Criticality-based quantum metrology in the presence of decoherence

Wan-Ting He, Cong-Wei Lu, Yi-Xuan Yao, Hai-Yuan Zhu, Qing Ai

PDF(4531 KB)
PDF(4531 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (3) : 31304. DOI: 10.1007/s11467-023-1278-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Criticality-based quantum metrology in the presence of decoherence

Author information +
History +

Abstract

Because quantum critical systems are very sensitive to the variation of parameters around the quantum phase transition (QPT), quantum criticality has been presented as an efficient resource for metrology. In this paper, we address the issue whether the divergent feature of the inverted variance is realizable in the presence of noise when approaching the QPT. Taking the quantum Rabi model (QRM) as an example, we obtain the analytical result for the inverted variance with single-photon relaxation. We show that the inverted variance may be convergent in time due to the noise. Since the precision of the metrology is very sensitive to the noise, as a remedy, we propose squeezing the initial state to improve the precision under decoherence. In addition, we also investigate the criticality-based metrology under the influence of the two-photon relaxation. Strikingly, although the maximum inverted variance still manifests a power-law dependence on the energy gap, the exponent is positive and depends on the dimensionless coupling strength. This observation implies that the criticality may not enhance but weaken the precision in the presence of two-photon relaxation, due to the non-linearity introduced by the two-photon relaxation.

Graphical abstract

Keywords

criticality / quantum / metrology / decoherence

Cite this article

Download citation ▾
Wan-Ting He, Cong-Wei Lu, Yi-Xuan Yao, Hai-Yuan Zhu, Qing Ai. Criticality-based quantum metrology in the presence of decoherence. Front. Phys., 2023, 18(3): 31304 https://doi.org/10.1007/s11467-023-1278-2

