Itinerant ferromagnetism entrenched by the anisotropy of spin−orbit coupling in a dipolar Fermi gas
Xue-Jing Feng, Jin-Xin Li, Lu Qin, Ying-Ying Zhang, ShiQiang Xia, Lu Zhou, ChunJie Yang, ZunLue Zhu, Wu-Ming Liu, Xing-Dong Zhao
Itinerant ferromagnetism entrenched by the anisotropy of spin−orbit coupling in a dipolar Fermi gas
We investigate the itinerant ferromagnetism in a dipolar Fermi atomic system with the anisotropic spin−orbit coupling (SOC), which is traditionally explored with isotropic contact interaction. We first study the ferromagnetism transition boundaries and the properties of the ground states through the density and spin-flip distribution in momentum space, and we find that both the anisotropy and the magnitude of the SOC play an important role in this process. We propose a helpful scheme and a quantum control method which can be applied to conquering the difficulties of previous experimental observation of itinerant ferromagnetism. Our further study reveals that exotic Fermi surfaces and an abnormal phase region can exist in this system by controlling the anisotropy of SOC, which can provide constructive suggestions for the research and the application of a dipolar Fermi gas. Furthermore, we also calculate the ferromagnetism transition temperature and novel distributions in momentum space at finite temperature beyond the ground states from the perspective of experiment.
itinerant ferromagnetism / spin−orbit coupling / cold atom / quantum simulation / dipolar Fermi gas / dipole−dipole interaction
[1] |
D.Wagner, Introduction to the Theory of Magnetism: International Series of Monographs in Natural Philosophy, Vol. 48, Elsevier, 2013
|
[2] |
J.Kübler, Theory of Itinerant Electron Magnetism, Vol. 106, Oxford University Press, 2017
|
[3] |
J. Zak. Dynamics of electrons in solids in external fields. Phys. Rev., 1968, 168(3): 686
CrossRef
ADS
Google scholar
|
[4] |
F. Bloch. Bemerkung zur Elektronentheorie des Ferromagnetismus und der elektrischen Leitfähigkeit. Eur. Phys. J. A, 1929, 57(7–8): 545
CrossRef
ADS
Google scholar
|
[5] |
S. Misawa. Ferromagnetism of an electron gas. Phys. Rev., 1965, 140(5A): A1645
CrossRef
ADS
Google scholar
|
[6] |
E. C. Stoner. Collective electron ferronmagnetism. Proc. R. Soc. Lond. A, 1938, 165(922): 372
CrossRef
ADS
Google scholar
|
[7] |
E. C. Stoner. LXXX. Atomic moments in ferromagnetic metals and alloys with non-ferromagnetic elements. Lond. Edinb. Dublin Philos. Mag. J. Sci., 1933, 15(101): 1018
CrossRef
ADS
Google scholar
|
[8] |
R. A. Duine, A. H. MacDonald. Itinerant ferromagnetism in an ultracold atom Fermi gas. Phys. Rev. Lett., 2005, 95(23): 230403
CrossRef
ADS
Google scholar
|
[9] |
S. Pilati, G. Bertaina, S. Giorgini, M. Troyer. Itinerant ferromagnetism of a repulsive atomic Fermi gas: A quantum Monte Carlo study. Phys. Rev. Lett., 2010, 105(3): 030405
CrossRef
ADS
Google scholar
|
[10] |
L. He, X. G. Huang. Nonperturbative effects on the ferromagnetic transition in repulsive Fermi gases. Phys. Rev. A, 2012, 85(4): 043624
CrossRef
ADS
Google scholar
|
[11] |
L. He, X. J. Liu, X. G. Huang, H. Hu. Stoner ferromagnetism of a strongly interacting Fermi gas in the quasirepulsive regime. Phys. Rev. A, 2016, 93(6): 063629
CrossRef
ADS
Google scholar
|
[12] |
L. He. Finite range and upper branch effects on itinerant ferromagnetism in repulsive Fermi gases: Bethe–Goldstone ladder resummation approach. Ann. Phys., 2014, 351: 477
