30(44): 1804616
CrossRef ADS Google scholar
[57]
X. Xi, L. Zhao, Z. Wang, H. Berger, L. Forró, J. Shan, K. F. Mak. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol., 2015, 10(9): 765
CrossRef ADS Google scholar
[58]
D. L. Duong, G. Ryu, A. Hoyer, C. Lin, M. Burghard, K. Kern. Raman characterization of the charge density wave phase of 1T-TiSe2: From bulk to atomically thin layers. ACS Nano, 2017, 11(1): 1034
CrossRef ADS Google scholar
[59]
X. Xu, Z. Zhang, J. Dong, D. Yi, J. Niu, M. Wu, L. Lin, R. Yin, M. Li, J. Zhou, S. Wang, J. Sun, X. Duan, P. Gao, Y. Jiang, X. Wu, H. Peng, R. S. Ruoff, Z. Liu, D. Yu, E. Wang, F. Ding, K. Liu. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. (Beijing), 2017, 62(15): 1074
CrossRef ADS Google scholar
[60]
P. Wang, D. Yang, X. Pi. Toward wafer-scale production of 2D transition metal chalcogenides. Adv. Electron. Mater., 2021, 7(8): 2100278
CrossRef ADS Google scholar
[61]
L. Onsager. Crystal Statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev., 1944, 65: 3
CrossRef ADS Google scholar
[62]
P. C. Hohenberg. Existence of long-range order in one and two dimensions. Phys. Rev., 1967, 158(2): 383
CrossRef ADS Google scholar
[63]
N. D. Mermin, H. Wagner. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett., 1966, 17(22): 1133
CrossRef ADS Google scholar
[64]
J. M. Kosterlitz, D. Thouless. Long range order and metastability in two dimensional solids and superfluids (Application of dislocation theory). J. Phys. C, 1972, 5(11): L124
CrossRef ADS Google scholar
[65]
J. M. Kosterlitz, D. J. Thouless. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C, 1973, 6(7): 1181
CrossRef ADS Google scholar
[66]
J. A. Wilson, A. Yoffe. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys., 1969, 18(73): 193
CrossRef ADS Google scholar
[67]
W. Li, X. Qian, J. Li. Phase transitions in 2D materials. Nat. Rev. Mater., 2021, 6(9): 829
CrossRef ADS Google scholar
[68]
D. H. Keum, S. Cho, J. H. Kim, D. H. Choe, H. J. Sung, M. Kan, H. Kang, J. Y. Hwang, S. W. Kim, H. Yang, K. J. Chang, Y. H. Lee. Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys., 2015, 11(6): 482
CrossRef ADS Google scholar
[69]
W. Hou, A. Azizimanesh, A. Sewaket, T. Peña, C. Watson, M. Liu, H. Askari, S. M. Wu. Strain-based room-temperature non-volatile MoTe2 ferroelectric phase change transistor. Nat. Nanotechnol., 2019, 14(7): 668
CrossRef ADS Google scholar
[70]
S. Cho, S. Kim, J. H. Kim, J. Zhao, J. Seok, D. H. Keum, J. Baik, D. H. Choe, K. J. Chang, K. Suenaga, S. W. Kim, Y. H. Lee, H. Yang. Phase patterning for ohmic homojunction contact in MoTe2. Science, 2015, 349(6248): 625
CrossRef ADS Google scholar
[71]
Y. Wang, J. Xiao, H. Zhu, Y. Li, Y. Alsaid, K. Y. Fong, Y. Zhou, S. Wang, W. Shi, Y. Wang, A. Zettl, E. J. Reed, X. Zhang. Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature, 2017, 550(7677): 487
CrossRef ADS Google scholar
[72]
H. U. Kim, H. Seok, W. S. Kang, T. Kim. The first progress of plasma-based transition metal dichalcogenide synthesis: A stable 1T phase and promising applications. Nanoscale Adv., 2022, 4(14): 2962
CrossRef ADS Google scholar
[73]
J. Q. Zhu, Z. C. Wang, H. Yu, N. Li, J. Zhang, J. L. Meng, M. Z. Liao, J. Zhao, X. B. Lu, L. J. Du, R. Yang, D. Shi, Y. Jiang, G. Y. Zhang. Argon plasma induced phase transition in monolayer MoS2. J. Am. Chem. Soc., 2017, 139(30): 10216
CrossRef ADS Google scholar
[74]
M. S. Sokolikova, C. Mattevi. Direct synthesis of metastable phases of 2D transition metal dichalcogenides. Chem. Soc. Rev., 2020, 49(12): 3952
CrossRef ADS Google scholar
[75]
M. S. Choi, B. Cheong, C. H. Ra, S. Lee, J. H. Bae, S. Lee, G. D. Lee, C. W. Yang, J. Hone, W. J. Yoo. Electrically driven reversible phase changes in layered In2Se3 crystalline film. Adv. Mater., 2017, 29(42): 1703568
CrossRef ADS Google scholar
[76]
W. Zhang, M. Wuttig. Phase change materials and superlattices for non-volatile memories. Phys. Status Solidi Rapid Res. Lett., 2019, 13(4): 1900130
CrossRef ADS Google scholar
[77]
S. Mori, S. Hatayama, Y. Shuang, D. Ando, Y. Sutou. Reversible displacive transformation in MnTe polymorphic semiconductor. Nat. Commun., 2020, 11(1): 85
CrossRef ADS Google scholar
[78]
S. J. Lee, Z. Lin, X. Duan, Y. Huang. Doping on demand in 2D devices. Nat. Electron., 2020, 3(2): 77
CrossRef ADS Google scholar
[79]
P. Luo, F. Zhuge, Q. Zhang, Y. Chen, L. Lv, Y. Huang, H. Li, T. Zhai. Doping engineering and functionalization of two-dimensional metal chalcogenides. Nanoscale Horiz., 2019, 4(1): 26
CrossRef ADS Google scholar
[80]
K. Zhang, B. M. Bersch, J. Joshi, R. Addou, C. R. Cormier, C. Zhang, K. Xu, N. C. Briggs, K. Wang, S. Subramanian, K. Cho, S. Fullerton-Shirey, R. M. Wallace, P. M. Vora, J. A. Robinson. Tuning the electronic and photonic properties of monolayer MoS2 via in situ rhenium substitutional doping. Adv. Funct. Mater., 2018, 28(16): 1706950
CrossRef ADS Google scholar
[81]
A. Nipane, D. Karmakar, N. Kaushik, S. Karande, S. Lodha. Few-layer MoS2 p-type devices enabled by selective doping using low energy phosphorus implantation. ACS Nano, 2016, 10(2): 2128
CrossRef ADS Google scholar
[82]
B. Tang, Z. G. Yu, L. Huang, J. Chai, S. L. Wong, J. Deng, W. Yang, H. Gong, S. Wang, K. W. Ang, Y. W. Zhang, D. Chi. Direct n-to p-type channel conversion in monolayer/few-layer WS2 field-effect transistors by atomic nitrogen treatment. ACS Nano, 2018, 12(3): 2506
CrossRef ADS Google scholar
[83]
X.TangL. Z. Kou, 2D Janus transition metal dichalcogenides: Properties and applications, Phys. Status Solidi B 259(4), 8 (2022)
[84]
A. Y. Lu, H. Zhu, J. Xiao, C. P. Chuu, Y. Han, M. H. Chiu, C. C. Cheng, C. W. Yang, K. H. Wei, Y. Yang, Y. Wang, D. Sokaras, D. Nordlund, P. Yang, D. A. Muller, M. Y. Chou, X. Zhang, L. J. Li. Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol., 2017, 12(8): 744
CrossRef ADS Google scholar
[85]
J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er, W. Chen, H. Guo, Z. Jin, V. B. Shenoy, L. Shi, J. Lou. Janus monolayer transition-metal dichalcogenides. ACS Nano, 2017, 11(8): 8192
CrossRef ADS Google scholar
[86]
T. Hu, F. Jia, G. Zhao, J. Wu, A. Stroppa, W. Ren. Intrinsic and anisotropic Rashba spin splitting in Janus transition-metal dichalcogenide monolayers. Phys. Rev. B, 2018, 97(23): 235404
CrossRef ADS Google scholar
[87]
L. Dong, J. Lou, V. B. Shenoy. Large in-plane and vertical piezoelectricity in Janus transition metal dichalchogenides. ACS Nano, 2017, 11(8): 8242
CrossRef ADS Google scholar
[88]
C.LiuX. YanX.SongS.DingD.W. Zhang P.Zhou, A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications, Nat. Nanotechnol. 13(5), 404 (2018)
[89]
W. Shi, S. Kahn, L. Jiang, S. Y. Wang, H. Z. Tsai, D. Wong, T. Taniguchi, K. Watanabe, F. Wang, M. F. Crommie, A. Zettl. Reversible writing of high-mobility and high-carrier-density doping patterns in two-dimensional van der Waals heterostructures. Nat. Electron., 2020, 3(2): 99
