Manipulating the measured uncertainty under Lee−Yang dephasing channels through local PT-symmetric operations

Ling-Yu Yao, Li-Juan Li, Xue-Ke Song, Liu Ye, Dong Wang

PDF(4851 KB)
PDF(4851 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (5) : 51302. DOI: 10.1007/s11467-023-1280-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Manipulating the measured uncertainty under Lee−Yang dephasing channels through local PT-symmetric operations

Author information +
History +

Abstract

Uncertainty relation lies at the heart of quantum physics, which is one of the fundamental characteristics of quantum mechanics. With the advent of quantum information theory, entropic uncertainty relation was proposed, which plays an important and irreplaceable role in quantum information science. In this work, we attempt to observe dynamics of entropic uncertainty in the presence of quantum memory under two different types of Lee−Yang dephasing channels. It is interesting to find that the dephasing channels have a negative effect on decreasing the uncertainty and the analogous partition function is anti-correlated with the uncertainty. In addition, we here propose an effective strategy to manipulate the uncertainty of interest of the subsystem by performing a parity-time symmetric (PT-symmetric) operation. It is worth noting that the uncertainty of measurement will be reduced to a certain extent by properly modulating the PT-symmetric operations under the considered channels. In this sense, we argue that our explorations offer insight into dynamics of entropic uncertainty in typical Lee−Yang dephasing channels, and might be beneficial to quantum measurement estimation in practical quantum systems.

Graphical abstract

Keywords

entropic uncertainty relation / quantum correlation / ${\color{[RGB]{12,108,100}}{{\cal {PT}}}} $-symmetric operation

Cite this article

Download citation ▾
Ling-Yu Yao, Li-Juan Li, Xue-Ke Song, Liu Ye, Dong Wang. Manipulating the measured uncertainty under Lee−Yang dephasing channels through local PT-symmetric operations. Front. Phys., 2023, 18(5): 51302 https://doi.org/10.1007/s11467-023-1280-8

References

[1]
W. Heisenberg. Über den anschaulichen Inhalt der quantentheoretischen kinematik und mechanik. Eur. Phys. J. A, 1927, 43(3−4): 172
CrossRef ADS Google scholar
[2]
E. H. Kennard. Zur quantenmechanik einfacher bewegungstypen. Eur. Phys. J. A, 1927, 44(4−5): 326
CrossRef ADS Google scholar
[3]
H. P. Robertson. The uncertainty principle. Phys. Rev., 1929, 34(1): 163
CrossRef ADS Google scholar
[4]
H. Maassen, J. B. M. Uffink. Generalized entropic uncertainty relations. Phys. Rev. Lett., 1988, 60(12): 1103
CrossRef ADS Google scholar
[5]
I. Białynicki-Birula, J. Mycielski. Uncertainty relations for information entropy in wave mechanics. Commun. Math. Phys., 1975, 44(2): 129
CrossRef ADS Google scholar
[6]
D. Deutsch. Uncertainty in quantum measurements. Phys. Rev. Lett., 1983, 50(9): 631
CrossRef ADS Google scholar
[7]
K. Kraus. Complementary observables and uncertainty relations. Phys. Rev. D, 1987, 35(10): 3070
CrossRef ADS Google scholar
[8]
J. M. Renes, J. C. Boileau. Conjectured strong complementary information tradeoff. Phys. Rev. Lett., 2009, 103(2): 020402
CrossRef ADS Google scholar
[9]
M. Berta, M. Christandl, R. Colbeck, J. M. Renes, R. Renner. The uncertainty principle in the presence of quantum memory. Nat. Phys., 2010, 6(9): 659
CrossRef ADS Google scholar
[10]
C. F. Li, J. S. Xu, X. Y. Xu, K. Li, G. C. Guo. Experimental investigation of the entanglement-assisted entropic uncertainty principle. Nat. Phys., 2011, 7(10): 752
CrossRef ADS Google scholar
[11]
L. J. Li, F. Ming, X. K. Song, L. Ye, D. Wang. Review on entropic uncertainty relations. Acta Physica Sinica, 2022, 71(7): 070302
CrossRef ADS Google scholar
[12]
M. Tomamichel, R. Renner. Uncertainty relation for smooth entropies. Phys. Rev. Lett., 2011, 106(11): 110506
CrossRef ADS Google scholar
[13]
P. J. Coles, R. Colbeck, L. Yu, M. Zwolak. Uncertainty relations from simple entropic properties. Phys. Rev. Lett., 2012, 108(21): 210405
CrossRef ADS Google scholar
[14]
J. Zhang, Y. Zhang, C. S. Yu. Rényi entropy uncertainty relation for successive projective measurements. Quantum Inform. Process., 2015, 14(6): 2239
CrossRef ADS Google scholar
[15]
J. Schneeloch, C. J. Broadbent, S. P. Walborn, E. G. Cavalcanti, J. C. Howell. Einstein−Podolsky−Rosen steering inequalities from entropic uncertainty relations. Phys. Rev. A, 2013, 87(6): 062103
CrossRef ADS Google scholar
[16]
M. L. Hu, H. Fan. Quantum-memory-assisted entropic uncertainty principle, teleportation, and entanglement witness in structured reservoirs. Phys. Rev. A, 2012, 86(3): 032338
CrossRef ADS Google scholar
[17]
M. L. Hu, H. Fan. Competition between quantum correlations in the quantum-memory-assisted entropic uncertainty relation. Phys. Rev. A, 2013, 87(2): 022314
CrossRef ADS Google scholar
[18]
M. L. Hu, H. Fan. Upper bound and shareability of quantum discord based on entropic uncertainty relations. Phys. Rev. A, 2013, 88(1): 014105
CrossRef ADS Google scholar
[19]
A. K. Pati, M. M. Wilde, A. R. U. Devi, A. K. Rajagopal. Quantum discord and classical correlation can tighten the uncertainty principle in the presence of quantum memory. Phys. Rev. A, 2012, 86(4): 042105
CrossRef ADS Google scholar
[20]
J. Zhang, Y. Zhang, C. S. Yu. Entropic uncertainty relation and information exclusion relation for multiple measurements in the presence of quantum memory. Sci. Rep., 2015, 5(1): 11701
CrossRef ADS Google scholar
[21]
S. Liu, L. Z. Mu, H. Fan. Entropic uncertainty relations for multiple measurements. Phys. Rev. A, 2015, 91(4): 042133
CrossRef ADS Google scholar
[22]
