Itinerant ferromagnetism entrenched by the anisotropy of spin−orbit coupling in a dipolar Fermi gas

Xue-Jing Feng, Jin-Xin Li, Lu Qin, Ying-Ying Zhang, ShiQiang Xia, Lu Zhou, ChunJie Yang, ZunLue Zhu, Wu-Ming Liu, Xing-Dong Zhao

PDF(4137 KB)
PDF(4137 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (5) : 52303. DOI: 10.1007/s11467-023-1283-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Itinerant ferromagnetism entrenched by the anisotropy of spin−orbit coupling in a dipolar Fermi gas

Author information +
History +

Abstract

We investigate the itinerant ferromagnetism in a dipolar Fermi atomic system with the anisotropic spin−orbit coupling (SOC), which is traditionally explored with isotropic contact interaction. We first study the ferromagnetism transition boundaries and the properties of the ground states through the density and spin-flip distribution in momentum space, and we find that both the anisotropy and the magnitude of the SOC play an important role in this process. We propose a helpful scheme and a quantum control method which can be applied to conquering the difficulties of previous experimental observation of itinerant ferromagnetism. Our further study reveals that exotic Fermi surfaces and an abnormal phase region can exist in this system by controlling the anisotropy of SOC, which can provide constructive suggestions for the research and the application of a dipolar Fermi gas. Furthermore, we also calculate the ferromagnetism transition temperature and novel distributions in momentum space at finite temperature beyond the ground states from the perspective of experiment.

Graphical abstract

Keywords

itinerant ferromagnetism / spin−orbit coupling / cold atom / quantum simulation / dipolar Fermi gas / dipole−dipole interaction

Cite this article

Download citation ▾
Xue-Jing Feng, Jin-Xin Li, Lu Qin, Ying-Ying Zhang, ShiQiang Xia, Lu Zhou, ChunJie Yang, ZunLue Zhu, Wu-Ming Liu, Xing-Dong Zhao. Itinerant ferromagnetism entrenched by the anisotropy of spin−orbit coupling in a dipolar Fermi gas. Front. Phys., 2023, 18(5): 52303 https://doi.org/10.1007/s11467-023-1283-5