CrossRef ADS Google scholar
[90]
J.W. ChenS. T. LoS.C. HoS.S. WongT.H. Y. Vu X.Q. ZhangY. D. LiuY.Y. ChiouY.X. ChenJ.C. Yang, A gate-free monolayer WSe2 p-n diode, Nat. Commun. 9(1), 1 (2018)
[91]
G. Wu, B. Tian, L. Liu, W. Lv, S. Wu, X. Wang, Y. Chen, J. Li, Z. Wang, S. Wu, H. Shen, T. Lin, P. Zhou, Q. Liu, C. Duan, S. Zhang, X. Meng, S. Wu, W. Hu, X. Wang, J. Chu, J. Wang. Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains. Nat. Electron., 2020, 3(1): 43
CrossRef ADS Google scholar
[92]
L. Ju, J. Jr Velasco, E. Huang, S. Kahn, C. Nosiglia, H. Z. Tsai, W. Yang, T. Taniguchi, K. Watanabe, Y. Zhang, G. Zhang, M. Crommie, A. Zettl, F. Wang. Photoinduced doping in heterostructures of graphene and boron nitride. Nat. Nanotechnol., 2014, 9(5): 348
CrossRef ADS Google scholar
[93]
D. Xiang, T. Liu, J. Xu, J. Y. Tan, Z. Hu, B. Lei, Y. Zheng, J. Wu, A. Neto, L. Liu, W. Chen. Two-dimensional multibit optoelectronic memory with broadband spectrum distinction. Nat. Commun., 2018, 9(1): 2966
CrossRef ADS Google scholar
[94]
W. K. Liu, K. M. Whitaker, K. R. Kittilstved, D. R. Gamelin. Stable photogenerated carriers in magnetic semiconductor nanocrystals. J. Am. Chem. Soc., 2006, 128(12): 3910
CrossRef ADS Google scholar
[95]
J. Wang, L. Wang, S. Yu, T. Ding, D. Xiang, K. Wu. Spin blockade and phonon bottleneck for hot electron relaxation observed in n-doped colloidal quantum dots. Nat. Commun., 2021, 12(1): 550
CrossRef ADS Google scholar
[96]
H. Li, H. Liu, L. Zhou, X. Wu, Y. Pan, W. Ji, B. Zheng, Q. Zhang, X. Zhuang, X. Zhu, X. Wang, X. Duan, A. Pan. Strain-tuning atomic substitution in two-dimensional atomic crystals. ACS Nano, 2018, 12(5): 4853
CrossRef ADS Google scholar
[97]
X. Liu, J. Wu, W. Yu, L. Chen, Z. Huang, H. Jiang, J. He, Q. Liu, Y. Lu, D. Zhu, W. Liu, P. Cao, S. Han, X. Xiong, W. Xu, J. P. Ao, K. W. Ang, Z. He. Monolayer WxMo1−xS2 grown by atmospheric pressure chemical vapor deposition: Bandgap engineering and field effect transistors. Adv. Funct. Mater., 2017, 27(13): 1606469
CrossRef ADS Google scholar
[98]
J. Zhou, J. Lin, H. Sims, C. Jiang, C. Cong, J. A. Brehm, Z. Zhang, L. Niu, Y. Chen, Y. Zhou, Y. Wang, F. Liu, C. Zhu, T. Yu, K. Suenaga, R. Mishra, S. T. Pantelides, Z. G. Zhu, W. Gao, Z. Liu, W. Zhou. Synthesis of co‐doped MoS2 monolayers with enhanced valley splitting. Adv. Mater., 2020, 32(11): 1906536
CrossRef ADS Google scholar
[99]
S. Wang, Y. Rong, Y. Fan, M. Pacios, H. Bhaskaran, K. He, J. H. Warner. Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition. Chem. Mater., 2014, 26(22): 6371
CrossRef ADS Google scholar
[100]
H. Huang, J. Zha, S. Li, C. Tan. Two-dimensional alloyed transition metal dichalcogenide nanosheets: Synthesis and applications. Chin. Chem. Lett., 2022, 33(1): 163
CrossRef ADS Google scholar
[101]
X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou, U. Halim, H. Li, X. Wu, Y. Wang, J. Jiang, A. Pan, Y. Huang, R. Yu, X. Duan. Synthesis of WS2xSe2–2x alloy nanosheets with composition-tunable electronic properties. Nano Lett., 2016, 16(1): 264
CrossRef ADS Google scholar
[102]
Z. Lai, Q. He, T. H. Tran, D. Repaka, D. D. Zhou, Y. Sun, S. Xi, Y. Li, A. Chaturvedi, C. Tan, B. Chen, G. H. Nam, B. Li, C. Ling, W. Zhai, Z. Shi, D. Hu, V. Sharma, Z. Hu, Y. Chen, Z. Zhang, Y. Yu, X. Renshaw Wang, R. V. Ramanujan, Y. Ma, K. Hippalgaonkar, H. Zhang. Metastable 1T′-phase group VIB transition metal dichalcogenide crystals. Nat. Mater., 2021, 20(8): 1113
CrossRef ADS Google scholar
[103]
W. Wen, Y. Zhu, X. Liu, H. P. Hsu, Z. Fei, Y. Chen, X. Wang, M. Zhang, K. H. Lin, F. S. Huang, Y. P. Wang, Y. S. Huang, C. H. Ho, P. H. Tan, C. Jin, L. Xie. Anisotropic spectroscopy and electrical properties of 2D ReS2(1–x)Se2x alloys with distorted 1T structure. Small, 2017, 13(12): 1603788
CrossRef ADS Google scholar
[104]
D. Wang, X. Zhang, G. Guo, S. Gao, X. Li, J. Meng, Z. Yin, H. Liu, M. Gao, L. Cheng, J. You, R. Wang. Large‐area synthesis of layered HfS2(1−x)Se2x alloys with fully tunable chemical compositions and bandgaps. Adv. Mater., 2018, 30(44): 1803285
CrossRef ADS Google scholar
[105]
S. Susarla, A. Kutana, J. A. Hachtel, V. Kochat, A. Apte, R. Vajtai, J. C. Idrobo, B. I. Yakobson, C. S. Tiwary, P. M. Ajayan. Quaternary 2D transition metal dichalcogenides (TMDs) with tunable bandgap. Adv. Mater., 2017, 29(35): 1702457
CrossRef ADS Google scholar
[106]
S. Susarla, J. A. Hachtel, X. Yang, A. Kutana, A. Apte, Z. Jin, R. Vajtai, J. C. Idrobo, J. Lou, B. I. Yakobson, C. S. Tiwary, P. M. Ajayan. Thermally induced 2D alloy-heterostructure transformation in quaternary alloys. Adv. Mater., 2018, 30(45): 1804218
CrossRef ADS Google scholar
[107]
X. Zhang, H. Nan, S. Xiao, X. Wan, X. Gu, A. Du, Z. Ni, K. K. Ostrikov. Transition metal dichalcogenides bilayer single crystals by reverse-flow chemical vapor epitaxy. Nat. Commun., 2019, 10(1): 598
CrossRef ADS Google scholar
[108]
Y.ShiW. ZhouA.Y. LuW.FangY.H. Lee A.L. HsuS. M. KimK.K. KimH.Y. YangL.J. Li J.C. IdroboJ. Kong, van der Waals epitaxy of MoS2 layers using graphene as growth templates, Nano Lett. 12(6), 2784 (2012)
[109]
M. Li, Y. Zhu, T. Li, Y. Lin, H. Cai, S. Li, H. Ding, N. Pan, X. Wang. One-step CVD fabrication and optoelectronic properties of SnS2/SnS vertical heterostructures. Inorg. Chem. Front., 2018, 5(8): 1828
CrossRef ADS Google scholar
[110]
Q. Fu, X. Wang, J. Zhou, J. Xia, Q. Zeng, D. Lv, C. Zhu, X. Wang, Y. Shen, X. Li, Y. Hua, F. Liu, Z. Shen, C. Jin, Z. Liu. One-step synthesis of metal/semiconductor heterostructure NbS2/MoS2. Chem. Mater., 2018, 30(12): 4001
CrossRef ADS Google scholar
[111]
L. Zhao, J. Jia, Z. Yang, J. Yu, A. Wang, Y. Sang, W. Zhou, H. Liu. One-step synthesis of CdS nanoparticles/MoS2 nanosheets heterostructure on porous molybdenum sheet for enhanced photocatalytic H2 evolution. Appl. Catal. B, 2017, 210: 290
CrossRef ADS Google scholar
[112]
R. Ai, X. Guan, J. Li, K. Yao, P. Chen, Z. Zhang, X. Duan, X. Duan, Growth of single-crystalline cadmium iodide nanoplates, CdI2/MoS2 (WS2. WSe2) van der Waals heterostructures, and patterned arrays. ACS Nano, 2017, 11(3): 3413
CrossRef ADS Google scholar
[113]
Y. Shimazaki, I. Schwartz, K. Watanabe, T. Taniguchi, M. Kroner, A. Imamoğlu. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature, 2020, 580(7804): 472
CrossRef ADS Google scholar
[114]
Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, P. Jarillo-Herrero. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 2018, 556(7699): 80
CrossRef ADS Google scholar
[115]
Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, P. Jarillo-Herrero. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556(7699): 43
CrossRef ADS Google scholar
[116]