F. Adabi, S. Salimi, S. Haseli. Tightening the entropic uncertainty bound in the presence of quantum memory. Phys. Rev. A, 2016, 93(6): 062123
CrossRef ADS Google scholar
[23]
F. Adabi, S. Haseli, S. Salimi. Reducing the entropic uncertainty lower bound in the presence of quantum memory via LOCC. Europhys. Lett., 2016, 115(6): 60004
CrossRef ADS Google scholar
[24]
A. E. Rastegin, K. Zyczkowski. Majorization entropic uncertainty relations for quantum operations. J. Phys. A Math. Theor., 2016, 49(35): 355301
CrossRef ADS Google scholar
[25]
D. Wang, A. J. Huang, R. D. Hoehn, F. Ming, W. Y. Sun, J. D. Shi, L. Ye, S. Kais. Entropic uncertainty relations for Markovian and non-Markovian processes under a structured bosonic reservoir. Sci. Rep., 2017, 7(1): 1066
CrossRef ADS Google scholar
[26]
K. Baek, W. Son. Unsharpness of generalized measurement and its effects in entropic uncertainty relations. Sci. Rep., 2016, 6(1): 30228
CrossRef ADS Google scholar
[27]
M. Berta, S. Wehner, M. M. Wilde. Entropic uncertainty and measurement reversibility. New J. Phys., 2016, 18(7): 073004
CrossRef ADS Google scholar
[28]
Y. Y. Yang, W. Y. Sun, W. N. Shi, F. Ming, D. Wang, L. Ye. Dynamical characteristic of measurement uncertainty under Heisenberg spin models with Dzyaloshinskii–Moriya interactions. Front. Phys., 2019, 14(3): 31601
CrossRef ADS Google scholar
[29]
D. Wang, F. Ming, M. L. Hu, L. Ye. Quantum-memory-assisted entropic uncertainty relations. Ann. Phys., 2019, 531(10): 1900124
CrossRef ADS Google scholar
[30]
F. Ming, D. Wang, X. G. Fan, W. N. Shi, L. Ye, J. L. Chen. Improved tripartite uncertainty relation with quantum memory. Phys. Rev. A, 2020, 102(1): 012206
CrossRef ADS Google scholar
[31]
B. F. Xie, D. Wang, L. Ye, J. L. Chen. Optimized entropic uncertainty relations for multiple measurements. Phys. Rev. A, 2021, 104(6): 062204
CrossRef ADS Google scholar
[32]
L. Wu, L. Ye, D. Wang. Tighter generalized entropic uncertainty relations in multipartite systems. Phys. Rev. A, 2022, 106(6): 062219
CrossRef ADS Google scholar
[33]
Z.A. WangB. F. XieF.MingY.T. WangD.Wang Y.MengZ. H. LiuJ.S. TangL.YeC.F. Li G.C. GuoS. Kais, Generalized multipartite entropic uncertainty relations: Theory and experiment, arXiv: 2207.12693 (2022)
[34]
L. Y. Cheng, F. Ming, F. Zhao, L. Ye, D. Wang. The uncertainty and quantum correlation of measurement in double quantum-dot systems. Front. Phys., 2022, 17(6): 61504
CrossRef ADS Google scholar
[35]
L. J. Li, F. Ming, X. K. Song, L. Ye, D. Wang. Quantumness and entropic uncertainty in curved space-time. Eur. Phys. J. C, 2022, 82(8): 726
CrossRef ADS Google scholar
[36]
M. L. Song, L. J. Li, X. K. Song, L. Ye, D. Wang. Environment-mediated entropic uncertainty in charging quantum batteries. Phys. Rev. E, 2022, 106(5): 054107
CrossRef ADS Google scholar
[37]
M. R. Pourkarimi, S. Haddadi. Quantum-memory-assisted entropic uncertainty, teleportation, and quantum discord under decohering environments. Laser Phys. Lett., 2020, 17(2): 025206
CrossRef ADS Google scholar
[38]
F. Benabdallah, A. U. Rahman, S. Haddadi, M. Daoud. Long-time protection of thermal correlations in a hybrid-spin system under random telegraph noise. Phys. Rev. E, 2022, 106(3): 034122
CrossRef ADS Google scholar
[39]
M. R. Pourkarimi, S. Haseli, S. Haddadi, M. Hadipour. Scrutinizing entropic uncertainty and quantum discord in an open system under quantum critical environment. Laser Phys. Lett., 2022, 19(6): 065201
CrossRef ADS Google scholar
[40]
S. Haddadi, M. L. Hu, Y. Khedif, H. Dolatkhah, M. R. Pourkarimi, M. Daoud. Measurement uncertainty and dense coding in a two-qubit system: Combined effects of bosonic reservoir and dipole–dipole interaction. Results Phys., 2022, 32: 105041
CrossRef ADS Google scholar
[41]
G. Vallone, D. G. Marangon, M. Tomasin, P. Villoresi. Quantum randomness certified by the uncertainty principle. Phys. Rev. A, 2014, 90(5): 052327
CrossRef ADS Google scholar
[42]
C. N. Yang, T. D. Lee. Statistical theory of equations of state and phase transitions. I. Theory of condensation. Phys. Rev., 1952, 87(3): 404
CrossRef ADS Google scholar
[43]
T. D. Lee, C. N. Yang. Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model. Phys. Rev., 1952, 87(3): 410
CrossRef ADS Google scholar
[44]
M. E. Fisher. Yang−Lee edge singularity and ϕ3 field theory. Phys. Rev. Lett., 1978, 40(25): 1610
CrossRef ADS Google scholar
[45]
P. J. Kortman, R. B. Griffiths. Density of zeros on the Lee−Yang circle for two Ising ferromagnets. Phys. Rev. Lett., 1971, 27(21): 1439
CrossRef ADS Google scholar
[46]
B. B. Wei, R. B. Liu. Lee−Yang zeros and critical times in decoherence of a probe spin coupled to a bath. Phys. Rev. Lett., 2012, 109(18): 185701
CrossRef ADS Google scholar
[47]
M. Schlosshauer. Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys., 2005, 76(4): 1267
CrossRef ADS Google scholar
[48]
R. B. Liu, W. Yao, L. J. Sham. Control of electron spin decoherence caused by electron–nuclear spin dynamics in a quantum dot. New J. Phys., 2007, 9(7): 226
CrossRef ADS Google scholar
[49]
I. Białynicki-Birula. Rényi entropy and the uncertainty relations. AIP Conf. Proc., 2007, 889: 52
CrossRef ADS Google scholar
[50]
Y. G. Su, H. B. Liang, X. G. Wang. Spin squeezing and concurrence under Lee−Yang dephasing channels. Phys. Rev. A, 2020, 102(5): 052423
CrossRef ADS Google scholar
[51]
X. Yin, J. Ma, X. Wang, F. Nori. Spin squeezing under non-Markovian channels by the hierarchy equation method. Phys. Rev. A, 2012, 86(1): 012308
CrossRef ADS Google scholar
[52]
X. Wang, B. C. Sanders. Spin squeezing and pairwise entanglement for symmetric multiqubit states. Phys. Rev. A, 2003, 68(1): 012101
CrossRef ADS Google scholar
[53]
J. L. Chen, C. L. Ren, C. B. Chen, X. J. Ye, A. K. Pati. Bell’s nonlocality can be detected by the violation of Einstein−Podolsky−Rosen steering inequality. Sci. Rep., 2016, 6(1): 39063
CrossRef ADS Google scholar
[54]
K. Sun, X. J. Ye, J. S. Xu, X. Y. Xu, J. S. Tang, Y. C. Wu, J. L. Chen, C. F. Li, G. C. Guo. Experimental quantification of asymmetric Einstein−Podolsky−Rosen steering. Phys. Rev. Lett., 2016, 116(16): 160404
CrossRef ADS Google scholar
[55]
M. R. Pourkarimi, S. Haddadi, S. Haseli. Exploration of entropic uncertainty bound in a symmetric multi-qubit system under noisy channels. Phys. Scr., 2020, 96(1): 015101
CrossRef ADS Google scholar
[56]
C. M. Bender, S. Boettcher. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett., 1998, 80(24): 5243
CrossRef ADS Google scholar
[57]
C. M. Bender, D. C. Brody, H. F. Jones. Complex extension of quantum mechanics. Phys. Rev. Lett., 2002, 89(27): 270401
CrossRef ADS Google scholar
[58]
U. Günther, B. F. Samsonov. Naimark-dilated PT-symmetric brachistochrone. Phys. Rev. Lett., 2008, 101(23): 230404
CrossRef ADS Google scholar

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant Nos. 12075001 and 12175001), Anhui Provincial Key Research and Development Plan (Grant No. 2022b13020004), Anhui Provincial Natural Science Foundation (Grant No. 1508085QF139), and the Fund of the CAS Key Laboratory of Quantum Information (Grant No. KQI201701).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(4851 KB)

Accesses

Citations

Detail

Sections
Recommended

/