References

[1]
D.Wagner, Introduction to the Theory of Magnetism: International Series of Monographs in Natural Philosophy, Vol. 48, Elsevier, 2013
[2]
J.Kübler, Theory of Itinerant Electron Magnetism, Vol. 106, Oxford University Press, 2017
[3]
J. Zak. Dynamics of electrons in solids in external fields. Phys. Rev., 1968, 168(3): 686
CrossRef ADS Google scholar
[4]
F. Bloch. Bemerkung zur Elektronentheorie des Ferromagnetismus und der elektrischen Leitfähigkeit. Eur. Phys. J. A, 1929, 57(7–8): 545
CrossRef ADS Google scholar
[5]
S. Misawa. Ferromagnetism of an electron gas. Phys. Rev., 1965, 140(5A): A1645
CrossRef ADS Google scholar
[6]
E. C. Stoner. Collective electron ferronmagnetism. Proc. R. Soc. Lond. A, 1938, 165(922): 372
CrossRef ADS Google scholar
[7]
E. C. Stoner. LXXX. Atomic moments in ferromagnetic metals and alloys with non-ferromagnetic elements. Lond. Edinb. Dublin Philos. Mag. J. Sci., 1933, 15(101): 1018
CrossRef ADS Google scholar
[8]
R. A. Duine, A. H. MacDonald. Itinerant ferromagnetism in an ultracold atom Fermi gas. Phys. Rev. Lett., 2005, 95(23): 230403
CrossRef ADS Google scholar
[9]
S. Pilati, G. Bertaina, S. Giorgini, M. Troyer. Itinerant ferromagnetism of a repulsive atomic Fermi gas: A quantum Monte Carlo study. Phys. Rev. Lett., 2010, 105(3): 030405
CrossRef ADS Google scholar
[10]
L. He, X. G. Huang. Nonperturbative effects on the ferromagnetic transition in repulsive Fermi gases. Phys. Rev. A, 2012, 85(4): 043624
CrossRef ADS Google scholar
[11]
L. He, X. J. Liu, X. G. Huang, H. Hu. Stoner ferromagnetism of a strongly interacting Fermi gas in the quasirepulsive regime. Phys. Rev. A, 2016, 93(6): 063629
CrossRef ADS Google scholar
[12]
L. He. Finite range and upper branch effects on itinerant ferromagnetism in repulsive Fermi gases: Bethe–Goldstone ladder resummation approach. Ann. Phys., 2014, 351: 477
CrossRef ADS Google scholar
[13]
P. Massignan, Z. Yu, G. M. Bruun. Itinerant ferromagnetism in a polarized two-component Fermi gas. Phys. Rev. Lett., 2013, 110(23): 230401
CrossRef ADS Google scholar
[14]
I. Zintchenko, L. Wang, M. Troyer. Ferromagnetism of the repulsive atomic Fermi gas: Three-body recombination and domain formation. Eur. Phys. J. B, 2016, 89(8): 180
CrossRef ADS Google scholar
[15]
H. Tajima, K. Iida. Non-Hermitian ferromagnetism in an ultracold Fermi gas. J. Phys. Soc. Jpn., 2021, 90(2): 024004
CrossRef ADS Google scholar
[16]
G. B. Jo, Y. R. Lee, J. H. Choi, C. A. Christensen, T. H. Kim, J. H. Thywissen, D. E. Pritchard, W. Ketterle. Itinerant ferromagnetism in a Fermi gas of ultracold atoms. Science, 2009, 325(5947): 1521
CrossRef ADS Google scholar
[17]
G. Valtolina, F. Scazza, A. Amico, A. Burchianti, A. Re-cati, T. Enss, M. Inguscio, M. Zaccanti, G. Roati. Exploring the ferromagnetic behaviour of a repulsive Fermi gas through spin dynamics. Nat. Phys., 2017, 13(7): 704
CrossRef ADS Google scholar
[18]
F. Arias de Saavedra, F. Mazzanti, J. Boronat, A. Polls. Ferromagnetic transition of a two-component Fermi gas of hard spheres. Phys. Rev. A, 2012, 85(3): 033615
CrossRef ADS Google scholar
[19]
C. W. von Keyserlingk, G. J. Conduit. Itinerant ferromagnetism with finite-ranged interactions. Phys. Rev. B, 2013, 87(18): 184424
CrossRef ADS Google scholar
[20]
Z. Sun, Q. Gu. Ferromagnetic transition in harmonically trapped Fermi gas with higher partial-wave interactions. J. Phys. At. Mol. Opt. Phys., 2017, 50(1): 015302
CrossRef ADS Google scholar
[21]
E. Vermeyen, C. A. R. Sá de Melo, J. Tempere. Exchange interactions and itinerant ferromagnetism in ultracold Fermi gases. Phys. Rev. A, 2018, 98(2): 023635
CrossRef ADS Google scholar
[22]
Y. Hu, Y. Fei, X. L. Chen, Y. Zhang. Collisional dynamics of symmetric two-dimensional quantum droplets. Front. Phys., 2022, 17(6): 61505
CrossRef ADS Google scholar
[23]
H. Guo, Y. Ji, Q. Liu, T. Yang, S. Hou, J. Yin. A driven three-dimensional electric lattice for polar molecules. Front. Phys., 2022, 17(5): 52505
CrossRef ADS Google scholar
[24]
T. S. Zeng, L. Yin. Supersolidity of a dipolar Fermi gas in a cubic optical lattice. Phys. Rev. B, 2014, 89(17): 174511
CrossRef ADS Google scholar
[25]
