Universal behaviors of magnon-mediated spin transport in disordered nonmagnetic metal-ferromagnetic insulator heterostructures

Gaoyang Li, Fuming Xu, Jian Wang

PDF(5630 KB)
PDF(5630 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (3) : 33310. DOI: 10.1007/s11467-023-1275-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Universal behaviors of magnon-mediated spin transport in disordered nonmagnetic metal-ferromagnetic insulator heterostructures

Author information +
History +

Abstract

We numerically investigate magnon-mediated spin transport through nonmagnetic metal/ferromagnetic insulator (NM/FI) heterostructures in the presence of Anderson disorder, and discover universal behaviors of the spin conductance in both one-dimensional (1D) and 2D systems. In the localized regime, the variance of logarithmic spin conductance σ2(lnGT) shows a universal linear scaling with its average ⟨lnGT⟩, independent of Fermi energy, temperature, and system size in both 1D and 2D cases. In 2D, the competition between disorder-enhanced density of states at the NM/FI interface and disorder-suppressed spin transport leads to a non-monotonic dependence of average spin conductance on the disorder strength. As a result, in the metallic regime, average spin conductance is enhanced by disorder, and a new linear scaling between spin conductance fluctuation rms(GT) and average spin conductance GT is revealed which is universal at large system width. These universal scaling behaviors suggest that spin transport mediated by magnon in disordered 2D NM/FI systems belongs to a new universality class, different from that of charge conductance in 2D normal metal systems.

Graphical abstract

Keywords

universal statistical behaviors / magnon-mediated spin transport / disorder-enhanced spin conductance

Cite this article

Download citation ▾
Gaoyang Li, Fuming Xu, Jian Wang. Universal behaviors of magnon-mediated spin transport in disordered nonmagnetic metal-ferromagnetic insulator heterostructures. Front. Phys., 2023, 18(3): 33310 https://doi.org/10.1007/s11467-023-1275-5