CrossRef
ADS
Google scholar
|
[13] |
P. Massignan, Z. Yu, G. M. Bruun. Itinerant ferromagnetism in a polarized two-component Fermi gas. Phys. Rev. Lett., 2013, 110(23): 230401
CrossRef
ADS
Google scholar
|
[14] |
I. Zintchenko, L. Wang, M. Troyer. Ferromagnetism of the repulsive atomic Fermi gas: Three-body recombination and domain formation. Eur. Phys. J. B, 2016, 89(8): 180
CrossRef
ADS
Google scholar
|
[15] |
H. Tajima, K. Iida. Non-Hermitian ferromagnetism in an ultracold Fermi gas. J. Phys. Soc. Jpn., 2021, 90(2): 024004
CrossRef
ADS
Google scholar
|
[16] |
G. B. Jo, Y. R. Lee, J. H. Choi, C. A. Christensen, T. H. Kim, J. H. Thywissen, D. E. Pritchard, W. Ketterle. Itinerant ferromagnetism in a Fermi gas of ultracold atoms. Science, 2009, 325(5947): 1521
CrossRef
ADS
Google scholar
|
[17] |
G. Valtolina, F. Scazza, A. Amico, A. Burchianti, A. Re-cati, T. Enss, M. Inguscio, M. Zaccanti, G. Roati. Exploring the ferromagnetic behaviour of a repulsive Fermi gas through spin dynamics. Nat. Phys., 2017, 13(7): 704
CrossRef
ADS
Google scholar
|
[18] |
F. Arias de Saavedra, F. Mazzanti, J. Boronat, A. Polls. Ferromagnetic transition of a two-component Fermi gas of hard spheres. Phys. Rev. A, 2012, 85(3): 033615
CrossRef
ADS
Google scholar
|
[19] |
C. W. von Keyserlingk, G. J. Conduit. Itinerant ferromagnetism with finite-ranged interactions. Phys. Rev. B, 2013, 87(18): 184424
CrossRef
ADS
Google scholar
|
[20] |
Z. Sun, Q. Gu. Ferromagnetic transition in harmonically trapped Fermi gas with higher partial-wave interactions. J. Phys. At. Mol. Opt. Phys., 2017, 50(1): 015302
CrossRef
ADS
Google scholar
|
[21] |
E. Vermeyen, C. A. R. Sá de Melo, J. Tempere. Exchange interactions and itinerant ferromagnetism in ultracold Fermi gases. Phys. Rev. A, 2018, 98(2): 023635
CrossRef
ADS
Google scholar
|
[22] |
Y. Hu, Y. Fei, X. L. Chen, Y. Zhang. Collisional dynamics of symmetric two-dimensional quantum droplets. Front. Phys., 2022, 17(6): 61505
CrossRef
ADS
Google scholar
|
[23] |
H. Guo, Y. Ji, Q. Liu, T. Yang, S. Hou, J. Yin. A driven three-dimensional electric lattice for polar molecules. Front. Phys., 2022, 17(5): 52505
CrossRef
ADS
Google scholar
|
[24] |
T. S. Zeng, L. Yin. Supersolidity of a dipolar Fermi gas in a cubic optical lattice. Phys. Rev. B, 2014, 89(17): 174511
CrossRef
ADS
Google scholar
|
[25] |
Z. Wu, J. K. Block, G. M. Bruun. Coexistence of density wave and superfluid order in a dipolar Fermi gas. Phys. Rev. B, 2015, 91(22): 224504
CrossRef
ADS
Google scholar
|
[26] |
S. G. Bhongale, L. Mathey, S. W. Tsai, C. W. Clark, E. Zhao. Unconventional spin-density waves in dipolar Fermi gases. Phys. Rev. A, 2013, 87(4): 043604
CrossRef
ADS
Google scholar
|
[27] |
K. K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’Er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, J. Ye. A high phase-space-density gas of polar molecules. Science, 2008, 322(5899): 231
CrossRef
ADS
Google scholar
|
[28] |
B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. A. Hazzard, A. M. Rey, D. S. Jin, J. Ye. Observation of dipolar spin-exchange interactions with lattice-confined polar molecules. Nature, 2013, 501(7468): 521
CrossRef
ADS
Google scholar
|
[29] |
A. Chotia, B. Neyenhuis, S. A. Moses, B. Yan, J. P. Covey, M. Foss-Feig, A. M. Rey, D. S. Jin, J. Ye. Long-lived dipolar molecules and Feshbach molecules in a 3D optical lattice. Phys. Rev. Lett., 2012, 108(8): 080405