References

[1]
T. L. Heugel , M. Biondi , O. Zilberberg , R. Chitra . Quantum transducer using a parametric driven-dissipative phase transition. Phys. Rev. Lett., 2019, 123(17): 173601
CrossRef ADS Google scholar
[2]
Y. Chu , S. Zhang , B. Yu , J. Cai . Dynamic framework for criticality-enhanced quantum sensing. Phys. Rev. Lett., 2021, 126(1): 010502
CrossRef ADS Google scholar
[3]
M. M. Rams , P. Sierant , O. Dutta , P. Horodecki , J. Zakrzewski . At the limits of criticality-based quantum metrology: Apparent super-Heisenberg scaling revisited. Phys. Rev. X, 2018, 8(2): 021022
CrossRef ADS Google scholar
[4]
L. Garbe , M. Bina , A. Keller , M. G. A. Paris , S. Felicetti . Critical quantum metrology with a finite-component quantum phase transition. Phys. Rev. Lett., 2020, 124(12): 120504
CrossRef ADS Google scholar
[5]
S. Felicetti , A. Le Boité . Universal spectral features of ultrastrongly coupled systems. Phys. Rev. Lett., 2020, 124(4): 040404
CrossRef ADS Google scholar
[6]
T. Ilias , D. Yang , S. F. Huelga , M. B. Plenio . Criticality-enhanced quantum sensing via continuous measurement. PRX Quantum, 2022, 3(1): 010354
CrossRef ADS Google scholar
[7]
P. Zanardi , M. G. A. Paris , L. C. Venuti . Quantum criticality as a resource for quantum estimation. Phys. Rev. A, 2008, 78(4): 042105
CrossRef ADS Google scholar
[8]
M. Tsang . Quantum transition-edge detectors. Phys. Rev. A, 2013, 88(2): 021801
CrossRef ADS Google scholar
[9]
S. Fernández-Lorenzo , D. Porras . Quantum sensing close to a dissipative phase transition: Symmetry breaking and criticality as metrological resources. Phys. Rev. A, 2017, 96(1): 013817
CrossRef ADS Google scholar
[10]
K. Gietka , F. Metz , T. Keller , J. Li . Adiabatic critical quantum metrology cannot reach the Heisenberg limit even when shortcuts to adiabaticity are applied. Quantum, 2021, 5: 489
CrossRef ADS Google scholar
[11]
X. Y. Lü , W. M. Zhang , S. Ashhab , Y. Wu , F. Nori . Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems. Sci. Rep., 2013, 3(1): 2943
CrossRef ADS Google scholar
[12]
S.Sachdev, Quantum Phase Transitions, Cambridge University Press, UK, 2011
[13]
H. T. Quan , Z. Song , X. F. Liu , P. Zanardi , C. P. Sun . Decay of Loschmidt echo enhanced by quantum criticality. Phys. Rev. Lett., 2006, 96(14): 140604
CrossRef ADS Google scholar
[14]
Q. Ai , Y. D. Wang , G. L. Long , C. P. Sun . Two mode photon bunching effect as witness of quantum criticality in circuit QED. Sci. China Ser. G, 2009, 52(12): 1898
CrossRef ADS Google scholar
[15]
S. S. Pang , A. N. Jordan . Optimal adaptive control for quantum metrology with time-dependent Hamiltonians. Nat. Commun., 2017, 8(1): 14695
CrossRef ADS Google scholar
[16]
S. Pang , T. A. Brun . Quantum metrology for a general Hamiltonian parameter. Phys. Rev. A, 2014, 90(2): 022117
CrossRef ADS Google scholar
[17]
M.O. ScullyM.S. Zubairy, Quantum Optics, Cambridge University Press, UK, 1997
[18]
M. J. Hwang , R. Puebla , M. B. Plenio . Quantum phase transition and universal dynamics in the Rabi model. Phys. Rev. Lett., 2015, 115(18): 180404
CrossRef ADS Google scholar
[19]
R. Puebla , M. J. Hwang , J. Casanova , M. B. Plenio . Probing the dynamics of a superradiant quantum phase transition with a single trapped ion. Phys. Rev. Lett., 2017, 118(7): 073001
CrossRef ADS Google scholar
[20]
J. S. Pedernales , I. Lizuain , S. Felicetti , G. Romero , L. Lamata , E. Solano . Quantum Rabi model with trapped ions. Sci. Rep., 2015, 5(1): 15472
CrossRef ADS Google scholar
[21]
D. Lv , S. An , Z. Liu , J. N. Zhang , J. S. Pedernales , L. Lamata , E. Solano , K. Kim . Quantum simulation of the quantum Rabi model in a trapped ion. Phys. Rev. X, 2018, 8(2): 021027
CrossRef ADS Google scholar
[22]
A. Frisk Kockum , A. Miranowicz , S. De Liberato , S. Savasta , F. Nori . Ultrastrong coupling between light and matter. Nat. Rev. Phys., 2019, 1(1): 19
CrossRef ADS Google scholar
[23]
W. Salmon , C. Gustin , A. Settineri , O. Di Stefano , D. Zueco , S. Savasta , F. Nori , S. Hughes . Gauge-independent emission spectra and quantum correlations in the ultrastrong coupling regime of open system cavity-QED. Nanophotonics, 2022, 11(8): 1573
CrossRef ADS Google scholar
[24]
S. Hughes , A. Settineri , S. Savasta , F. Nori . Resonant Raman scattering of single molecules under simultaneous strong cavity coupling and ultrastrong optomechanical coupling in plasmonic resonators: Phonon-dressed polaritons. Phys. Rev. B, 2021, 104(4): 045431
CrossRef ADS Google scholar
[25]
A. Mercurio , V. Macrì , C. Gustin , S. Hughes , S. Savasta , F. Nori . Regimes of cavity QED under incoherent excitation: From weak to deep strong coupling. Phys. Rev. Res., 2022, 4(2): 023048
CrossRef ADS Google scholar
[26]
Y. H. Chen , A. Miranowicz , X. Chen , Y. Xia , F. Nori . Enhanced-fidelity ultrafast geometric quantum computation using strong classical drives. Phys. Rev. Appl., 2022, 18(6): 064059
CrossRef ADS Google scholar
[27]
V. Macrì , A. Mercurio , F. Nori , S. Savasta , C. Sánchez Muñoz . Spontaneous scattering of Raman photons from cavity-QED systems in the ultrastrong coupling regime. Phys. Rev. Lett., 2022, 129(27): 273602
CrossRef ADS Google scholar
[28]
D. J. Zhang , D. M. Tong . Approaching Heisenberg scalable thermometry with built-in robustness against noise. npj Quantum Inf., 2022, 8: 81
CrossRef ADS Google scholar
[29]
S. F. Huelga , C. Macchiavello , T. Pellizzari , A. K. Ekert , M. B. Plenio , J. I. Cirac . Improvement of frequency standards with quantum entanglement. Phys. Rev. Lett., 1997, 79(20): 3865
CrossRef ADS Google scholar
[30]
A. W. Chin , S. F. Huelga , M. B. Plenio . Quantum metrology in non-Markovian environments. Phys. Rev. Lett., 2012, 109(23): 233601
CrossRef ADS Google scholar
[31]
J. Ma , X. Wang , C. P. Sun , F. Nori . Quantum spin squeezing. Phys. Rep., 2011, 509(2-3): 89
CrossRef ADS Google scholar
[32]
Z. P. Liu , J. Zhang , Ş. K. Özdemir , B. Peng , H. Jing , X. Y. Lü , C. W. Li , L. Yang , F. Nori , Y. Liu . Metrology with PT-symmetric cavities: Enhanced sensitivity near the PT-phase transition. Phys. Rev. Lett., 2016, 117(11): 110802
CrossRef ADS Google scholar
[33]
K. Xu , Y. R. Zhang , Z. H. Sun , H. Li , P. Song , Z. Xiang , K. Huang , H. Li , Y. H. Shi , C. T. Chen , X. Song , D. Zheng , F. Nori , H. Wang , H. Fan . Metrological characterization of non-Gaussian entangled states of superconducting qubits. Phys. Rev. Lett., 2022, 128(15): 150501
CrossRef ADS Google scholar
[34]
A. G. Kofman , S. Ashhab , F. Nori . Nonperturbative theory of weak pre- and post-selected measurements. Phys. Rep., 2012, 520(2): 43
CrossRef ADS Google scholar
[35]
Y. Matsuzaki , S. C. Benjamin , J. Fitzsimons . Magnetic field sensing beyond the standard quantum limit under the effect of decoherence. Phys. Rev. A, 2011, 84(1): 012103
CrossRef ADS Google scholar
[36]
Q. Ai , Y. Li , H. Zheng , C. P. Sun . Quantum anti-Zeno effect without rotating wave approximation. Phys. Rev. A, 2010, 81(4): 042116
CrossRef ADS Google scholar
[37]
Q. Ai , D. Xu , S. Yi , A. G. Kofman , C. P. Sun , F. Nori . Quantum anti-zeno effect without wave function reduction. Sci. Rep., 2013, 3(1): 1752
CrossRef ADS Google scholar
[38]
P. M. Harrington , J. T. Monroe , K. W. Murch . Quantum Zeno effects from measurement controlled qubit-bath interactions. Phys. Rev. Lett., 2017, 118(24): 240401
CrossRef ADS Google scholar
[39]