Z. Wu, J. K. Block, G. M. Bruun. Coexistence of density wave and superfluid order in a dipolar Fermi gas. Phys. Rev. B, 2015, 91(22): 224504
CrossRef ADS Google scholar
[26]
S. G. Bhongale, L. Mathey, S. W. Tsai, C. W. Clark, E. Zhao. Unconventional spin-density waves in dipolar Fermi gases. Phys. Rev. A, 2013, 87(4): 043604
CrossRef ADS Google scholar
[27]
K. K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’Er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, J. Ye. A high phase-space-density gas of polar molecules. Science, 2008, 322(5899): 231
CrossRef ADS Google scholar
[28]
B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. A. Hazzard, A. M. Rey, D. S. Jin, J. Ye. Observation of dipolar spin-exchange interactions with lattice-confined polar molecules. Nature, 2013, 501(7468): 521
CrossRef ADS Google scholar
[29]
A. Chotia, B. Neyenhuis, S. A. Moses, B. Yan, J. P. Covey, M. Foss-Feig, A. M. Rey, D. S. Jin, J. Ye. Long-lived dipolar molecules and Feshbach molecules in a 3D optical lattice. Phys. Rev. Lett., 2012, 108(8): 080405
CrossRef ADS Google scholar
[30]
K. K. Ni, S. Ospelkaus, D. Wang, G. Quéméner, B. Neyenhuis, M. H. G. de Miranda, J. L. Bohn, J. Ye, D. S. Jin. Dipolar collisions of polar molecules in the quantum regime. Nature, 2010, 464(7293): 1324
CrossRef ADS Google scholar
[31]
C. H. Wu, J. W. Park, P. Ahmadi, S. Will, M. W. Zwierlein. Ultracold fermionic Feshbach molecules of 23Na 40K. Phys. Rev. Lett., 2012, 109(8): 085301
CrossRef ADS Google scholar
[32]
M. Lu, N. Q. Burdick, B. L. Lev. Quantum degenerate dipolar Fermi gas. Phys. Rev. Lett., 2012, 108(21): 215301
CrossRef ADS Google scholar
[33]
N. Q. Burdick, Y. Tang, B. L. Lev. Long-lived spin–orbit-coupled degenerate dipolar Fermi gas. Phys. Rev. X, 2016, 6(3): 031022
CrossRef ADS Google scholar
[34]
X. J. Feng, L. Yin. Phase diagram of a spin–orbit coupled dipolar Fermi gas at T = 0 K. Chin. Phys. Lett., 2020, 37(2): 020301
CrossRef ADS Google scholar
[35]
X. J. Feng, X. D. Zhao, L. Qin, Y. Y. Zhang, Z. Zhu, H. J. Tian, L. Zhuang, W. M. Liu. Itinerant ferromagnetism of a dipolar Fermi gas with Raman-induced spin–orbit coupling. Phys. Rev. A, 2022, 105(5): 053312
CrossRef ADS Google scholar
[36]
B. M. Fregoso, E. Fradkin. Ferronematic ground state of the dilute dipolar Fermi gas. Phys. Rev. Lett., 2009, 103(20): 205301
CrossRef ADS Google scholar
[37]
T. Miyakawa, T. Sogo, H. Pu. Phase-space deformation of a trapped dipolar Fermi gas. Phys. Rev. A, 2008, 77(6): 061603
CrossRef ADS Google scholar
[38]
S. Ronen, J. L. Bohn. Zero sound in dipolar Fermi gases. Phys. Rev. A, 2010, 81(3): 033601
CrossRef ADS Google scholar
[39]
Y. J. Lin, K. Jiménez-García, I. B. Spielman. Spin–orbit-coupled Bose–Einstein condensates. Nature, 2011, 471(7336): 83
CrossRef ADS Google scholar
[40]
P. Wang, Z. Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai, J. Zhang. Spin–orbit coupled degenerate Fermi gases. Phys. Rev. Lett., 2012, 109(9): 095301
CrossRef ADS Google scholar
[41]
Z. Wu, L. Zhang, W. Sun, X. T. Xu, B. Z. Wang, S. C. Ji, Y. Deng, S. Chen, X. J. Liu, J. W. Pan. Realization of two-dimensional spin–orbit coupling for Bose– Einstein condensates. Science, 2016, 354(6308): 83
CrossRef ADS Google scholar
[42]
Z. Meng, L. Huang, P. Peng, D. Li, L. Chen, Y. Xu, C. Zhang, P. Wang, J. Zhang. Experimental observation of a topological band gap opening in ultracold Fermi gases with two-dimensional spin–orbit coupling. Phys. Rev. Lett., 2016, 117(23): 235304
CrossRef ADS Google scholar
[43]
L. Huang, Z. Meng, P. Wang, P. Peng, S. L. Zhang, L. Chen, D. Li, Q. Zhou, J. Zhang. Experimental realization of two-dimensional synthetic spin–orbit coupling in ultracold Fermi gases. Nat. Phys., 2016, 12(6): 540
CrossRef ADS Google scholar
[44]
Z. Y. Wang, X. C. Cheng, B. Z. Wang, J. Y. Zhang, Y. H. Lu, C. R. Yi, S. Niu, Y. Deng, X. J. Liu, S. Chen, J.W. Pan. Realization of an ideal Weyl semimetal band in a quantum gas with 3D spin–orbit coupling. Science, 2021, 372(6539): 271
CrossRef ADS Google scholar
[45]
Y. Zhang, M. E. Mossman, T. Busch, P. Engels, C. Zhang. Properties of spin–orbit-coupled Bose–Einstein condensates. Front. Phys., 2016, 11(3): 118103