CrossRef
ADS
Google scholar
|
[30] |
K. K. Ni, S. Ospelkaus, D. Wang, G. Quéméner, B. Neyenhuis, M. H. G. de Miranda, J. L. Bohn, J. Ye, D. S. Jin. Dipolar collisions of polar molecules in the quantum regime. Nature, 2010, 464(7293): 1324
CrossRef
ADS
Google scholar
|
[31] |
C. H. Wu, J. W. Park, P. Ahmadi, S. Will, M. W. Zwierlein. Ultracold fermionic Feshbach molecules of 23Na 40K. Phys. Rev. Lett., 2012, 109(8): 085301
CrossRef
ADS
Google scholar
|
[32] |
M. Lu, N. Q. Burdick, B. L. Lev. Quantum degenerate dipolar Fermi gas. Phys. Rev. Lett., 2012, 108(21): 215301
CrossRef
ADS
Google scholar
|
[33] |
N. Q. Burdick, Y. Tang, B. L. Lev. Long-lived spin–orbit-coupled degenerate dipolar Fermi gas. Phys. Rev. X, 2016, 6(3): 031022
CrossRef
ADS
Google scholar
|
[34] |
X. J. Feng, L. Yin. Phase diagram of a spin–orbit coupled dipolar Fermi gas at T = 0 K. Chin. Phys. Lett., 2020, 37(2): 020301
CrossRef
ADS
Google scholar
|
[35] |
X. J. Feng, X. D. Zhao, L. Qin, Y. Y. Zhang, Z. Zhu, H. J. Tian, L. Zhuang, W. M. Liu. Itinerant ferromagnetism of a dipolar Fermi gas with Raman-induced spin–orbit coupling. Phys. Rev. A, 2022, 105(5): 053312
CrossRef
ADS
Google scholar
|
[36] |
B. M. Fregoso, E. Fradkin. Ferronematic ground state of the dilute dipolar Fermi gas. Phys. Rev. Lett., 2009, 103(20): 205301
CrossRef
ADS
Google scholar
|
[37] |
T. Miyakawa, T. Sogo, H. Pu. Phase-space deformation of a trapped dipolar Fermi gas. Phys. Rev. A, 2008, 77(6): 061603
CrossRef
ADS
Google scholar
|
[38] |
S. Ronen, J. L. Bohn. Zero sound in dipolar Fermi gases. Phys. Rev. A, 2010, 81(3): 033601
CrossRef
ADS
Google scholar
|
[39] |
Y. J. Lin, K. Jiménez-García, I. B. Spielman. Spin–orbit-coupled Bose–Einstein condensates. Nature, 2011, 471(7336): 83
CrossRef
ADS
Google scholar
|
[40] |
P. Wang, Z. Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai, J. Zhang. Spin–orbit coupled degenerate Fermi gases. Phys. Rev. Lett., 2012, 109(9): 095301
CrossRef
ADS
Google scholar
|
[41] |
Z. Wu, L. Zhang, W. Sun, X. T. Xu, B. Z. Wang, S. C. Ji, Y. Deng, S. Chen, X. J. Liu, J. W. Pan. Realization of two-dimensional spin–orbit coupling for Bose– Einstein condensates. Science, 2016, 354(6308): 83
CrossRef
ADS
Google scholar
|
[42] |
Z. Meng, L. Huang, P. Peng, D. Li, L. Chen, Y. Xu, C. Zhang, P. Wang, J. Zhang. Experimental observation of a topological band gap opening in ultracold Fermi gases with two-dimensional spin–orbit coupling. Phys. Rev. Lett., 2016, 117(23): 235304
CrossRef
ADS
Google scholar
|
[43] |
L. Huang, Z. Meng, P. Wang, P. Peng, S. L. Zhang, L. Chen, D. Li, Q. Zhou, J. Zhang. Experimental realization of two-dimensional synthetic spin–orbit coupling in ultracold Fermi gases. Nat. Phys., 2016, 12(6): 540
CrossRef
ADS
Google scholar
|
[44] |
Z. Y. Wang, X. C. Cheng, B. Z. Wang, J. Y. Zhang, Y. H. Lu, C. R. Yi, S. Niu, Y. Deng, X. J. Liu, S. Chen, J.W. Pan. Realization of an ideal Weyl semimetal band in a quantum gas with 3D spin–orbit coupling. Science, 2021, 372(6539): 271
CrossRef
ADS
Google scholar
|
[45] |
Y. Zhang, M. E. Mossman, T. Busch, P. Engels, C. Zhang. Properties of spin–orbit-coupled Bose–Einstein condensates. Front. Phys., 2016, 11(3): 118103
CrossRef
ADS
Google scholar
|
[46] |
P. H. Lu, X. F. Zhang, C. Q. Dai. Dynamics and formation of vortices collapsed from ring dark solitons in a two-dimensional spin−orbit coupled Bose–Einstein condensate. Front. Phys., 2022, 17(4): 42501