X. Y. Long , W. T. He , N. N. Zhang , K. Tang , Z. D. Lin , H. F. Liu , X. F. Nie , G. R. Feng , J. Li , T. Xin , Q. Ai , D. W. Lu . Entanglement-enhanced quantum metrology in colored noise by quantum Zeno effect. Phys. Rev. Lett., 2022, 129(7): 070502
CrossRef ADS Google scholar
[40]
I. Buluta , F. Nori . Quantum simulators. Science, 2009, 326(5949): 108
CrossRef ADS Google scholar
[41]
I. M. Georgescu , S. Ashhab , F. Nori . Quantum simulation. Rev. Mod. Phys., 2014, 86(1): 153
CrossRef ADS Google scholar
[42]
N. N. Zhang , M. J. Tao , W. T. He , X. Y. Chen , X. Y. Kong , F. G. Deng , N. Lambert , Q. Ai . Efficient quantum simulation of open quantum dynamics at various Hamiltonians and spectral densities. Front. Phys., 2021, 16(5): 51501
CrossRef ADS Google scholar
[43]
B. X. Wang , M. J. Tao , Q. Ai , T. Xin , N. Lambert , D. Ruan , Y. C. Cheng , F. Nori , F. G. Deng , G. L. Long . Efficient quantum simulation of photosynthetic light harvesting. npj Quantum Inf., 2018, 4: 52
CrossRef ADS Google scholar
[44]
X. Y. Chen , N. N. Zhang , W. T. He , X. Y. Kong , M. J. Tao , F. G. Deng , Q. Ai , G. L. Long . Global correlation and local information flows in controllable non-Markovian open quantum dynamics. npj Quantum Inf., 2022, 8: 22
CrossRef ADS Google scholar
[45]
Y. N. Lu , Y. R. Zhang , G. Q. Liu , F. Nori , H. Fan , X. Y. Pan . Observing information backflow from controllable non-Markovian multichannels in diamond. Phys. Rev. Lett., 2020, 124(21): 210502
CrossRef ADS Google scholar
[46]
Z. Leghtas , S. Touzard , I. M. Pop , A. Kou , B. Vlastakis , A. Petrenko , K. M. Sliwa , A. Narla , S. Shankar , M. J. Hatridge , M. Reagor , L. Frunzio , R. J. Schoelkopf , M. Mirrahimi , M. H. Devoret . Confining the state of light to a quantum manifold by engineered two-photon loss. Science, 2015, 347(6224): 853
CrossRef ADS Google scholar
[47]
M. Malekakhlagh , A. W. Rodriguez . Quantum Rabi model with two-photon relaxation. Phys. Rev. Lett., 2019, 122(4): 043601
CrossRef ADS Google scholar
[48]
R. H. Dicke . Coherence in spontaneous radiation processes. Phys. Rev., 1954, 93(1): 99
CrossRef ADS Google scholar
[49]
J. R. Schrieffer , P. A. Wolff . Relation between the Anderson and Kondo Hamiltonians. Phys. Rev., 1966, 149(2): 491
CrossRef ADS Google scholar
[50]
H.P. BreuerF.Petruccione, The Theory of Open Quantum Systems, New York: Oxford University Press, 2002
[51]
J. R. Johansson , P. D. Nation , F. Nori . QuTiP: An open-source python framework for the dynamics of open quantum systems. Comput. Phys. Commun., 2012, 183(8): 1760
CrossRef ADS Google scholar
[52]
H.J. Carmichael, An Open Systems Approach to Quantum Optics, Berlin: Spring, 1993
[53]
C.W. GardinerP.Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, Berlin: Springer, 2004
[54]
M. J. Hwang , P. Rabl , M. B. Plenio . Dissipative phase transition in the open quantum Rabi model. Phys. Rev. A, 2018, 97(1): 013825
CrossRef ADS Google scholar
[55]
Q. Ai , P. B. Li , W. Qin , J. X. Zhao , C. P. Sun , F. Nori . The NV netamaterial: Tunable quantum hyper-bolic metamaterial using nitrogen vacancy centers in diamond. Phys. Rev. B, 2021, 104(1): 014109
CrossRef ADS Google scholar
[56]
H. Dong , D. Z. Xu , J. F. Huang , C. P. Sun . Coherent excitation transfer via the dark-state channel in a bionic system. Light Sci. Appl., 2012, 1(3): e2
CrossRef ADS Google scholar

Acknowledgements

This work was supported by Beijing Natural Science Foundation under Grant No. 1202017 and the National Natural Science Foundation of China under Grant Nos. 11674033 and 11505007, and Beijing Normal University under Grant No. 2022129.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(4531 KB)

Accesses

Citations

Detail

Sections
Recommended

/