
Epitaxial growth of 2D gallium selenide flakes for strong nonlinear optical response and visible-light photodetection
Mengting Song, Nan An, Yuke Zou, Yue Zhang, Wenjuan Huang, Huayi Hou, Xiangbai Chen
Front. Phys. ›› 2023, Vol. 18 ›› Issue (5) : 52302.
Epitaxial growth of 2D gallium selenide flakes for strong nonlinear optical response and visible-light photodetection
As an emerging group III−VI semiconductor two-dimensional (2D) material, gallium selenide (GaSe) has attracted much attention due to its excellent optical and electrical properties. In this work, high-quality epitaxial growth of few-layer GaSe nanoflakes with different thickness is achieved via chemical vapor deposition (CVD) method. Due to the non-centrosymmetric structure, the grown GaSe nanoflakes exhibits excellent second harmonic generation (SHG). In addition, the constructed GaSe nanoflake-based photodetector exhibits stable and fast response under visible light excitation, with a rise time of 6 ms and decay time of 10 ms. These achievements clearly demonstrate the possibility of using GaSe nanoflake in the applications of nonlinear optics and (opto)-electronics.
2D materials / gallium selenide / second harmonic generation / chemical vapor deposition / photodetector
Fig.1 Synthesis of GaSe nanoflakes by CVD method. (a) Schematic diagram of 2D GaSe nanoflakes growth by a CVD system. (b) Optical image of GaSe nanoflake. Inset: AFM image of GaSe nanoflake. (c) TEM image of GaSe nanoflake. (d) HRTEM image of GaSe nanoflake. Inset: Corresponding SAED pattern. (e) EDX spectrum of GaSe nanoflake. Inset: Atomic ratio of Ga/Se. |
Fig.3 The second harmonic generation (SHG) test of 2D GaSe nanoflake: (a) SHG intensity of GaSe flake with different excitation power and (b) the corresponding linear fitting. (c) SHG intensity of GaSe nanoflakes with different thicknesses. (d) Wavelength dependence of SHG intensity from 800 to 1080 nm. (e) SHG polarization test of 2D GaSe nanoflake, rotating the sample angle θ at a step of 15o, showing a 6-axis rotating scale; (f) SHG mapping of a single GaSe nanoflake. |
Tab.1 Comparison of the key parameters of our device to the reported 2D materials and the other structures of GaSe-based photodetectors. |
Device | Fabrication methods | Rλ (mA·W−1) | EQE (%) | D* (Jones) | Rise time (ms) | Decay time (ms) | Ref. |
---|---|---|---|---|---|---|---|
Graphene | ME | 1.0 | 6−16 | − | − | − | [52] |
MoSe2 | CVD | 13 | − | − | ~60 | ~60 | [53] |
WS2 | CVD | 7.3 × 103 | 1814 | − | 5 | 5 | [13] |
ReSe2 | CVD | 2.98 × 103 | 458 | − | 5.47 × 103 | 8.41 × 103 | [54] |
HfS2 | CVD | 2.8 | − | − | 55 | 55 | [55] |
InSe | CVD | 1.5 × 103 | 230 | 3.1 × 108 | 500 | 800 | [56] |
In2Se3 | MBE | 3 | 0.67 | 109 | ≈7 | ≈7 | [57] |
GaS | CVD | 50 | 23 | − | − | − | [58] |
GaSe | VPM | 17 | 5.2 | − | − | − | [59] |
GaSe | CVD | 2.7 | 0.63 | 8.7 × 107 | 6 | 10 | This work |
Note. ME: Mechanical exfoliation; MBE: Molecular beam epitaxy; VPM: Vapor phase mass transport. |