CrossRef
ADS
Google scholar
|
[47] |
C. Jiao, J. C. Liang, Z. F. Yu, Y. Chen, A. X. Zhang, J. K. Xue. Bose–Einstein condensates with tunable spin–orbit coupling in the two-dimensional harmonic potential: The ground-state phases. stability phase diagram and collapse dynamics, Front. Phys., 2022, 17(6): 61503
CrossRef
ADS
Google scholar
|
[48] |
H. Yang, Q. Zhang, Z. Jian. Dynamics of rotating spin−orbit-coupled spin-1 Bose–Einstein condensates with in-plane gradient magnetic field in an anharmonic trap. Front. Phys., 2022, 10(910818):
CrossRef
ADS
Google scholar
|
[49] |
S. S. Zhang, J. Ye, W. M. Liu. Itinerant magnetic phases and quantum Lifshitz transitions in a three-dimensional repulsively interacting Fermi gas with spin–orbit coupling. Phys. Rev. B, 2016, 94(11): 115121
CrossRef
ADS
Google scholar
|
[50] |
W. E. Liu, S. Chesi, D. Webb, U. Zülicke, R. Winkler, R. Joynt, D. Culcer. Generalized Stoner criterion and versatile spin ordering in two-dimensional spin–orbit coupled electron systems. Phys. Rev. B, 2017, 96(23): 235425
CrossRef
ADS
Google scholar
|
[51] |
H. Vivas C. Magnetic stability for the Hartree–Fock ground state in two dimensional Rashba–Gauge electronic systems. J. Magn. Magn. Mater., 2020, 498(166113):
CrossRef
ADS
Google scholar
|
[52] |
Q. Gu, L. Yin. Spin–orbit-coupling-induced resonance in an ultracold Bose gas. Phys. Rev. A, 2018, 98(1): 013617
CrossRef
ADS
Google scholar
|
[53] |
T. D. Stanescu, B. Anderson, V. Galitski. Spin–orbit coupled Bose–Einstein condensates. Phys. Rev. A, 2008, 78(2): 023616
CrossRef
ADS
Google scholar
|
[54] |
C. F. Liu, Y. M. Yu, S. C. Gou, W. M. Liu. Vortex chain in anisotropic spin–orbit-coupled spin-1 Bose– Einstein condensates. Phys. Rev. A, 2013, 87(6): 063630
CrossRef
ADS
Google scholar
|
[55] |
B. Liao, Y. Ye, J. Zhuang, C. Huang, H. Deng, W. Pang, B. Liu, Y. Li. Anisotropic solitary semivortices in dipolar spinor condensates controlled by the two-dimensional anisotropic spin–orbit coupling. Chaos Solitons Fractals, 2018, 116: 424
CrossRef
ADS
Google scholar
|
[56] |
D. W. Zhang, J. P. Chen, C. J. Shan, Z. D. Wang, S. L. Zhu. Superfluid and magnetic states of an ultracold Bose gas with synthetic three-dimensional spin–orbit coupling in an optical lattice. Phys. Rev. A, 2013, 88(1): 013612
CrossRef
ADS
Google scholar
|
[57] |
X. J. Liu, H. Hu, H. Pu. Three-dimensional spin–orbit coupled Fermi gases: Fulde–Ferrell pairing. Majorana fermions, Weyl fermions.and gapless topological superfluidity. Chin. Phys. B, 2015, 24(5): 050502
CrossRef
ADS
Google scholar
|
[58] |
J.R. Li, W. G. Tobias, K. Matsuda, C. Miller, G. Valtolina, L. De Marco, R. R. Wang, L. Lassablière, G. Quéméner, J. L. Bohn, J. Ye. Tuning of dipolar interactions and evaporative cooling in a three-dimensional molecular quantum gas. Nat. Phys., 2021, 17(10): 1144
CrossRef
ADS
Google scholar
|
[59] |
J. Stuhler, A. Griesmaier, T. Koch, M. Fattori, T. Pfau, S. Giovanazzi, P. Pedri, L. Santos. Observation of dipole–dipole interaction in a degenerate quantum gas. Phys. Rev. Lett., 2005, 95(15): 150406
CrossRef
ADS
Google scholar
|
[60] |
K. Aikawa, S. Baier, A. Frisch, M. Mark, C. Ravensbergen, F. Ferlaino. Observation of Fermi surface deformation in a dipolar quantum gas. Science, 2014, 345(6203): 1484
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |