Perfect optomechanically induced transparency in two-cavity optomechanics

Lai-Bin Qian, Xiao-Bo Yan

PDF(3981 KB)
PDF(3981 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (5) : 52301. DOI: 10.1007/s11467-023-1279-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Perfect optomechanically induced transparency in two-cavity optomechanics

Author information +
History +

Abstract

Here, we study the controllable optical responses in a two-cavity optomechanical system, especially on the perfect optomechanically induced transparency (OMIT) in the model which has never been studied before. The results show that the perfect OMIT can still occur even with a large mechanical damping rate, and at the perfect transparency window the long-lived slow light can be achieved. In addition, we find that the conversion between the perfect OMIT and optomechanically induced absorption can be easily achieved just by adjusting the driving field strength of the second cavity. We believe that the results can be used to control optical transmission in modern optical networks.

Graphical abstract

Keywords

perfect optomechanically induced transparency / slow light / optomechanically induced absorption / cavity optomechanics

Cite this article

Download citation ▾
Lai-Bin Qian, Xiao-Bo Yan. Perfect optomechanically induced transparency in two-cavity optomechanics. Front. Phys., 2023, 18(5): 52301 https://doi.org/10.1007/s11467-023-1279-1

References

[1]
M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 2014, 86(4): 1391
CrossRef ADS Google scholar
[2]
S. Gigan, H. Böhm, M. Paternostro, F. Blaser, G. Langer, J. Hertzberg, K. Schwab, D. Bäuerle, M. Aspelmeyer, A. Zeilinger. Self-cooling of a micromirror by radiation pressure. Nature, 2006, 444(7115): 67
CrossRef ADS Google scholar
[3]
O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, A. Heidmann. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature, 2006, 444(7115): 71
CrossRef ADS Google scholar
[4]
T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, K. J. Vahala. Analysis of Radiation-Pressure Induced Mechanical Oscillation of an Optical Microcavity. Phys. Rev. Lett., 2005, 95(3): 033901
CrossRef ADS Google scholar
[5]
M. Tomes, T. Carmon. Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates. Phys. Rev. Lett., 2009, 102(11): 113601
CrossRef ADS Google scholar
[6]
X. Jiang, Q. Lin, J. Rosenberg, K. Vahala, O. Painter. High-Q double-disk microcavities for cavity optomechanics. Opt. Express, 2009, 17(23): 20911
CrossRef ADS Google scholar
[7]
C. A. Regal, J. D. Teufel, K. W. Lehnert. Measuring nanomechanical motion with a microwave cavity interferometer. Nat. Phys., 2008, 4(7): 555
CrossRef ADS Google scholar
[8]
J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, R. W. Simmonds. Circuit cavity electromechanics in the strong-coupling regime. Nature, 2011, 471(7337): 204
CrossRef ADS Google scholar
[9]
J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, J. G. E. Harris. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature, 2008, 452(7183): 72
CrossRef ADS Google scholar
[10]
A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, J. G. E. Harris. Dispersive optomechanics: A membrane inside a cavity. New J. Phys., 2008, 10(9): 095008
CrossRef ADS Google scholar
[11]
J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, J. G. E. Harris. Strong and tunable nonlinear optomechanical coupling in a low-loss system. Nat. Phys., 2010, 6(9): 707
CrossRef ADS Google scholar
[12]
M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, D. Vitali. Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature. Phys. Rev. A, 2013, 88(1): 013804
CrossRef ADS Google scholar
[13]
F. Marquardt, J. P. Chen, A. A. Clerk, S. M. Girvin. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett., 2007, 99(9): 093902
CrossRef ADS Google scholar
[14]
I. Wilson-Rae, N. Nooshi, W. Zwerger, T. J. Kippenberg. Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett., 2007, 99(9): 093901
CrossRef ADS Google scholar
[15]
B. He, L. Yang, Q. Lin, M. Xiao. Radiation pressure cooling as a quantum dynamical process. Phys. Rev. Lett., 2017, 118(23): 233604
CrossRef ADS Google scholar
[16]
D. Y. Wang, C. H. Bai, S. Liu, S. Zhang, H. F. Wang. Optomechanical cooling beyond the quantum backaction limit with frequency modulation. Phys. Rev. A, 2018, 98(2): 023816
CrossRef ADS Google scholar
[17]
J. Y. Yang, D. Y. Wang, C. H. Bai, S. Y. Guan, X. Y. Gao, A. D. Zhu, H. F. Wang. Ground-state cooling of mechanical oscillator via quadratic optomechanical coupling with two coupled optical cavities. Opt. Express, 2019, 27(16): 22855
CrossRef ADS Google scholar
[18]
J. Wang. Ground-state cooling based on a three-cavity optomechanical system in the unresolved-sideband regime. Chin. Phys. B, 2021, 30(2): 024204
CrossRef ADS Google scholar
[19]
Q. He, F. Badshah, Y. Song, L. Wang, E. Liang, S. L. Su. Force sensing and cooling for the mechanical membrane in a hybrid optomechanical system. Phys. Rev. A, 2022, 105(1): 013503
CrossRef ADS Google scholar
[20]
J. Yang, C. Zhao, Z. Yang, R. Peng, S. Chao, L. Zhou. Nonreciprocal ground-state cooling of mechanical resonator in a spinning optomechanical system. Front. Phys., 2022, 17(5): 52507
CrossRef ADS Google scholar
[21]
J. Li, G. Li, S. Zippilli, D. Vitali, T. Zhang. Enhanced entanglement of two different mechanical resonators via coherent feedback. Phys. Rev. A, 2017, 95(4): 043819
CrossRef ADS Google scholar
[22]
C. H. Bai, D. Y. Wang, H. F. Wang, A. D. Zhu, S. Zhang. Robust entanglement between a movable mirror and atomic ensemble and entanglement transfer in coupled optomechanical system. Sci. Rep., 2016, 6(1): 33404
CrossRef ADS Google scholar
[23]
X. B. Yan. Enhanced output entanglement with reservoir engineering. Phys. Rev. A, 2017, 96(5): 053831
CrossRef ADS Google scholar
[24]
Z. J. Deng, X. B. Yan, Y. D. Wang, C. W. Wu. Optimizing the output-photon entanglement in multimode optomechanical systems. Phys. Rev. A, 2016, 93(3): 033842
CrossRef ADS Google scholar
[25]
X. B. Yan, Z. J. Deng, X. D. Tian, J. H. Wu. Entanglement optimization of filtered output fields in cavity optomechanics. Opt. Express, 2019, 27(17): 24393
CrossRef ADS Google scholar
[26]
Y. T. Chen, L. Du, Y. Zhang, J. H. Wu. Perfect transfer of enhanced entanglement and asymmetric steering in a cavity-magnomechanical system. Phys. Rev. A, 2021, 103(5): 053712
CrossRef ADS Google scholar
[27]
S. Y. Guan, H. F. Wang, X. X. Yi. Cooperative-effect-induced one-way steering in open cavity magnonics. npj Quantum Inf., 2022, 8: 102
CrossRef ADS Google scholar
[28]
Y. Zeng, B. Xiong, C. Li. Suppressing laser phase noise in an optomechanical system. Front. Phys., 2022, 17(1): 12503
CrossRef ADS Google scholar
[29]
C. H. Bai, D. Y. Wang, S. Zhang, S. Liu, H. F. Wang. Engineering of strong mechanical squeezing via the joint effect between Duffing nonlinearity and parametric pump driving. Photon. Res., 2019, 7(11): 1229
CrossRef ADS Google scholar
[30]
L. J. Feng, L. Yan, S. Q. Gong. Unconventional photon blockade induced by the self-Kerr and cross-Kerr nonlinearities. Front. Phys., 2023, 18(1): 12304
CrossRef ADS Google scholar
[31]
K. Quand G. S. Agarwal, Phonon-mediated electromagnetically induced absorption in hybrid opto-electromechanical systems, Phys. Rev. A 87, 031802(R) (2013)
[32]
G. S. Agarwal, S. Huang. Nanomechanical inverse electromagnetically induced transparency and confinement of light in normal modes. New J. Phys., 2014, 16(3): 033023
CrossRef ADS Google scholar
[33]
J. Wang. Optomechanically induced tunable ideal nonreciprocity in optomechanical system with Coulomb interaction. Quantum Inform. Process., 2022, 21(7): 238
CrossRef ADS Google scholar
[34]
B. He, L. Yang, and M. Xiao, Dynamical phonon laser in coupled active-passive microresonators, Phys. Rev. A 94, 031802(R) (2016)
[35]
L. Du, Y. M. Liu, B. Jiang, Y. Zhang. All-optical photon switching, router and amplifier using a passive-active optomechanical system. EPL, 2018, 122(2): 24001
CrossRef ADS Google scholar
[36]
C. C. Xia, X. B. Yan, X. D. Tian, F. Gao. Ideal optical isolator with a two-cavity optomechanical system. Opt. Commun., 2019, 451: 197
CrossRef ADS Google scholar
[37]
X. B. Yan, C. L. Cui, K. H. Gu, X. D. Tian, C. B. Fu, J. H. Wu. Coherent perfect absorption, transmission, and synthesis in a double-cavity optomechanical system. Opt. Express, 2014, 22(5): 4886
CrossRef ADS Google scholar
[38]
X. B. Yan, H. L. Lu, F. Gao, L. Yang. Perfect optical nonreciprocity in a double-cavity optomechanical system. Front. Phys., 2019, 14(5): 52601
CrossRef ADS Google scholar
[39]
Y. T. Chen, L. Du, Y. M. Liu, Y. Zhang. Dual-gate transistor amplifier in a multimode optomechanical system. Opt. Express, 2020, 28(5): 7095
CrossRef ADS Google scholar
[40]
T. Wang, C. H. Bai, D. Y. Wang, S. Liu, S. Zhang, H. F. Wang. Optomechanically induced Faraday and splitting effects in a double-cavity optomechanical system. Phys. Rev. A, 2021, 104(1): 013721
CrossRef ADS Google scholar
[41]
L. Qi, G. L. Wang, S. Liu, S. Zhang, H. F. Wang. Dissipation-induced topological phase transition and periodic-driving-induced photonic topological state transfer in a small optomechanical lattice. Front. Phys., 2021, 16(1): 12503
CrossRef ADS Google scholar
[42]
Z. R. Zhong, L. Chen, J. Q. Sheng, L. T. Shen, S. B. Zheng. Multiphonon-resonance quantum Rabi model and adiabatic passage in a cavity-optomechanical system. Front. Phys., 2022, 17(1): 12501
CrossRef ADS Google scholar
[43]
S. Shahidani, M. H. Naderi, M. Soltanolkotabi. Control and manipulation of electromagnetically induced transparency in a nonlinear optomechanical system with two movable mirrors. Phys. Rev. A, 2013, 88(5): 053813
CrossRef ADS Google scholar
[44]
Y. X. Liu, M. Davanco, V. Aksyuk, K. Srinivasan. Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators. Phys. Rev. Lett., 2013, 110(22): 223603
CrossRef ADS Google scholar
[45]
G. Pan, R. Xiao, H. Chen, J. Gao. Multicolor optomechanically induced transparency in a distant nano-electro-optomechanical system assisted by two-level atomic ensemble. Laser Phys., 2021, 31(6): 065202
CrossRef ADS Google scholar
[46]
H. Xiong, L. G. Si, A. S. Zheng, X. Yang, Y. Wu. Higher-order sidebands in optomechanically induced transparency. Phys. Rev. A, 2012, 86(1): 013815
CrossRef ADS Google scholar
[47]
X. B. Yan. Optomechanically induced transparency and gain. Phys. Rev. A, 2020, 101(4): 043820
CrossRef ADS Google scholar
[48]
G. S. Agarwaland S. Huang, Electromagnetically induced transparency in mechanical effects of light, Phys. Rev. A 81, 041803(R) (2010)
[49]
T. Bodiya, V. Sudhir, C. Wipf, N. Smith, A. Buikema, A. Kontos, H. Yu, N. Mavalvala. Sub-Hertz optomechanically induced transparency with a kilogram-scale mechanical oscillator. Phys. Rev. A, 2019, 100(1): 013853
CrossRef ADS Google scholar
[50]
A. Kronwald, F. Marquardt. Optomechanically induced transparency in the nonlinear quantum regime. Phys. Rev. Lett., 2013, 111: 133601
CrossRef ADS Google scholar
[51]
H. Jing, S. K. Özdemir, Z. Geng, J. Zhang, X. Y. Lü, B. Peng, L. Yang, F. Nori. Optomechanically-induced transparency in parity−time-symmetric microresonators. Sci. Rep., 2015, 5(1): 9663
CrossRef ADS Google scholar
[52]
W. Li, Y. Jiang, C. Li, H. Song. Parity−time-symmetry enhanced optomechanically-induced-transparency. Sci. Rep., 2016, 6(1): 31095
CrossRef ADS Google scholar
[53]
Y. C. Liu, B. B. Li, Y. F. Xiao. Electromagnetically induced transparency in optical microcavities. Nanophotonics, 2017, 6(5): 789
CrossRef ADS Google scholar
[54]
S. Weis, R. Rivie’re, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg. Optomechanically induced transparency. Science, 2010, 330(6010): 1520
CrossRef ADS Google scholar
[55]
X. B. Yan, K. H. Gu, C. B. Fu, C. L. Cui, R. Wang, J. H. Wu. Optical switching of optomechanically induced transparency and normal mode splitting in a double-cavity system. Eur. Phys. J. D, 2014, 68(5): 126
CrossRef ADS Google scholar
[56]
A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, O. Painter. Electromagnetically induced transparency and slow light with optomechanics. Nature, 2011, 472(7341): 69
CrossRef ADS Google scholar
[57]
X. B. Yan. Optomechanically induced optical responses with non-rotating wave approximation. J. Phys. At. Mol. Opt. Phys., 2021, 54(3): 035401
CrossRef ADS Google scholar
[58]
B. Chen, C. Jiang, K. D. Zhu. Slow light in a cavity optomechanical system with a Bose−Einstein condensate. Phys. Rev. A, 2011, 83(5): 055803
CrossRef ADS Google scholar
[59]
D. Tarhan, S. Huang, Ö. E. Müstecaplioğlu. Superluminal and ultraslow light propagation in optomechanical systems. Phys. Rev. A, 2013, 87(1): 013824
CrossRef ADS Google scholar
[60]
K. H. Gu, X. B. Yan, Y. Zhang, C. B. Fu, Y. M. Liu, X. Wang, J. H. Wu. Tunable slow and fast light in an atom-assisted optomechanical system. Opt. Commun., 2015, 338: 569
CrossRef ADS Google scholar
[61]
D. E. Chang, A. H. Safavi-Naeini, M. Hafezi, O. Painter. Slowing and stopping light using an optomechanical crystal array. New J. Phys., 2011, 13(2): 023003
CrossRef ADS Google scholar
[62]
M. J. Akram, M. M. Khan, F. Saif. Tunable fast and slow light in a hybrid optomechanical system. Phys. Rev. A, 2015, 92(2): 023846
CrossRef ADS Google scholar
[63]
X. B. Yan. Optomechanically induced ultraslow and ultrafast light. Physica E, 2021, 131: 114759
CrossRef ADS Google scholar
[64]
L. Wang, Y. T. Chen, K. Yin, Y. Zhang. Nonreciprocal transmission and asymmetric fast–slow light effect in an optomechanical system with two PT-symmetric mechanical resonators. Laser Phys., 2020, 30(10): 105205
CrossRef ADS Google scholar
[65]
Y. N. Zhao, T. Wang, D. Y. Wang, X. Han, S. Zhang, H. F. Wang. Optical amplification and fast-slow light in a three-mode cavity optomechanical system without rotating wave approximation. Photonics, 2021, 8(9): 384
CrossRef ADS Google scholar
[66]
X. W. Xu, Y. Li. Optical nonreciprocity and optomechanical circulator in three-mode optomechanical systems. Phys. Rev. A, 2015, 91(5): 053854
CrossRef ADS Google scholar
[67]
N. R. Bernier, L. D. Tóth, A. Koottandavida, M. A. Ioannou, D. Malz, A. Nunnenkamp, A. K. Feofanov, T. J. Kippenberg. Nonreciprocal reconfigurable microwave optomechanical circuit. Nat. Commun., 2017, 8(1): 604
CrossRef ADS Google scholar
[68]
M. Ludwig, A. H. Safavi-Naeini, O. Painter, F. Marquardt. Enhanced quantum nonlinearities in a two-mode optomechanical system. Phys. Rev. Lett., 2012, 109(6): 063601
CrossRef ADS Google scholar
[69]
X. Y. Lü, W. M. Zhang, S. Ashhab, Y. Wu, F. Nori. Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems. Sci. Rep., 2013, 3(1): 2943
CrossRef ADS Google scholar
[70]
L. Tian. Robust photon entanglement via quantum interference in optomechanical interfaces. Phys. Rev. Lett., 2013, 110(23): 233602
CrossRef ADS Google scholar
[71]
A. Nunnenkamp, K. Børkje, S. M. Girvin. Single-photon optomechanics. Phys. Rev. Lett., 2011, 107(6): 063602
CrossRef ADS Google scholar
[72]
A. Nunnenkamp, V. Sudhir, A. K. Feofanov, A. Roulet, T. J. Kippenberg. Quantum-limited amplification and parametric instability in the reversed dissipation regime of cavity optomechanics. Phys. Rev. Lett., 2014, 113(2): 023604
CrossRef ADS Google scholar
[73]
Sh. Barzanjeh, M. Abdi, G. J. Milburn, P. Tombesi, D. Vitali. Reversible optical-to-microwave quantum interface. Phys. Rev. Lett., 2012, 109(13): 130503
CrossRef ADS Google scholar
[74]
M. S. Bigelow, N. N. Lepeshkin, R. W. Boyd. Superluminal and slow light propagation in a room-temperature solid. Science, 2003, 301(5630): 200
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(3981 KB)

Accesses

Citations

Detail

Sections
Recommended

/