Fig.4 (a) Schematic image of the photodetector. (b) I−V characteristics of the device in the dark and under light illumination with wavelength at 532 nm (Vbias = 5 V). (c) Time-resolved photoresponse of the device at 532 nm (Vbias = 2 V). (d) Rise and decay curve measured under 532 nm excitation at Vbias = 2 V. (e) Photocurrent as a function of illumination intensity at Vbias = 1 V under 532 nm excitation. (f) The corresponding fitting curve of photocurrent versus incident light intensities by the power law. |
[1] |
J. L. Zhao , D. Ma , C. Wang , Z. N. Guo , B. Zhang , J. Q. Li , G. H. Nie , N. Xie , H. Zhang . Recent advances in anisotropic two-dimensional materials and device applications. Nano Res., 2021, 14(4): 897
CrossRef
ADS
Google scholar
|
[2] |
A. Zavabeti , A. Jannat , L. Zhong , A. A. Haidry , Z. Yao , J. Z. Ou . Two-dimensional materials in large-areas: Synthesis, properties and applications. Nano-Micro Lett., 2020, 12(1): 66
CrossRef
ADS
Google scholar
|
[3] |
A.AlexeevM.BarnesV.K. NagareddyM.CraciunD.Wright, A simple process for the fabrication of large-area CVD graphene based devices via selective in situ functionalization and patterning, 2D Mater. 4, 011010 (2016)
|
[4] |
N. E. Safie , M. A. Azam , M. F. A. Aziz , M. Ismail . Recent progress of graphene‐based materials for efficient charge transfer and device performance stability in perovskite solar cells. Int. J. Energy Res., 2021, 45(2): 1347
CrossRef
ADS
Google scholar
|
[5] |
A. K. Geim . Graphene: Status and prospects. Science, 2009, 324(5934): 1530
CrossRef
ADS
Google scholar
|
[6] |
L. Huang , Q. H. Chang , G. L. Guo , Y. Liu , Y. Q. Xie , T. Wang , B. Ling , H. F. Yang . Synthesis of high-quality graphene films on nickel foils by rapid thermal chemical vapor deposition. Carbon, 2012, 50(2): 551
CrossRef
ADS
Google scholar
|
[7] |
F. N. Xia , H. Wang , Y. C. Jia . Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun., 2014, 5(1): 4458
CrossRef
ADS
Google scholar
|
[8] |
Y. Chen , G. B. Jiang , S. Q. Chen , Z. N. Guo , X. F. Yu , C. J. Zhao , H. Zhang , Q. L. Bao , S. C. Wen , D. Y. Tang , D. Y. Fan . Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation. Opt. Express, 2015, 23(10): 12823
CrossRef
ADS
Google scholar
|
[9] |
M. Buscema , D. J. Groenendijk , S. I. Blanter , G. A. Steele , H. S. van der Zant , A. Castellanos-Gomez . Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett., 2014, 14(6): 3347
CrossRef
ADS
Google scholar
|
[10] |
L. K. Li , Y. J. Yu , G. J. Ye , Q. Q. Ge , X. D. Ou , H. Wu , D. L. Feng , X. H. Chen , Y. B. Zhang . Black phosphorus field-effect transistors. Nat. Nanotechnol., 2014, 9(5): 372
CrossRef
ADS
Google scholar
|
[11] |
A. Singh , M. Moun , M. Sharma , A. Barman , A. Kumar Kapoor , R. Singh . NaCl-assisted substrate dependent 2D planar nucleated growth of MoS2. Appl. Surf. Sci., 2021, 538: 148201
CrossRef
ADS
Google scholar
|
[12] |
W. Wang , H. Shu , J. Wang , Y. Cheng , P. Liang , X. Chen . Defect passivation and photoluminescence enhancement of monolayer MoS2 crystals through sodium halide-assisted chemical vapor deposition growth. ACS Appl. Mater. Interfaces, 2020, 12(8): 9563
CrossRef
ADS
Google scholar
|
[13] |
Y. Chen . Growth of a large, single-crystalline WS2 monolayer for high-performance photodetectors by chemical vapor deposition. Micromachines (Basel), 2021, 12(2): 137
CrossRef
ADS
Google scholar
|
[14] |
Z. Wang , Y. Xie , H. Wang , R. Wu , T. Nan , Y. Zhan , J. Sun , T. Jiang , Y. Zhao , Y. Lei , M. Yang , W. Wang , Q. Zhu , X. Ma , Y. Hao . NaCl-assisted one-step growth of MoS2-WS2 in-plane heterostructures. Nanotechnology, 2017, 28(32): 325602
CrossRef
ADS
Google scholar
|
[15] |
M. Chhowalla , H. S. Shin , G. Eda , L. J. Li , K. P. Loh , H. Zhang . The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem., 2013, 5(4): 263
CrossRef
ADS
Google scholar
|
[16] |
K.S. NovoselovA.MishchenkoA.CarvalhoA.H. Castro Neto, 2D materials and van der Waals heterostructures, Science 353(6298), aac9439 (2016)
|
[17] |
A. K. Geim , I. V. Grigorieva . Van der Waals heterostructures. Nature, 2013, 499(7459): 419
CrossRef
ADS
Google scholar
|
[18] |
J. F. Li , S. Kolekar , M. Ghorbani-Asl , T. Lehnert , J. Biskupek , U. Kaiser , A. V. Krasheninnikov , M. Batzill . Layer-dependent band gaps of platinum dichalcogenides. ACS Nano, 2021, 15(8): 13249
CrossRef
ADS
Google scholar
|
[19] |
J. W. Jiang , H. Tang , B. S. Wang , Z. B. Su . Raman and infrared properties and layer dependence of the phonon dispersions in multilayered graphene. Phys. Rev. B, 2008, 77(23): 235421
CrossRef
ADS
Google scholar
|
[20] |
M. Tamulewicz , J. Kutrowska-Girzycka , K. Gajewski , J. Serafinczuk , A. Sierakowski , J. Jadczak , L. Bryja , T. P. Gotszalk . Layer number dependence of the work function and optical properties of single and few layers MoS2: Effect of substrate. Nanotechnology, 2019, 30(24): 245708
CrossRef
ADS
Google scholar
|
[21] |
X. L. Li , W. P. Han , J. B. Wu , X. R. Qiao , J. Zhang , P. H. Tan . Layer-number-dependent optical properties of 2D materials and their application for thickness determination. Adv. Funct. Mater., 2017, 27(19): 1604468
CrossRef
ADS
Google scholar
|
[22] |
R. He , J. van Baren , J. Yan , X. Xi , Z. Ye , G. Ye , I. H. Lu , S. M. Leong , C. H. Lui . Interlayer breathing and shear modes in NbSe2 atomic layers. 2D Mater., 2016, 3(3): 031008
CrossRef
ADS
Google scholar
|
[23] |
L. Quan , Y. Q. Song , Y. Lin , G. H. Zhang , Y. M. Dai , Y. K. Wu , K. Jin , H. Y. Ding , N. Pan , Y. Luo , X. P. Wang . The Raman enhancement effect on a thin GaSe flake and its thickness dependence. J. Mater. Chem. C, 2015, 3(42): 11129
CrossRef
ADS
Google scholar
|
[24] |
X. F. Li , M. W. Lin , A. A. Puretzky , J. C. Idrobo , C. Ma , M. F. Chi , M. Yoon , C. M. Rouleau , I. I. Kravchenko , D. B. Geohegan , K. Xiao . Controlled vapor phase growth of single crystalline, two-dimensional GaSe crystals with high photoresponse. Sci. Rep., 2014, 4(1): 5497
CrossRef
ADS
Google scholar
|
[25] |
V. V. Capozzi , M. Montagna . Optical spectroscopy of extrinsic recombinations in gallium selenide. Phys. Rev. B, 1989, 40(5): 3182
CrossRef
ADS
Google scholar
|
[26] |
Z. X. Zou , J. W. Liang , X. H. Zhang , C. Ma , P. Xu , X. Yang , Z. X. Zeng , X. X. Sun , C. G. Zhu , D. L. Liang , X. J. Zhuang , D. Li , A. L. Pan . Liquid−metal-assisted growth of vertical GaSe/MoS2 p–n heterojunctions for sensitive self-driven photodetectors. ACS Nano, 2021, 15(6): 10039
CrossRef
ADS
Google scholar
|
[27] |
Y. Tang , K. C. Mandal , J. A. McGuire , C. W. Lai . Layer- and frequency-dependent second harmonic generation in reflection from GaSe atomic crystals. Phys. Rev. B, 2016, 94(12): 125302
CrossRef
ADS
Google scholar
|
[28] |
D. X. Yan , Y. Y. Wang , D. G. Xu , P. X. Liu , C. Yan , J. Shi , H. X. Liu , Y. X. He , L. H. Tang , J. C. Feng , J. Q. Guo , W. Shi , K. Zhong , Y. H. Tsang , J. Q. Yao . High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator. Photon. Res., 2017, 5(2): 82
CrossRef
ADS
Google scholar
|
[29] |
H. C. Hsu , G. M. Hsu , Y. Lai , Z. C. Feng , S. Y. Tseng , A. Lundskog , U. Forsberg , E. Janzén , K. H. Chen , L. C. Chen . Polarized and diameter-dependent Raman scattering from individual aluminum nitride nanowires: The antenna and cavity effects. Appl. Phys. Lett., 2012, 101(12): 121902
CrossRef
ADS
Google scholar
|
[30] |
S. H. Lee , Y. Hsu , H. Hsu , C. Chang , W. Hsieh . Fabrication and optical property of GaSe thin films grown by pulsed laser deposition. Jpn. J. Appl. Phys., 2003, 42(Part1(8): 5217
CrossRef
ADS
Google scholar
|
[31] |
S. R. Jian , J. Juang , C. W. Luo , S. N. Ku , K. Wu . Nanomechanical properties of GaSe thin films deposited on Si(111) substrates by pulsed laser deposition. J. Alloys Compd., 2012, 542: 124
CrossRef
ADS
Google scholar
|
[32] |
S. V. Sorokin , P. S. Avdienko , I. V. Sedova , D. A. Kirilenko , M. A. Yagovkina , A. N. Smirnov , V. Y. Davydov , S. V. Ivanov . Molecular-beam epitaxy of two-dimensional GaSe layers on GaAs(001) and GaAs(112) substrates: Structural and optical properties. Semiconductors, 2019, 53(8): 1131
CrossRef
ADS
Google scholar
|
[33] |
X. Yuan , L. Tang , S. S. Liu , P. Wang , Z. G. Chen , C. Zhang , Y. W. Liu , W. Y. Wang , Y. C. Zou , C. Liu , N. Guo , J. Zou , P. Zhou , W. D. Hu , F. X. Xiu . Arrayed van der Waals vertical heterostructures based on 2D GaSe grown by molecular beam epitaxy. Nano Lett., 2015, 15(5): 3571
CrossRef
ADS
Google scholar
|
[34] |
C. W. Liu , J. J. Dai , S. K. Wu , N. Q. Diep , S. H. Huynh , T. T. Mai , H. C. Wen , C. T. Yuan , W. C. Chou , J. L. Shen , H. H. Luc . Substrate-induced strain in 2D layered GaSe materials grown by molecular beam epitaxy. Sci. Rep., 2020, 10(1): 12972
CrossRef
ADS
Google scholar
|
[35] |
K. Çınar Demir , Ş. Aydoğan , E. Gür , C. Coşkun , Z. Aygün . Synthesis and characterization of p-GaSe thin films and the analyses of I−V and C−V measurements of p-GaSe/p-Si heterojunction under electron irradiation. Radiat. Eff. Defects Solids, 2017, 172(7-8): 650
CrossRef
ADS
Google scholar
|
[36] |
P. Sutter , J. S. French , L. Khosravi Khorashad , C. Argyropoulos , E. Sutter . Optoelectronics and nanophotonics of vapor-liquid-solid grown GaSe van der Waals nanoribbons. Nano Lett., 2021, 21(10): 4335
CrossRef
ADS
Google scholar
|
[37] |
L. Peng , Z. Xu , Z. Liu , Y. Y. Wei , H. Y. Sun , Z. Li , X. L. Zhao , C. Gao . An iron-based green approach to 1-h production of single-layer graphene oxide. Nat. Commun., 2015, 6(1): 5716
CrossRef
ADS
Google scholar
|
[38] |
L. L. Tan , Q. B. Liu , Y. F. Ding , X. G. Lin , W. Hu , M. Q. Cai , H. Zhou . Effective shape-controlled synthesis of gallium selenide nanosheets by vapor phase deposition. Nano Res., 2020, 13(2): 557
CrossRef
ADS
Google scholar
|
[39] |
N.ZhouR.Y. WangX.ZhouH.Y. SongX.XiongY.DingJ.T. LuL.GanT.Y. Zhai, P-GaSe/N-MoS2 vertical heterostructures synthesized by van der Waals epitaxy for photoresponse modulation, Small 14(7), 1702731 (2018)
|
[40] |
Y. B. Zhou , B. Deng , Y. Zhou , X. B. Ren , J. B. Yin , C. H. Jin , Z. F. Liu , H. L. Peng . Low-temperature growth of two-dimensional layered chalcogenide crystals on liquid. Nano Lett., 2016, 16(3): 2103
CrossRef
ADS
Google scholar
|
[41] |
X. Xiong , Q. Zhang , X. Zhou , B. Jin , H. Q. Li , T. Y. Zhai . One-step synthesis of p-type GaSe nanoribbons and their excellent performance in photodetectors and phototransistors. J. Mater. Chem. C, 2016, 4(33): 7817
CrossRef
ADS
Google scholar
|
[42] |
X. Li , J. Dong , J. C. Idrobo , A. A. Puretzky , C. M. Rouleau , D. B. Geohegan , F. Ding , K. Xiao . Edge-controlled growth and etching of two-dimensional GaSe monolayers. J. Am. Chem. Soc., 2017, 139(1): 482
CrossRef
ADS
Google scholar
|
[43] |
X. Li , M. Lin , J. Lin , B. Huang , A. A. Puretzky , C. Ma , K. Wang , W. Zhou , S. T. Pantelides , M. Chi , I. Kravchenko , J. Fowlkes , C. M. Rouleau , D. B. Geohegan , K. Xiao . Two-dimensional GaSe-MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy. Nanomaterials (Basel), 2016, 2: e1501882
|
[44] |
G. Han , Z. G. Chen , L. Yang , L. Cheng , K. Jack , J. Drennan , J. Zou . Thermal stability and oxidation of layer-structured rhombohedral In3Se4 nanostructures. Appl. Phys. Lett., 2013, 103(26): 263105
CrossRef
ADS
Google scholar
|
[45] |
W. J. Huang , L. Gan , H. Q. Li , Y. Ma , T. Y. Zhai . Phase-engineered growth of ultrathin InSe flakes by chemical vapor deposition for high-efficiency second harmonic generation. Chemistry, 2018, 24(58): 15678
CrossRef
ADS
Google scholar
|
[46] |
A. Kuhn , A. Chevy , R. Chevalier . Crystal structure and interatomic distances in GaSe. Phys. Status Solidi A, 1975, 31(2): 469
CrossRef
ADS
Google scholar
|
[47] |
Z. N. Guo , H. Zhang , S. B. Lu , Z. T. Wang , S. Y. Tang , J. D. Shao , Z. B. Sun , H. H. Xie , H. Y. Wang , X. F. Yu , P. K. Chu . From black phosphorus to phosphorene: Basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater., 2015, 25(45): 6996
CrossRef
ADS
Google scholar
|
[48] |
S. F. Quan , Y. Y. Wang , Y. Liang , J. Jiang , B. Zhong , K. Yu , H. Zhang , G. F. Kan . Interference effect on photoluminescence intensity in GaSe up to 200 layers. J. Phys. Chem. C, 2020, 124(18): 10185
CrossRef
ADS
Google scholar
|
[49] |
X. Zhou , J. Cheng , Y. Zhou , T. Cao , H. Hong , Z. Liao , S. Wu , H. Peng , K. Liu , D. Yu . Strong second-harmonic generation in atomic layered GaSe. J. Am. Chem. Soc., 2015, 137(25): 7994
CrossRef
ADS
Google scholar
|
[50] |
L. Tang , C. Teng , Y. Luo , U. Khan , H. Pan , Z. Cai , Y. Zhao , B. Liu , H. M. Cheng . Confined van der Waals epitaxial growth of two-dimensional large single-crystal In2Se3 for flexible broadband photodetectors. Research, 2019, 2019: 2763704
CrossRef
ADS
Google scholar
|
[51] |
X. Zhou , Q. Zhang , L. Gan , H. Q. Li , T. Y. Zhai . Large-size growth of ultrathin SnS2 nanosheets and high performance for phototransistors. Adv. Funct. Mater., 2016, 26(24): 4405
CrossRef
ADS
Google scholar
|
[52] |
F. Xia , T. Mueller , Y. M. Lin , A. Valdes-Garcia , P. Avouris . Ultrafast graphene photodetector. Nat. Nanotechnol., 2009, 4(12): 839
CrossRef
ADS
Google scholar
|
[53] |
J.XiaX.HuangL.Z. LiuM.WangL.WangB.HuangD.D. ZhuJ.J. LiC.Z. GuX.M. Meng, CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors, Nanoscale 6(15), 8949 (2014)
|
[54] |
M. Hafeez , L. Gan , H. Q. Li , Y. Ma , T. Y. Zhai . Chemical vapor deposition synthesis of ultrathin hexagonal rese2 flakes for anisotropic Raman property and optoelectronic application. Adv. Mater., 2016, 28(37): 8296
CrossRef
ADS
Google scholar
|
[55] |
C. Y. Yan , L. Gan , X. Zhou , J. Guo , W. J. Huang , J. W. Huang , B. Jin , J. Xiong , T. Y. Zhai , Y. R. Li . Space-confined chemical vapor deposition synthesis of ultrathin HfS2 flakes for optoelectronic application. Adv. Funct. Mater., 2017, 27(39): 1702918
CrossRef
ADS
Google scholar
|
[56] |
W. J. Huang , H. Y. Hou , X. B. Chen , T. Y. Zhai . Synthesis of superlattice InSe nanosheets with enhanced electronic and optoelectronic performance. Chem. J. Chin. Univ., 2020, 41(4): 682
|
[57] |
M. S. Claro , J. Grzonka , N. Nicoara , P. J. Ferreira , S. Sadewasser . Wafer‐scale fabrication of 2D β‐In2Se3 photodetectors. Adv. Opt. Mater., 2021, 9(1): 2001034
CrossRef
ADS
Google scholar
|
[58] |
Y. Lu , J. Chen , T. Chen , Y. Shu , R. J. Chang , Y. Sheng , V. Shautsova , N. Mkhize , P. Holdway , H. Bhaskaran , J. H. Warner . Controlling defects in continuous 2D GaS films for high-performance wavelength-tunable UV-discriminating photodetectors. Adv. Mater., 2020, 32(7): 1906958
CrossRef
ADS
Google scholar
|
[59] |
S. Lei , L. Ge , Z. Liu , S. Najmaei , G. Shi , G. You , J. Lou , R. Vajtai , P. M. Ajayan . Synthesis and photoresponse of large GaSe atomic layers. Nano Lett., 2013, 13(6): 2777
CrossRef
ADS
Google scholar
|
Part of a collection:
/
〈 |
|
〉 |