CrossRef ADS Google scholar
[46]
P. H. Lu, X. F. Zhang, C. Q. Dai. Dynamics and formation of vortices collapsed from ring dark solitons in a two-dimensional spin−orbit coupled Bose–Einstein condensate. Front. Phys., 2022, 17(4): 42501
CrossRef ADS Google scholar
[47]
C. Jiao, J. C. Liang, Z. F. Yu, Y. Chen, A. X. Zhang, J. K. Xue. Bose–Einstein condensates with tunable spin–orbit coupling in the two-dimensional harmonic potential: The ground-state phases. stability phase diagram and collapse dynamics, Front. Phys., 2022, 17(6): 61503
CrossRef ADS Google scholar
[48]
H. Yang, Q. Zhang, Z. Jian. Dynamics of rotating spin−orbit-coupled spin-1 Bose–Einstein condensates with in-plane gradient magnetic field in an anharmonic trap. Front. Phys., 2022, 10(910818):
CrossRef ADS Google scholar
[49]
S. S. Zhang, J. Ye, W. M. Liu. Itinerant magnetic phases and quantum Lifshitz transitions in a three-dimensional repulsively interacting Fermi gas with spin–orbit coupling. Phys. Rev. B, 2016, 94(11): 115121
CrossRef ADS Google scholar
[50]
W. E. Liu, S. Chesi, D. Webb, U. Zülicke, R. Winkler, R. Joynt, D. Culcer. Generalized Stoner criterion and versatile spin ordering in two-dimensional spin–orbit coupled electron systems. Phys. Rev. B, 2017, 96(23): 235425
CrossRef ADS Google scholar
[51]
H. Vivas C. Magnetic stability for the Hartree–Fock ground state in two dimensional Rashba–Gauge electronic systems. J. Magn. Magn. Mater., 2020, 498(166113):
CrossRef ADS Google scholar
[52]
Q. Gu, L. Yin. Spin–orbit-coupling-induced resonance in an ultracold Bose gas. Phys. Rev. A, 2018, 98(1): 013617
CrossRef ADS Google scholar
[53]
T. D. Stanescu, B. Anderson, V. Galitski. Spin–orbit coupled Bose–Einstein condensates. Phys. Rev. A, 2008, 78(2): 023616
CrossRef ADS Google scholar
[54]
C. F. Liu, Y. M. Yu, S. C. Gou, W. M. Liu. Vortex chain in anisotropic spin–orbit-coupled spin-1 Bose– Einstein condensates. Phys. Rev. A, 2013, 87(6): 063630
CrossRef ADS Google scholar
[55]
B. Liao, Y. Ye, J. Zhuang, C. Huang, H. Deng, W. Pang, B. Liu, Y. Li. Anisotropic solitary semivortices in dipolar spinor condensates controlled by the two-dimensional anisotropic spin–orbit coupling. Chaos Solitons Fractals, 2018, 116: 424
CrossRef ADS Google scholar
[56]
D. W. Zhang, J. P. Chen, C. J. Shan, Z. D. Wang, S. L. Zhu. Superfluid and magnetic states of an ultracold Bose gas with synthetic three-dimensional spin–orbit coupling in an optical lattice. Phys. Rev. A, 2013, 88(1): 013612
CrossRef ADS Google scholar
[57]
X. J. Liu, H. Hu, H. Pu. Three-dimensional spin–orbit coupled Fermi gases: Fulde–Ferrell pairing. Majorana fermions, Weyl fermions.and gapless topological superfluidity. Chin. Phys. B, 2015, 24(5): 050502
CrossRef ADS Google scholar
[58]
J.R. Li, W. G. Tobias, K. Matsuda, C. Miller, G. Valtolina, L. De Marco, R. R. Wang, L. Lassablière, G. Quéméner, J. L. Bohn, J. Ye. Tuning of dipolar interactions and evaporative cooling in a three-dimensional molecular quantum gas. Nat. Phys., 2021, 17(10): 1144
CrossRef ADS Google scholar
[59]
J. Stuhler, A. Griesmaier, T. Koch, M. Fattori, T. Pfau, S. Giovanazzi, P. Pedri, L. Santos. Observation of dipole–dipole interaction in a degenerate quantum gas. Phys. Rev. Lett., 2005, 95(15): 150406
CrossRef ADS Google scholar
[60]
K. Aikawa, S. Baier, A. Frisch, M. Mark, C. Ravensbergen, F. Ferlaino. Observation of Fermi surface deformation in a dipolar quantum gas. Science, 2014, 345(6203): 1484
CrossRef ADS Google scholar

Acknowledgements

Thank Xi-Bo Zhang for helpful dicussions about the experimental realization. This work was supported by the National Key R&D Program of China (Grant Nos. 2021YFA1400900, 2021YFA0718300, and 2021YFA1400243), the Key Scientific Research Project of colleges and Universities in Henan Province (Nos. 20A140018 and 23A140001), the National Natural Science Foundatiion of China (Grant Nos. 12074105, 12074106, 12074120, 12247146, 12104135, and 61835013), and the Natural Science Foundation of Shanghai (Grant No. 20ZR1418500).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(4137 KB)

Accesses

Citations

Detail

Sections
Recommended

/