G. Chen, L. Jiang, S. Wu, B. Lyu, H. Li, B. L. Chittari, K. Watanabe, T. Taniguchi, Z. Shi, J. Jung, Y. Zhang, F. Wang. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys., 2019, 15(3): 237
CrossRef ADS Google scholar
[117]
G. Chen, A. L. Sharpe, P. Gallagher, I. T. Rosen, E. J. Fox, L. Jiang, B. Lyu, H. Li, K. Watanabe, T. Taniguchi, J. Jung, Z. Shi, D. Goldhaber-Gordon, Y. Zhang, F. Wang. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature, 2019, 572(7768): 215
CrossRef ADS Google scholar
[118]
E. C. Regan, D. Wang, C. Jin, M. I. Bakti Utama, B. Gao, X. Wei, S. Zhao, W. Zhao, Z. Zhang, K. Yumigeta, M. Blei, J. D. Carlström, K. Watanabe, T. Taniguchi, S. Tongay, M. Crommie, A. Zettl, F. Wang. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature, 2020, 579(7799): 359
CrossRef ADS Google scholar
[119]
H. S. Arora, R. Polski, Y. Zhang, A. Thomson, Y. Choi, H. Kim, Z. Lin, I. Z. Wilson, X. Xu, J. H. Chu, K. Watanabe, T. Taniguchi, J. Alicea, S. Nadj-Perge. Superconductivity in metallic twisted bilayer graphene stabilized by WSe2. Nature, 2020, 583(7816): 379
CrossRef ADS Google scholar
[120]
C. Jin, E. C. Regan, A. Yan, M. Iqbal Bakti Utama, D. Wang, S. Zhao, Y. Qin, S. Yang, Z. Zheng, S. Shi, K. Watanabe, T. Taniguchi, S. Tongay, A. Zettl, F. Wang. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature, 2019, 567(7746): 76
CrossRef ADS Google scholar
[121]
Y. Tang, L. Li, T. Li, Y. Xu, S. Liu, K. Barmak, K. Watanabe, T. Taniguchi, A. H. MacDonald, J. Shan, K. F. Mak. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature, 2020, 579(7799): 353
CrossRef ADS Google scholar
[122]
F. Wu, T. Lovorn, E. Tutuc, A. H. MacDonald. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett., 2018, 121(2): 026402
CrossRef ADS Google scholar
[123]
X. Q. Zhang, C. H. Lin, Y. W. Tseng, K. H. Huang, Y. H. Lee. Synthesis of lateral heterostructures of semiconducting atomic layers. Nano Lett., 2015, 15(1): 410
CrossRef ADS Google scholar
[124]
S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, F. Koppens. Broadband image sensor array based on graphene–CMOS integration. Nat. Photonics, 2017, 11(6): 366
CrossRef ADS Google scholar
[125]
X. Duan, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan, J. Jiang, R. Yu, Y. Huang, X. Duan. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol., 2014, 9(12): 1024
CrossRef ADS Google scholar
[126]
G. Shao, Y. Lu, J. Hong, X. X. Xue, J. Huang, Z. Xu, X. Lu, Y. Jin, X. Liu, H. Li, S. Hu, K. Suenaga, Z. Han, Y. Jiang, S. Li, Y. Feng, A. Pan, Y. C. Lin, Y. Cao, S. Liu. Seamlessly splicing metallic SnxMo1−xS2 at MoS2 edge for enhanced photoelectrocatalytic performance in microreactor. Adv. Sci. (Weinh.), 2020, 7(24): 2002172
CrossRef ADS Google scholar
[127]
X. Zhang, Z. Jin, L. Wang, J. A. Hachtel, E. Villarreal, Z. Wang, T. Ha, Y. Nakanishi, C. S. Tiwary, J. Lai, L. Dong, J. Yang, R. Vajtai, E. Ringe, J. C. Idrobo, B. I. Yakobson, J. Lou, V. Gambin, R. Koltun, P. M. Ajayan. Low contact barrier in 2H/1T′ MoTe2 in-plane heterostructure synthesized by chemical vapor deposition. ACS Appl. Mater. Interfaces, 2019, 11(13): 12777
CrossRef ADS Google scholar
[128]
K. Ye, L. X. Liu, Y. J. Liu, A. M. Nie, K. Zhai, J. Y. Xiang, B. C. Wang, F. S. Wen, C. P. Mu, Z. S. Zhao, Y. J. Gong, Z. Y. Liu, Y. J. Tian. Lateral bilayer MoS2-WS2 heterostructure photodetectors with high responsivity and detectivity. Adv. Opt. Mater., 2019, 7(20): 1900815
CrossRef ADS Google scholar
[129]
Y. D. Yoo, Z. P. Degregorio, J. E. Johns. Seed crystal homogeneity controls lateral and vertical heteroepitaxy of monolayer MoS2 and WS2. J. Am. Chem. Soc., 2015, 137(45): 14281
CrossRef ADS Google scholar
[130]
Z. Zhang, Z. Huang, J. Li, D. Wang, Y. Lin, X. Yang, H. Liu, S. Liu, Y. Wang, B. Li, X. Duan, X. Duan. Endoepitaxial growth of monolayer mosaic heterostructures. Nat. Nanotechnol., 2022, 17(5): 493
CrossRef ADS Google scholar
[131]
K. Bogaert, S. Liu, J. Chesin, D. Titow, S. Gradecak, S. Garaj. Diffusion-mediated synthesis of MoS2/WS2 lateral heterostructures. Nano Lett., 2016, 16(8): 5129
CrossRef ADS Google scholar
[132]
H. L. Li, X. P. Wu, H. J. Liu, B. Y. Zheng, Q. L. Zhang, X. L. Zhu, Z. We, X. J. Zhuang, H. Zhou, W. X. Tang, X. F. Duan, A. L. Pan. Composition-modulated two-dimensional semiconductor lateral heterostructures via layer-selected atomic substitution. ACS Nano, 2017, 11(1): 961
CrossRef ADS Google scholar
[133]
X. F. Li, M. W. Lin, J. H. Lin, B. Huang, A. A. Puretzky, C. Ma, K. Wang, W. Zhou, S. T. Pantelides, M. F. Chi, I. Kravchenko, J. Fowlkes, C. M. Rouleau, D. B. Geohegan, K. Xiao. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy. Sci. Adv., 2016, 2(4): e1501882
CrossRef ADS Google scholar
[134]
G. L. Shao, Y. Z. Lu, J. H. Hong, X. X. Xue, J. Q. Huang, Z. Y. Xu, X. C. Lu, Y. Y. Jin, X. Liu, H. M. Li, S. Hu, K. Suenaga, Z. Han, Y. Jiang, S. S. Li, Y. X. Feng, A. L. Pan, Y. C. Lin, Y. Cao, S. Liu. Seamlessly splicing metallic SnxMo1−xS2 at MoS2 edge for enhanced photoelectrocatalytic performance in microreactor. Adv. Sci. (Weinh.), 2020, 7(24): 2002172
CrossRef ADS Google scholar
[135]
M. L. Tsai, M. Y. Li, J. R. D. Retamal, K. T. Lam, Y. C. Lin, K. Suenaga, L. J. Chen, G. Liang, L. J. Li, J. H. He. Single atomically sharp lateral monolayer p−n heterojunction solar cells with extraordinarily high power conversion efficiency. Adv. Mater., 2017, 29(32): 1701168
CrossRef ADS Google scholar
[136]
P. K. Sahoo, S. Memaran, Y. Xin, L. Balicas, H. R. Gutiérrez. One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature, 2018, 553(7686): 63
CrossRef ADS Google scholar
[137]
Z. Zhou, Y. Zhang, X. Zhang, X. Niu, G. Wu, J. Wang. Suppressing photoexcited electron–hole recombination in MoSe2/WSe2 lateral heterostructures via interface-coupled state engineering: A time-domain ab initio study. J. Mater. Chem. A, 2020, 8(39): 20621
CrossRef ADS Google scholar
[138]
Y. Liu, X. Duan, H. J. Shin, S. Park, Y. Huang, X. Duan. Promises and prospects of two-dimensional transistors. Nature, 2021, 591(7848): 43
CrossRef ADS Google scholar
[139]
L. Cheng, Y. Liu. What limits the intrinsic mobility of electrons and holes in two dimensional metal dichalcogenides. J. Am. Chem. Soc., 2018, 140(51): 17895
CrossRef ADS Google scholar
[140]
S. K. Pandey, H. Alsalman, J. G. Azadani, N. Izquierdo, T. Low, S. A. Campbell. Controlled p-type substitutional doping in large-area monolayer WSe2 crystals grown by chemical vapor deposition. Nanoscale, 2018, 10(45): 21374
CrossRef ADS Google scholar
[141]
S. S. Han, J. H. Kim, C. Noh, J. H. Kim, E. Ji, J. Kwon, S. M. Yu, T. J. Ko, E. Okogbue, K. H. Oh, H. S. Chung, Y. J. Jung, G. H. Lee, Y. Jung. Horizontal-to-vertical transition of 2D layer orientation in low-temperature chemical vapor deposition-grown PtSe2 and its influences on electrical properties and device applications. ACS Appl. Mater. Interfaces, 2019, 11(14): 13598
CrossRef ADS Google scholar
[142]
Y. Gu, H. Cai, J. Dong, Y. Yu, A. N. Hoffman, C. Liu, A. D. Oyedele, Y. C. Lin, Z. Ge, A. A. Puretzky, G. Duscher, M. F. Chisholm, P. D. Rack, C. M. Rouleau, Z. Gai, X. Meng, F. Ding, D. B. Geohegan, K. Xiao. Two‐dimensional palladium diselenide with strong in‐plane optical anisotropy and high mobility grown by chemical vapor deposition. Adv. Mater., 2020, 32(19): 1906238
CrossRef ADS Google scholar
[143]
J. Wu, C. Qiu, H. Fu, S. Chen, C. Zhang, Z. Dou, C. Tan, T. Tu, T. Li, Y. Zhang, Z. Zhang, L. M. Peng, P. Gao, B. Yan, H. Peng. Low residual carrier concentration and high mobility in 2D semiconducting Bi2O2Se. Nano Lett., 2019, 19(1): 197
CrossRef ADS Google scholar
[144]
P. Kang, V. Michaud-Rioux, X. Kong, G. Yu, H. Guo. Calculated carrier mobility of h-BN/γ-InSe/h-BN van der Waals heterostructures. 2D Mater., 2017, 4(4): 045014
CrossRef ADS Google scholar
[145]
L. Xie, M. Liao, S. Wang, H. Yu, L. Du, J. Tang, J. Zhao, J. Zhang, P. Chen, X. Lu, G. Wang, G. Xie, R. Yang, D. Shi, G. Zhang. Graphene‐contacted ultrashort channel monolayer MoS2 transistors. Adv. Mater., 2017, 29(37): 1702522
CrossRef ADS Google scholar
[146]
A. Nourbakhsh, A. Zubair, R. N. Sajjad, A. Tavakkoli K. G, W. Chen, S. Fang, X. Ling, J. Kong, M. S. Dresselhaus, E. Kaxiras, K. K. Berggren, D. Antoniadis, T. Palacios. MoS2 field-effect transistor with sub-10 nm channel length. Nano Lett., 2016, 16(12): 7798
CrossRef ADS Google scholar
[147]
X. Zou, L. Liu, J. Xu, H. Wang, W. M. Tang. Few-layered MoS2 field-effect transistors with a vertical channel of sub-10 nm. ACS Appl. Mater. Interfaces, 2020, 12(29): 32943
CrossRef ADS Google scholar
[148]
H. Zhang, B. Shi, L. Xu, J. Yan, W. Zhao, Z. Zhang, Z. Zhang, J. Lu. Sub-5 nm monolayer MoS2 transistors toward low-power devices. ACS Appl. Electron. Mater., 2021, 3(4): 1560
CrossRef ADS Google scholar
[149]
F. Wu, H. Tian, Y. Shen, Z. Hou, J. Ren, G. Gou, Y. Sun, Y. Yang, T. L. Ren. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature, 2022, 603(7900): 259
CrossRef ADS Google scholar
[150]
A. Daus, S. Vaziri, V. Chen, Ç. Köroğlu, R. W. Grady, C. S. Bailey, H. R. Lee, K. Schauble, K. Brenner, E. Pop. High-performance flexible nanoscale transistors based on transition metal dichalcogenides. Nat. Electron., 2021, 4(7): 495
CrossRef ADS Google scholar
[151]
Q. Zhang, X. F. Wang, S. H. Shen, Q. Lu, X. Liu, H. Li, J. Zheng, C. P. Yu, X. Zhong, L. Gu, T. L. Ren, L. Jiao. Simultaneous synthesis and integration of two-dimensional electronic components. Nat. Electron., 2019, 2(4): 164
CrossRef ADS Google scholar
[152]
Z. Q. Fan, X. W. Jiang, J. Chen, J. W. Luo. Improving performances of in-plane transition-metal dichalcogenide Schottky barrier field-effect transistors. ACS Appl. Mater. Interfaces, 2018, 10(22): 19271
CrossRef ADS Google scholar
[153]
M. H. Chiu, H. L. Tang, C. C. Tseng, Y. Han, A. Aljarb, J. K. Huang, Y. Wan, J. H. Fu, X. Zhang, W. H. Chang, D. A. Muller, T. Takenobu, V. Tung, L. J. Li. Metal‐guided selective growth of 2D materials: Demonstration of a bottom‐up CMOS inverter. Adv. Mater., 2019, 31(18): 1900861
CrossRef ADS Google scholar
[154]
V. P. H. Hu, C. W. Su, Y. W. Lee, T. Y. Ho, C. C. Cheng, T. C. Chen, T. Y. T. Hung, J. F. Li, Y. G. Chen, L. J. Li. Energy-efficient monolithic 3-D SRAM cell with BEOL MoS2 FETs for SoC scaling. IEEE Trans. Electron Dev., 2020, 67(10): 4216
CrossRef ADS Google scholar
[155]
V.P. H. HuC. W. SuC.C. YuC.J. LiuC.Y. Weng, in: 2021 IEEE International Symposium on Circuits and Systems (ISCAS), 1–5 (IEEE)
[156]
C.S. PangN. ThakuriaS.K. GuptaZ.Chen, in: 2018 IEEE International Electron Devices Meeting (IEDM), 22.22. 21−22.22. 24 (IEEE)
[157]
C. Navarro, S. Karg, C. Marquez, S. Navarro, C. Convertino, C. Zota, L. Czornomaz, F. Gamiz. Capacitor-less dynamic random access memory based on a III–V transistor with a gate length of 14 nm. Nat. Electron., 2019, 2(9): 412
CrossRef ADS Google scholar
[158]
A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, E. Eleftheriou. Memory devices and applications for in-memory computing. Nat. Nanotechnol., 2020, 15(7): 529
CrossRef ADS Google scholar
[159]
Y. Wang, H. Tang, Y. Xie, X. Chen, S. Ma, Z. Sun, Q. Sun, L. Chen, H. Zhu, J. Wan, Z. Xu, D. W. Zhang, P. Zhou, W. Bao. An in-memory computing architecture based on two-dimensional semiconductors for multiply-accumulate operations. Nat. Commun., 2021, 12(1): 3347
CrossRef ADS Google scholar
[160]
S.WangX. LiuP.Zhou, The road for 2D semiconductors in the silicon age, Adv. Mater. 34(48), 2106886 (2021)
[161]
E.YoshidaT. Tanaka, A capacitorless 1T-DRAM technology using gate-induced drain-leakage (GIDL) current for low-power and high-speed embedded memory, IEEE Trans. Electron Dev. 53(4), 692 (2006)
[162]
G. Migliato Marega, Y. Zhao, A. Avsar, Z. Wang, M. Tripathi, A. Radenovic, A. Kis. Logic-in-memory based on an atomically thin semiconductor. Nature, 2020, 587(7832): 72
CrossRef ADS Google scholar
[163]
A. Di Bartolomeo, L. Genovese, F. Giubileo, L. Iemmo, G. Luongo, T. Foller, M. Schleberger. Hysteresis in the transfer characteristics of MoS2 transistors. 2D Mater., 2017, 5(1): 015014
CrossRef ADS Google scholar
[164]
T. Liu, D. Xiang, Y. Zheng, Y. Wang, X. Wang, L. Wang, J. He, L. Liu, W. Chen. Nonvolatile and programmable photodoping in MoTe2 for photoresist‐free complementary electronic devices. Adv. Mater., 2018, 30(52): 1804470
CrossRef ADS Google scholar
[165]
K. Tang, Y. Wang, C. Gong, C. Yin, M. Zhang, X. Wang, J. Xiong. Electronic and photoelectronic memristors based on 2D materials. Adv. Electron. Mater., 2022, 8(4): 2101099
CrossRef ADS Google scholar
[166]
S. G. Sarwat, B. Kersting, T. Moraitis, V. P. Jonnalagadda, A. Sebastian. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nat. Nanotechnol., 2022, 17(5): 507
CrossRef ADS Google scholar
[167]
V. K. Sangwan, H. S. Lee, H. Bergeron, I. Balla, M. E. Beck, K. S. Chen, M. C. Hersam. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature, 2018, 554(7693): 500
CrossRef ADS Google scholar
[168]
R. Xu, H. Jang, M. H. Lee, D. Amanov, Y. Cho, H. Kim, S. Park, H. Shin, D. Ham. Vertical MoS2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV. Nano Lett., 2019, 19(4): 2411
CrossRef ADS Google scholar
[169]
A. Karmakar, A. Al-Mahboob, C. E. Petoukhoff, O. Kravchyna, N. S. Chan, T. Taniguchi, K. Watanabe, K. M. Dani. Dominating interlayer resonant energy transfer in type-II 2D heterostructure. ACS Nano, 2022, 16(3): 3861
CrossRef ADS Google scholar
[170]
K. A. Zhang, T. N. Zhang, G. H. Cheng, T. X. Li, S. X. Wang, W. Wei, X. H. Zhou, W. W. Yu, Y. Sun, P. Wang, D. Zhang, C. G. Zeng, X. J. Wang, W. D. Hu, H. J. Fan, G. Z. Shen, X. Chen, X. F. Duan, K. Chang, N. Dai. Interlayer transition and infrared photodetection in atomically thin type-II MoTe2/MoS2 van der Waals heterostructures. ACS Nano, 2016, 10(3): 3852
CrossRef ADS Google scholar
[171]
H. Xue, Y. Y. Dai, W. Kim, Y. D. Wang, X. Y. Bai, M. Qi, K. Halonen, H. Lipsanen, Z. P. Sun. High photoresponsivity and broadband photodetection with a band-engineered WSe2/SnSe2 heterostructure. Nanoscale, 2019, 11(7): 3240
CrossRef ADS Google scholar
[172]
C. J. Zhou, S. Raju, B. Li, M. Chan, Y. Chai, C. Y. Yang. Self-driven metal−semiconductor−metal WSe2 photodetector with asymmetric contact geometries. Adv. Funct. Mater., 2018, 28(45): 1802954
CrossRef ADS Google scholar
[173]
J. Yuan, T. Sun, Z. X. Hu, W. Z. Yu, W. L. Ma, K. Zhang, B. Q. Sun, S. P. Lau, Q. L. Bao, S. H. Lin, S. J. Li. Wafer-scale fabrication of two-dimensional PtS2/PtSe2 heterojunctions for efficient and broad band photodetection. ACS Appl. Mater. Interfaces, 2018, 10(47): 40614
CrossRef ADS Google scholar
[174]
D. Wu, Y. E. Wang, L. H. Zeng, C. Jia, E. P. Wu, T. T. Xu, Z. F. Shi, Y. T. Tian, X. J. Li, Y. H. Tsang. Design of 2D layered PtSe2 heterojunction for the high-performance, room-temperature, broadband, infrared photodetector. ACS Photonics, 2018, 5(9): 3820
CrossRef ADS Google scholar
[175]
Y. Li, J. Fu, X. Y. Mao, C. Chen, H. Liu, M. Gong, H. L. Zeng. Enhanced bulk photovoltaic effect in two-dimensional ferroelectric CuInP2S6. Nat. Commun., 2021, 12(1): 5896
CrossRef ADS Google scholar
[176]
V. M. Fridkin. Bulk photovoltaic effect in noncentrosymmetric crystals. Crystallogr. Rep., 2001, 46(4): 654
CrossRef ADS Google scholar
[177]
A. M. Cook, B. M. Fregoso, F. de Juan, S. Coh, J. E. Moore. Design principles for shift current photovoltaics. Nat. Commun., 2017, 8(1): 14176
CrossRef ADS Google scholar
[178]
Y. J. Zhang, T. Ideue, M. Onga, F. Qin, R. Suzuki, A. Zak, R. Tenne, J. H. Smet, Y. Iwasa. Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes. Nature, 2019, 570(7761): 349
CrossRef ADS Google scholar
[179]
T.AkamatsuT. IdeueL.ZhouY.DongS.Kitamura M.YoshiiD. Y. YangM.OngaY.NakagawaK.Watanabe T.TaniguchiJ. LaurienzoJ.W. HuangZ.L. YeT.Morimoto H.T. YuanY. Iwasa, A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect, Science 372(6537), 68 (2021)
[180]
J. Jiang, Z. Z. Chen, Y. Hu, Y. Xiang, L. F. Zhang, Y. P. Wang, G. C. Wang, J. Shi. Flexo-photovoltaic effect in MoS2. Nat. Nanotechnol., 2021, 16(8): 894
CrossRef ADS Google scholar
[181]
Q. S. Wang, Y. Wen, K. M. Cai, R. Q. Cheng, L. Yin, Y. Zhang, J. Li, Z. X. Wang, F. Wang, F. M. Wang, T. A. Shifa, C. Jiang, H. Yang, J. He. Nonvolatile infrared memory in MoS2/PbS van der Waals heterostructures. Sci. Adv., 2018, 4(4): eaap7916
CrossRef ADS Google scholar
[182]
L. Yin, P. He, R. Q. Cheng, F. Wang, F. M. Wang, Z. X. Wang, Y. Wen, J. He. Robust trap effect in transition metal dichalcogenides for advanced multifunctional devices. Nat. Commun., 2019, 10(1): 4133
CrossRef ADS Google scholar
[183]
M. O’Neil, J. Marohn, G. McLendon. Dynamics of electron-hole pair recombination in semiconductor clusters. J. Phys. Chem., 1990, 94(10): 4356
CrossRef ADS Google scholar
[184]
Y. C. Jiang, A. P. He, R. Zhao, Y. Chen, G. Z. Liu, H. Lu, J. L. Zhang, Q. Zhang, Z. Wang, C. Zhao, M. S. Long, W. D. Hu, L. Wang, Y. P. Qi, J. Gao, Q. Y. Wu, X. T. Ge, J. Q. Ning, A. T. S. Wee, C. W. Qiu. Coexistence of photoelectric conversion and storage in van der Waals heterojunctions. Phys. Rev. Lett., 2021, 127(21): 217401
CrossRef ADS Google scholar
[185]
J. Junquera, P. Ghosez. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature, 2003, 422(6931): 506
CrossRef ADS Google scholar
[186]
D. D. Fong, G. B. Stephenson, S. K. Streiffer, J. A. Eastman, O. Auciello, P. H. Fuoss, C. Thompson. Ferroelectricity in ultrathin perovskite films. Science, 2004, 304(5677): 1650
CrossRef ADS Google scholar
[187]
S. N. Shirodkar, U. V. Waghmare. Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2. Phys. Rev. Lett., 2014, 112(15): 157601
CrossRef ADS Google scholar
[188]
S. G. Yuan, X. Luo, H. L. Chan, C. C. Xiao, Y. W. Dai, M. H. Xie, J. H. Hao. Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun., 2019, 10(1): 1775
CrossRef ADS Google scholar
[189]
Z. Y. Fei, W. J. Zhao, T. A. Palomaki, B. S. Sun, M. K. Miller, Z. Y. Zhao, J. Q. Yan, X. D. Xu, D. H. Cobden. Ferroelectric switching of a two-dimensional metal. Nature, 2018, 560(7718): 336
CrossRef ADS Google scholar
[190]
W. H. Huang, F. Wang, L. Yin, R. Q. Cheng, Z. X. Wang, M. G. Sendeku, J. J. Wang, N. N. Li, Y. Y. Yao, J. He. Gate-coupling-enabled robust hysteresis for nonvolatile memory and programmable rectifier in van der Waals ferroelectric heterojunctions. Adv. Mater., 2020, 32(14): 1908040
CrossRef ADS Google scholar
[191]
Q. Zhang, H. Xiong, Q. F. Wang, L. P. Xu, M. H. Deng, J. Z. Zhang, D. Fuchs, W. W. Li, L. Y. Shang, Y. W. Li, Z. G. Hu, J. H. Chu. Tunable multi-bit nonvolatile memory based on ferroelectric field-effect transistors. Adv. Electron. Mater., 2022, 8(5): 2101189
CrossRef ADS Google scholar
[192]
J. Jo, C. Shin. Negative capacitance field effect transistor with hysteresis-free sub-60-mV/decade switching. IEEE Electron Device Lett., 2016, 37(3): 245
CrossRef ADS Google scholar
[193]
X. Q. Liu, R. R. Liang, G. Y. Gao, C. F. Pan, C. S. Jiang, Q. Xu, J. Luo, X. M. Zou, Z. Y. Yang, L. Liao, Z. L. Wang. MoS2 negative-capacitance field-effect transistors with subthreshold swing below the physics limit. Adv. Mater., 2018, 30(28): 1800932
CrossRef ADS Google scholar
[194]
F. Wang, J. Liu, W. H. Huang, R. Q. Cheng, L. Yin, J. J. Wang, M. G. Sendeku, Y. Zhang, X. Y. Zhan, C. X. Shan, Z. X. Wang, J. He. Subthermionic field-effect transistors with sub-5 nm gate lengths based on van der Waals ferroelectric heterostructures. Sci. Bull. (Beijing), 2020, 65(17): 1444
CrossRef ADS Google scholar
[195]
Y. Wang, X. Y. Bai, J. W. Chu, H. B. Wang, G. F. Rao, X. Q. Pan, X. C. Du, K. Hu, X. P. Wang, C. H. Gong, C. J. Yin, C. Yang, C. Y. Yan, C. Y. Wu, Y. Shuai, X. F. Wang, M. Liao, J. Xiong. Record-low Subthreshold-Swing negative-capacitance 2D field-effect transistors. Adv. Mater., 2020, 32(46): 2005353
CrossRef ADS Google scholar
[196]
C. G. Qiu, F. Liu, L. Xu, B. Deng, M. M. Xiao, J. Si, L. Lin, Z. Y. Zhang, J. Wang, H. Guo, H. L. Peng, L. M. Peng. Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches. Science, 2018, 361(6400): 387
CrossRef ADS Google scholar
[197]
A. Weston, E. G. Castanon, V. Enaldiev, F. Ferreira, S. Bhattacharjee, S. G. Xu, H. Corte-Leon, Z. F. Wu, N. Clark, A. Summerfield, T. Hashimoto, Y. Z. Gao, W. D. Wang, M. Hamer, H. Read, L. Fumagalli, A. V. Kretinin, S. J. Haigh, O. Kazakova, A. K. Geim, V. I. Fal’ko, R. Gorbachev. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat. Nanotechnol., 2022, 17(4): 390
CrossRef ADS Google scholar
[198]
Z. Wen, C. Li, D. Wu, A. D. Li, N. B. Ming. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat. Mater., 2013, 12(7): 617
CrossRef ADS Google scholar
[199]
T. Li, P. Sharma, A. Lipatov, H. Lee, J. W. Lee, M. Y. Zhuravlev, T. R. Paudel, Y. A. Genenko, C. B. Eom, E. Y. Tsymbal, A. Sinitskii, A. Gruverman. Polarization-mediated modulation of electronic and transport properties of hybrid MoS2−BaTiO3−SrRuO3 tunnel junctions. Nano Lett., 2017, 17(2): 922
CrossRef ADS Google scholar
[200]
P. Chaudhary, P. Buragohain, M. Kozodaev, S. Zarubin, V. Mikheev, A. Chouprik, A. Lipatov, A. Sinitskii, A. Zenkevich, A. Gruverman. Electroresistance effect in MoS2−Hf0.5Zr0.5O2 heterojunctions. Appl. Phys. Lett., 2021, 118(8): 083106
CrossRef ADS Google scholar
[201]
M. H. Park, Y. H. Lee, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, J. Muller, A. Kersch, U. Schroeder, T. Mikolajick, C. S. Hwang. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv. Mater., 2015, 27(11): 1811
CrossRef ADS Google scholar
[202]
A. Chernikova, M. Kozodaev, A. Markeev, D. Negrov, M. Spiridonov, S. Zarubin, O. Bak, P. Buragohain, H. Lu, E. Suvorova, A. Gruverman, A. Zenkevich. Ultrathin Hf0.5Zr0.5O2 ferroelectric films on Si. ACS Appl. Mater. Interfaces, 2016, 8(11): 7232
CrossRef ADS Google scholar
[203]
F.Ambriz-VargasG.KolhatkarM.Broyer A.Hadj-YoussefR.NouarA.SarkissianR.ThomasC.Gomez-YanezM.A. GauthierA.Ruediger, A complementary metal oxide semiconductor process-compatible ferroelectric tunnel junction, ACS Appl. Mater. Interfaces 9(15), 13262 (2017)
[204]
A. Chouprik, A. Chernikova, A. Markeev, V. Mikheev, D. Negrov, M. Spiridonov, S. Zarubin, A. Zenkevich. Electron transport across ultrathin ferroelectric Hf0.5Zr0.5O2 films on Si. Microelectron. Eng., 2017, 178: 250
CrossRef ADS Google scholar
[205]
H. Ryu, H. N. Wu, F. B. Rao, W. J. Zhu. Ferroelectric tunneling junctions based on aluminum oxide/zirconium-doped hafnium oxide for neuromorphic computing. Sci. Rep., 2019, 9(1): 20383
CrossRef ADS Google scholar
[206]
J. Xiao, Y. Wang, H. Wang, C. D. Pemmaraju, S. Q. Wang, P. Muscher, E. J. Sie, C. M. Nyby, T. P. Devereaux, X. F. Qian, X. Zhang, A. M. Lindenberg. Berry curvature memory through electrically driven stacking transitions. Nat. Phys., 2020, 16(10): 1028
CrossRef ADS Google scholar
[207]
X. R. Wang, K. Yasuda, Y. Zhang, S. Liu, K. Watanabe, T. Taniguchi, J. Hone, L. Fu, P. Jarillo-Herrero. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol., 2022, 17(4): 367
CrossRef ADS Google scholar
[208]
S. Datta, B. Das. Electronic analog of the electrooptic modulator. Appl. Phys. Lett., 1990, 56(7): 665
CrossRef ADS Google scholar
[209]
M. Hossain, B. Qin, B. Li, X. D. Duan. Synthesis, characterization, properties and applications of two-dimensional magnetic materials. Nano Today, 2022, 42: 101338
CrossRef ADS Google scholar
[210]
A. Dankert, S. P. Dash. Electrical gate control of spin current in van der Waals heterostructures at room temperature. Nat. Commun., 2017, 8(1): 16093
CrossRef ADS Google scholar
[211]
L. A. Benítez, J. F. Sierra, W. Savero Torres, A. Arrighi, F. Bonell, M. V. Costache, S. O. Valenzuela. Strongly anisotropic spin relaxation in graphene-transition metal dichalcogenide heterostructures at room temperature. Nat. Phys., 2018, 14(3): 303
CrossRef ADS Google scholar
[212]
F. J. Jedema, A. T. Filip, B. J. van Wees. Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature, 2001, 410(6826): 345
CrossRef ADS Google scholar
[213]
S. O. Valenzuela. Nonlocal electronic spin detection, spin accumulation and the spin Hall effect. Int. J. Mod. Phys. B, 2009, 23(11): 2413
CrossRef ADS Google scholar
[214]
B. Raes, A. W. Cummings, F. Bonell, M. V. Costache, J. F. Sierra, S. Roche, S. O. Valenzuela. Spin precession in anisotropic media. Phys. Rev. B, 2017, 95(8): 085403
CrossRef ADS Google scholar
[215]
S. W. Jiang, L. Z. Li, Z. F. Wang, J. Shan, K. F. Mak. Spin tunnel field-effect transistors based on two-dimensional van der Waals heterostructures. Nat. Electron., 2019, 2(4): 159
CrossRef ADS Google scholar
[216]
H. L. Lin, F. G. Yan, C. Hu, Q. S. Lv, W. K. Zhu, Z. A. Wang, Z. M. Wei, K. Chang, K. Y. Wang. Spin-valve effect in Fe3GeTe2/MoS2/Fe3GeTe2 van der Waals heterostructures. ACS Appl. Mater. Interfaces, 2020, 12(39): 43921
CrossRef ADS Google scholar
[217]
W. Yang, Y. Cao, J. C. Han, X. Y. Lin, X. H. Wang, G. D. Wei, C. Lv, A. Bournel, W. S. Zhao. Spin-filter induced large magnetoresistance in 2D van der Waals magnetic tunnel junctions. Nanoscale, 2021, 13(2): 862
CrossRef ADS Google scholar
[218]
K. Zollner, M. D. Petrovic, K. Dolui, P. Plechac, B. K. Nikolic, J. Fabian. Scattering-induced and highly tunable by gate damping-like spin−orbit torque in graphene doubly proximitized by two-dimensional magnet Cr2Ge2Te6 and monolayer WS2. Phys. Rev. Res., 2020, 2(4): 043057
CrossRef ADS Google scholar
[219]
R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, L. W. Molenkamp. Injection and detection of a spin-polarized current in a light-emitting diode. Nature, 1999, 402(6763): 787
CrossRef ADS Google scholar
[220]
Y. Ye, J. Xiao, H. L. Wang, Z. L. Ye, H. Y. Zhu, M. Zhao, Y. Wang, J. H. Zhao, X. B. Yin, X. Zhang. Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide. Nat. Nanotechnol., 2016, 11(7): 598
CrossRef ADS Google scholar
[221]
D. Zhong, K. L. Seyler, X. Y. Linpeng, N. P. Wilson, T. Taniguchi, K. Watanabe, M. A. McGuire, K. M. C. Fu, D. Xiao, W. Yao, X. D. Xu. Layer-resolved magnetic proximity effect in van der Waals heterostructures. Nat. Nanotechnol., 2020, 15(3): 187
CrossRef ADS Google scholar
[222]
J. Pu, T. Takenobu. Monolayer transition metal dichalcogenides as light sources. Adv. Mater., 2018, 30(33): 1707627
CrossRef ADS Google scholar
[223]
Y. J. Zhang, T. Oka, R. Suzuki, J. T. Ye, Y. Iwasa. Electrically switchable chiral light-emitting transistor. Science, 2014, 344(6185): 725
CrossRef ADS Google scholar
[224]
J. Lee, Z. F. Wang, H. C. Xie, K. F. Mak, J. Shan. Valley magnetoelectricity in single-layer MoS2. Nat. Mater., 2017, 16(9): 887
CrossRef ADS Google scholar
[225]
J. Son, K. H. Kim, Y. H. Ahn, H. W. Lee, J. Lee. Strain engineering of the Berry curvature dipole and valley magnetization in monolayer MoS2. Phys. Rev. Lett., 2019, 123(3): 036806
CrossRef ADS Google scholar
[226]
Y. Y. Chen, J. Q. Ma, Z. Y. Liu, J. Z. Li, X. F. Duan, D. H. Li. Manipulation of valley pseudospin by selective spin injection in chiral two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures. ACS Nano, 2020, 14(11): 15154
CrossRef ADS Google scholar
[227]
J. Pu, W. J. Zhang, H. Matsuoka, Y. Kobayashi, Y. Takaguchi, Y. Miyata, K. Matsuda, Y. Miyauchi, T. Takenobu. Room-temperature chiral light-emitting diode based on strained monolayer semiconductors. Adv. Mater., 2021, 33(36): 2100601
CrossRef ADS Google scholar
[228]
J. R. Schaibley, H. Y. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, X. D. Xu. Valleytronics in 2D materials. Nat. Rev. Mater., 2016, 1(11): 16055
CrossRef ADS Google scholar
[229]
A. Rycerz, J. Tworzydlo, C. W. J. Beenakker. Valley filter and valley valve in graphene. Nat. Phys., 2007, 3(3): 172
CrossRef ADS Google scholar
[230]
J. Lee, K. F. Mak, J. Shan. Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotechnol., 2016, 11(5): 421
CrossRef ADS Google scholar
[231]
C. H. Jin, J. Kim, M. I. B. Utama, E. C. Regan, H. Kleemann, H. Cai, Y. X. Shen, M. J. Shinner, A. Sengupta, K. Watanabe, T. Taniguchi, S. Tongay, A. Zettl, F. Wang. Imaging of pure spin-valley diffusion current in WS2−WSe2 heterostructures. Science, 2018, 360(6391): 893
CrossRef ADS Google scholar
[232]
D. Unuchek, A. Ciarrocchi, A. Avsar, Z. Sun, K. Watanabe, T. Taniguchi, A. Kis. Valley-polarized exciton currents in a van der Waals heterostructure. Nat. Nanotechnol., 2019, 14(12): 1104
CrossRef ADS Google scholar
[233]
L. F. Li, L. Shao, X. W. Liu, A. Y. Gao, H. Wang, B. J. Zheng, G. Z. Hou, K. Shehzad, L. W. Yu, F. Miao, Y. Shi, Y. Xu, X. M. Wang. Room-temperature valleytronic transistor. Nat. Nanotechnol., 2020, 15(9): 743
CrossRef ADS Google scholar
[234]
C.Y. JiangA. RasmitaH.MaQ.H. TanZ.W. Zhang Z.M. HuangS. LaiN.Z. WangS.LiuX.Liu T.YuQ.H. Xiong W.B. Gao, A room-temperature gate-tunable bipolar valley Hall effect in molybdenum disulfide/tungsten diselenide heterostructures, Nat. Electron. 5(1), 23 (2021)
[235]
J. Ingla-Aynés, F. Herling, J. Fabian, L. E. Hueso, F. Casanova. Electrical control of valley-Zeeman spin-orbit-coupling-induced spin precession at room temperature. Phys. Rev. Lett., 2021, 127(4): 047202
CrossRef ADS Google scholar
[236]
M. S. Hossain, M. K. Ma, K. A. Villegas-Rosales, Y. J. Chung, L. N. Pfeiffer, K. W. West, K. W. Baldwin, M. Shayegan. Spontaneous valley polarization of itinerant electrons. Phys. Rev. Lett., 2021, 127(11): 116601
CrossRef ADS Google scholar
[237]
B. Huang, M. A. McGuire, A. F. May, D. Xiao, P. Jarillo-Herrero, X. D. Xu. Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures. Nat. Mater., 2020, 19(12): 1276
CrossRef ADS Google scholar
[238]
J. Lee, W. Heo, M. Cha, K. Watanabe, T. Taniguchi, J. Kim, S. Cha, D. Kim, M. H. Jo, H. Choi. Ultrafast non-excitonic valley Hall effect in MoS2/WTe2 heterobilayers. Nat. Commun., 2021, 12(1): 1635
CrossRef ADS Google scholar
[239]
Y. K. Luo, J. S. Xu, T. C. Zhu, G. Z. Wu, E. J. McCormick, W. B. Zhan, M. R. Neupane, R. K. Kawakami. Opto-valleytronic spin injection in monolayer MoS2/few-layer graphene hybrid spin valves. Nano Lett., 2017, 17(6): 3877
CrossRef ADS Google scholar
[240]
S. Cha, M. Noh, J. Kim, J. Son, H. Bae, D. Lee, H. Kim, J. Lee, H. S. Shin, S. Sim, S. Yang, S. Lee, W. Shim, C. H. Lee, M. H. Jo, J. S. Kim, D. Kim, H. Choi. Generation, transport and detection of valley-locked spin photocurrent in WSe2-graphene-Bi2Se3 heterostructures. Nat. Nanotechnol., 2018, 13(10): 910
CrossRef ADS Google scholar
[241]
H. T. Yuan, X. Q. Wang, B. Lian, H. J. Zhang, X. F. Fang, B. Shen, G. Xu, Y. Xu, S. C. Zhang, H. Y. Hwang, Y. Cui. Generation and electric control of spin−valley-coupled circular photogalvanic current in WSe2. Nat. Nanotechnol., 2014, 9(10): 851
CrossRef ADS Google scholar
[242]
A. Rasmita, C. Y. Jiang, H. Ma, Z. R. Ji, R. Agarwal, W. B. Gao. Tunable geometric photocurrent in van der Waals heterostructure. Optica, 2020, 7(9): 1204
CrossRef ADS Google scholar
[243]
F. Sattari, S. Mirershadi. Effect of the strain on spin-valley transport properties in MoS2 superlattice. Sci. Rep., 2021, 11(1): 17617
CrossRef ADS Google scholar
[244]
S. N. Miao, T. M. Wang, X. Huang, D. X. Chen, Z. Lian, C. Wang, M. Blei, T. Taniguchi, K. Watanabe, S. Tongay, Z. H. Wang, D. Xiao, Y. T. Cui, S. F. Shi. Strong interaction between interlayer excitons and correlated electrons in WSe2/WS2 moire superlattice. Nat. Commun., 2021, 12(1): 3608
CrossRef ADS Google scholar
[245]
D. Huang, J. Choi, C. K. Shih, X. Q. Li. Excitons in semiconductor moire superlattices. Nat. Nanotechnol., 2022, 17(3): 227
CrossRef ADS Google scholar
[246]
C. H. Bao, P. Z. Tang, D. Sun, S. Y. Zhou. Light-induced emergent phenomena in 2D materials and topological materials. Nat. Rev. Phys., 2021, 4(1): 33
CrossRef ADS Google scholar
[247]
N. P. Wilson, W. Yao, J. Shan, X. D. Xu. Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature, 2021, 599(7885): 383
CrossRef ADS Google scholar
[248]
Y. Y. Wang, F. P. Li, W. Wei, B. B. Huang, Y. Dai. Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides. Front. Phys., 2021, 16(1): 13501
CrossRef ADS Google scholar
[249]
S. Klimmer, O. Ghaebi, Z. Y. Gan, A. George, A. Turchanin, G. Cerullo, G. Soavi. All-optical polarization and amplitude modulation of second-harmonic generation in atomically thin semiconductors. Nat. Photonics, 2021, 15(11): 837
CrossRef ADS Google scholar
[250]
D. Wijethunge, L. Zhang, C. Tang, A. Du. Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching. Front. Phys., 2020, 15(6): 63504
CrossRef ADS Google scholar
[251]
Q. Yun, L. Li, Z. Hu, Q. Lu, B. Chen, H. Zhang. Layered transition metal dichalcogenide‐based nanomaterials for electrochemical energy storage. Adv. Mater., 2020, 32(1): 1903826
CrossRef ADS Google scholar
[252]
E. Cha, M. D. Patel, J. Park, J. Hwang, V. Prasad, K. Cho. MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li–S batteries. Nat. Nanotechnol., 2018, 13(4): 337
CrossRef ADS Google scholar
[253]
J. Yang, A. R. Mohmad, Y. Wang, R. Fullon, X. Song, F. Zhao, I. Bozkurt, M. Augustin, E. J. Santos, H. S. Shin, W. Zhang, D. Voiry, H. Y. Jeong, M. Chhowalla. Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nat. Mater., 2019, 18(12): 1309
CrossRef ADS Google scholar
[254]
Y. Ouyang, C. Ling, Q. Chen, Z. Wang, L. Shi, J. Wang. Activating inert basal planes of MoS2 for hydrogen evolution reaction through the formation of different intrinsic defects. Chem. Mater., 2016, 28(12): 4390
CrossRef ADS Google scholar
[255]
Y. He, P. Tang, Z. Hu, Q. He, C. Zhu, L. Wang, Q. Zeng, P. Golani, G. Gao, W. Fu, Z. Huang, C. Gao, J. Xia, X. Wang, X. Wang, C. Zhu, Q. M. Ramasse, A. Zhang, B. An, Y. Zhang, S. Martí-Sánchez, J. R. Morante, L. Wang, B. K. Tay, B. I. Yakobson, A. Trampert, H. Zhang, M. Wu, Q. J. Wang, J. Arbiol, Z. Liu. Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction. Nat. Commun., 2020, 11(1): 57
CrossRef ADS Google scholar
[256]
W. Y. Chen, X. Jiang, S. N. Lai, D. Peroulis, L. Stanciu. Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat. Commun., 2020, 11(1): 1302
CrossRef ADS Google scholar
[257]
W. Su, S. Zhang, C. Liu, Q. Tian, X. Liu, K. Li, Y. Lv, L. Liao, X. Zou. Interlayer transition induced infrared response in ReS2/2D Perovskite van der Waals heterostructure photodetector. Nano Lett., 2022, 22(24): 10192
CrossRef ADS Google scholar
[258]
Y. Wen, P. He, Y. Yao, Y. Zhang, R. Cheng, L. Yin, N. Li, J. Li, J. Wang, Z. Wang, C. Liu, X. Fang, C. Jiang, Z. Wei, J. He. Bridging the van der Waals interface for advanced optoelectronic devices. Adv. Mater., 2020, 32(7): 1906874
CrossRef ADS Google scholar
[259]
Y. Wen, P. He, Q. Wang, Y. Yao, Y. Zhang, S. Hussain, Z. Wang, R. Cheng, L. Yin, M. Getaye Sendeku, F. Wang, C. Jiang, J. He. Gapless van der Waals heterostructures for infrared optoelectronic devices. ACS Nano, 2019, 13(12): 14519
CrossRef ADS Google scholar
[260]
Y. Wen, L. Yin, P. He, Z. Wang, X. Zhang, Q. Wang, T. A. Shifa, K. Xu, F. Wang, X. Zhan, F. Wang, C. Jiang, J. He. Integrated high-performance infrared phototransistor arrays composed of nonlayered PbS–MoS2 heterostructures with edge contacts. Nano Lett., 2016, 16(10): 6437
CrossRef ADS Google scholar
[261]
Z. Wang, H. Xia, P. Wang, X. Zhou, C. Liu, Q. Zhang, F. Wang, M. Huang, S. Chen, P. Wu, Y. Chen, J. Ye, S. Huang, H. Yan, L. Gu, J. Miao, T. Li, X. Chen, W. Lu, P. Zhou, W. Hu. Controllable doping in 2D layered materials. Adv. Mater., 2021, 33(48): 2104942
CrossRef ADS Google scholar
[262]
X. Zhang, B. Liu, L. Gao, H. Yu, X. Liu, J. Du, J. Xiao, Y. Liu, L. Gu, Q. Liao, Z. Kang, Z. Zhang, Y. Zhang. Near-ideal van der Waals rectifiers based on all-two-dimensional Schottky junctions. Nat. Commun., 2021, 12(1): 1522
CrossRef ADS Google scholar
[263]
Y. Wen, Z. Liu, Y. Zhang, C. Xia, B. Zhai, X. Zhang, G. Zhai, C. Shen, P. He, R. Cheng, L. Yin, Y. Yao, M. Getaye Sendeku, Z. Wang, X. Ye, C. Liu, C. Jiang, C. Shan, Y. Long, J. He. Tunable room-temperature ferromagnetism in two-dimensional Cr2Te3. Nano Lett., 2020, 20(5): 3130
CrossRef ADS Google scholar
[264]
Z. Guo, L. Wang, M. Han, E. Zhao, L. Zhu, W. Guo, J. Tan, B. Liu, X. Q. Chen, J. Lin. One-step growth of bilayer 2H–1T′ MoTe2 van der Waals heterostructures with interlayer-coupled resonant phonon vibration. ACS Nano, 2022, 16(7): 11268
CrossRef ADS Google scholar
[265]
M. Bian, L. Zhu, X. Wang, J. Choi, R. V. Chopdekar, S. Wei, L. Wu, C. Huai, A. Marga, Q. Yang, Y. C. Li, F. Yao, T. Yu, S. A. Crooker, X. M. Cheng, R. F. Sabirianov, S. Zhang, J. Lin, Y. Hou, H. Zeng. Dative epitaxy of commensurate monocrystalline covalent van der Waals moiré supercrystal. Adv. Mater., 2022, 34(17): 2200117
CrossRef ADS Google scholar
[266]
L. Zhang, G. Wang, Y. Zhang, Z. Cao, Y. Wang, T. Cao, C. Wang, B. Cheng, W. Zhang, X. Wan, J. Lin, S. J. Liang, F. Miao. Tuning electrical conductance in bilayer MoS2 through defect-mediated interlayer chemical bonding. ACS Nano, 2020, 14(8): 10265
CrossRef ADS Google scholar
[267]
L. Tang, R. Xu, J. Tan, Y. Luo, J. Zou, Z. Zhang, R. Zhang, Y. Zhao, J. Lin, X. Zou, B. Liu, H. M. Cheng. Modulating electronic structure of monolayer transition metal dichalcogenides by substitutional Nb‐doping. Adv. Funct. Mater., 2021, 31(5): 2006941
CrossRef ADS Google scholar
[268]
J. Zou, Z. Cai, Y. Lai, J. Tan, R. Zhang, S. Feng, G. Wang, J. Lin, B. Liu, H. M. Cheng. Doping concentration modulation in vanadium-doped monolayer molybdenum disulfide for synaptic transistors. ACS Nano, 2021, 15(4): 7340
CrossRef ADS Google scholar
[269]
Q. Lv, J. Tan, Z. Wang, L. Yu, B. Liu, J. Lin, J. Li, Z. H. Huang, F. Kang, R. Lv. Femtomolar-level molecular sensing of monolayer tungsten diselenide induced by heteroatom doping with long-term stability. Adv. Funct. Mater., 2022, 32(34): 2200273
CrossRef ADS Google scholar
[270]
J. Lin, J. Zhou, S. Zuluaga, P. Yu, M. Gu, Z. Liu, S. T. Pantelides, K. Suenaga. Anisotropic ordering in 1T′ molybdenum and tungsten ditelluride layers alloyed with sulfur and selenium. ACS Nano, 2018, 12(1): 894
CrossRef ADS Google scholar
[271]
P. Yu, J. Lin, L. Sun, Q. L. Le, X. Yu, G. Gao, C. H. Hsu, D. Wu, T. R. Chang, Q. Zeng, F. Liu, Q. J. Wang, H. T. Jeng, H. Lin, A. Trampert, Z. Shen, K. Suenaga, Z. Liu. Metal-semiconductor phase-transition in WSe2(1−x)Te2x monolayer. Adv. Mater., 2017, 29(4): 1603991
CrossRef ADS Google scholar
[272]
Y. Gong, Z. Liu, A. R. Lupini, G. Shi, J. Lin, S. Najmaei, Z. Lin, A. L. Elías, A. Berkdemir, G. You, H. Terrones, M. Terrones, R. Vajtai, S. T. Pantelides, S. J. Pennycook, J. Lou, W. Zhou, P. M. Ajayan. Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. Nano Lett., 2014, 14(2): 442
CrossRef ADS Google scholar
[273]
M. Cheng, J. Yang, X. Li, H. Li, R. Du, J. Shi, J. He. Improving the device performances of two-dimensional semiconducting transition metal dichalcogenides: Three strategies. Front. Phys., 2022, 17(6): 63601
CrossRef ADS Google scholar
[274]
P. Luo, C. Liu, J. Lin, X. Duan, W. Zhang, C. Ma, Y. Lv, X. Zou, Y. Liu, F. Schwierz, W. Qin, L. Liao, J. He, X. Liu. Molybdenum disulfide transistors with enlarged van der Waals gaps at their dielectric interface via oxygen accumulation. Nat. Electron., 2022, 5(12): 849
CrossRef ADS Google scholar
[275]
X. Zhang, H. Yu, W. Tang, X. Wei, L. Gao, M. Hong, Q. Liao, Z. Kang, Z. Zhang, Y. Zhang. All‐van‐der-Waals barrier-free contacts for high-mobility transistors. Adv. Mater., 2022, 34(34): 2109521
CrossRef ADS Google scholar
[276]
X. Zhang, Z. Kang, L. Gao, B. Liu, H. Yu, Q. Liao, Z. Zhang, Y. Zhang. Molecule-upgraded van der waals contacts for Schottky‐barrier-free electronics. Adv. Mater., 2021, 33(45): 2104935
CrossRef ADS Google scholar
[277]
W. Huang, F. Wang, L. Yin, R. Cheng, Z. Wang, M. G. Sendeku, J. Wang, N. Li, Y. Yao, J. He. Gate‐coupling‐enabled robust hysteresis for nonvolatile memory and programmable rectifier in van der Waals ferroelectric heterojunctions. Adv. Mater., 2020, 32(14): 1908040
CrossRef ADS Google scholar
[278]
Z. Yang, L. Liao, F. Gong, F. Wang, Z. Wang, X. Liu, X. Xiao, W. Hu, J. He, X. Duan. WSe2/GeSe heterojunction photodiode with giant gate tunability. Nano Energy, 2018, 49: 103
CrossRef ADS Google scholar
[279]
J. Cao, Z. Wang, X. Zhan, Q. Wang, M. Safdar, Y. Wang, J. He. Vertical SnSe nanorod arrays: From controlled synthesis and growth mechanism to thermistor and photoresistor. Nanotechnology, 2014, 25(10): 105705
CrossRef ADS Google scholar
[280]
M. Mirza, J. Wang, L. Wang, J. He, C. Jiang. Response enhancement mechanism of NO2 gas sensing in ultrathin pentacene field-effect transistors. Org. Electron., 2015, 24: 96
CrossRef ADS Google scholar

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2018YFA0703700, J.H.), the National Natural Science Foundation of China (Nos. 91964203, J.H., 62004142, Y.W., 62134001, 62104171, R.C., 62104172, L.Y., 62174122, Y.G. and 11774269, S.Y.), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB44000000, J.H.), the Natural Science Foundation of Hubei Province, China (Nos. 2021CFB037, R.C. and 2020CFA041, S.Y.), the Fundamental Research Funds for the Central Universities (No. 2042021kf0067, R.C.), and the Special Fund of Hubei Luojia Laboratory.

RIGHTS & PERMISSIONS

2023 The Authors
AI Summary AI Mindmap
PDF(34183 KB)

Accesses

Citations

Detail

Sections
Recommended

/