References

[1]
C. P. Umbach, S. Washburn, R. B. Laibowitz, R. A. Webb. Magnetoresistance of small, quasi-one-dimensional, normal-metal rings and lines. Phys. Rev. B, 1984, 30(7): 4048
CrossRef ADS Google scholar
[2]
P. A. Lee, A. D. Stone. Universal Conductance Fluctuations in Metals. Phys. Rev. Lett., 1985, 55(15): 1622
CrossRef ADS Google scholar
[3]
B. L. Altshuler. Fluctuations in the extrinsic conductivity of disordered conductors. JETP Lett., 1985, 41: 648
[4]
P. A. Lee, A. D. Stone, H. Fukuyama. Universal conductance fluctuations in metals: Effects of finite temperature, interactions, and magnetic field. Phys. Rev. B, 1987, 35(3): 1039
CrossRef ADS Google scholar
[5]
Z. Qiao, Y. Xing, J. Wang. Universal conductance fluctuation of mesoscopic systems in the metal-insulator crossover regime. Phys. Rev. B, 2010, 81(8): 085114
CrossRef ADS Google scholar
[6]
L. Zhang, J. Zhuang, Y. Xing, J. Li, J. Wang, H. Guo. Universal transport properties of three-dimensional topological insulator nanowires. Phys. Rev. B, 2014, 89(24): 245107
CrossRef ADS Google scholar
[7]
Y. L. Han, Z. H. Qiao. Universal conductance fluctuations in Sierpinski carpets. Front. Phys., 2019, 14(6): 63603
CrossRef ADS Google scholar
[8]
P. W. Anderson. Absence of diffusion in certain random lattices. Phys. Rev., 1958, 109(5): 1492
CrossRef ADS Google scholar
[9]
B. Kramer, A. MacKinnon. Localization: Theory and experiment. Rep. Prog. Phys., 1993, 56(12): 1469
CrossRef ADS Google scholar
[10]
E.Abrahams, 50 Years of Anderson Localization, World Scientific, Singapore, 2010
[11]
N. F. Mott. Conduction in glasses containing transition metal ions. J. Non-Cryst. Solids, 1968, 1(1): 1
CrossRef ADS Google scholar
[12]
J. T. Edwards, D. J. Thouless. Numerical studies of localization in disordered systems. J. Phys. C, 1972, 5: 807
CrossRef ADS Google scholar
[13]
E. Abrahams, P. W. Anderson, D. C. Licciardello, T. V. Ramakrishnan. Scaling theory of localization: Absence of quantum diffusion in two dimensions. Phys. Rev. Lett., 1979, 42(10): 673
CrossRef ADS Google scholar
[14]
P. W. Anderson, D. J. Thouless, E. Abrahams, D. S. Fisher. New method for a scaling theory of localization. Phys. Rev. B, 1980, 22(8): 3519
CrossRef ADS Google scholar
[15]
C.A. MüllerD.Delande, Disorder and interference: Localization phenomena, arXiv: 1005.0915 (2010)
[16]
B.Shapiro, in: Percolation Structures and Processes, edited by G. Deutscher, R. Zallen, and J. Adler, Ann. Isr. Phys. Soc. 5, 367 (1983)
[17]
B. Shapiro. Scaling properties of probability distributions in disordered systems. Philos. Mag. B, 1987, 56: 1031
[18]
A. MacKinnon, B. Kramer. One-parameter scaling of localization length and conductance in disordered systems. Phys. Rev. Lett., 1981, 47(21): 1546
CrossRef ADS Google scholar
[19]
A. MacKinnon, B. Kramer. The scaling theory of electrons in disordered solids: Additional numerical results. Z. Phys. B, 1983, 53(1): 1
CrossRef ADS Google scholar
[20]
J. Prior, A. M. Somoza, M. Ortuno. Conductance fluctuations and single-parameter scaling in two-dimensional disordered systems. Phys. Rev. B, 2005, 72(2): 024206
CrossRef ADS Google scholar
[21]
A. La Magna, I. Deretzis, G. Forte, R. Pucci. Violation of the single-parameter scaling hypothesis in disordered graphene nanoribbons. Phys. Rev. B, 2008, 78(15): 153405
CrossRef ADS Google scholar
[22]
A. La Magna, I. Deretzis, G. Forte, R. Pucci. Conductance distribution in doped and defected graphene nanoribbons. Phys. Rev. B, 2009, 80(19): 195413
CrossRef ADS Google scholar
[23]
O. N. Dorokhov. Transmission coefficient and the localization length of an electron in N bond disorder chains. JETP Lett., 1982, 36: 318
[24]
P. A. Mello, P. Pereyra, N. Kumar. Macroscopic approach to multichannel disordered conductors. Ann. Phys., 1988, 181(2): 290
CrossRef ADS Google scholar
[25]
V. Plerou, Z. Q. Wang. Conductances, conductance fluctuations, and level statistics on the surface of multilayer quantum Hall states. Phys. Rev. B, 1998, 58(4): 1967
CrossRef ADS Google scholar
[26]
K. A. Muttalib, P. Wolfle. “One-sided” log-normal distribution of conductances for a disordered quantum wire. Phys. Rev. Lett., 1999, 83(15): 3013
CrossRef ADS Google scholar
[27]
P. J. Roberts. Joint probability distributions for disordered 1D wires. J. Phys.: Condens. Matter, 1992, 4(38): 7795
CrossRef ADS Google scholar
[28]
L. I. Deych, A. A. Lisyansky, B. L. Altshuler. Single parameter scaling in one-dimensional localization revisited. Phys. Rev. Lett., 2000, 84(12): 2678
CrossRef ADS Google scholar
[29]
A. García-Martín, J. J. Saenz. Universal conductance distributions in the crossover between diffusive and localization regimes. Phys. Rev. Lett., 2001, 87(11): 116603
CrossRef ADS Google scholar
[30]
M. Schreiber, M. Ottomeier. Localization of electronic states in 2D disordered systems. J. Phys.: Condens. Matter, 1992, 4(8): 1959
CrossRef ADS Google scholar
[31]
A. M. Somoza, M. Ortuno, J. Prior. Universal distribution functions in two-dimensional localized systems. Phys. Rev. Lett., 2007, 99(11): 116602
CrossRef ADS Google scholar
[32]
A. M. Somoza, J. Prior, M. Ortuno, I. V. Lerner. Crossover from diffusive to strongly localized regime in two-dimensional systems. Phys. Rev. B, 2009, 80(21): 212201
CrossRef ADS Google scholar
[33]
J. W. Kantelhardt, A. Bunde. Sublocalization, superlocalization, and violation of standard single-parameter scaling in the Anderson model. Phys. Rev. B, 2002, 66(3): 035118
CrossRef ADS Google scholar
[34]
S. L. A. Queiroz. Failure of single-parameter scaling of wave functions in Anderson localization. Phys. Rev. B, 2002, 66(19): 195113
CrossRef ADS Google scholar
[35]
In Ref. [20], lnR is used instead of lnG. Note the resistence R is the inverse of conductance G, then we have ⟨ln G ⟩ = ⟨ln R⟩ thus the same result is obtained
[36]
A. Brataas, B. van Wees, O. Klein, G. de Loubens, M. Viret. Spin insulatronics. Phys. Rep., 2020, 885: 1
CrossRef ADS Google scholar
[37]
Y. Tserkovnyak, A. Brataas, G. E. W. Bauer. Spin pumping and magnetization dynamics in metallic multilayers. Phys. Rev. B, 2002, 66(22): 224403
CrossRef ADS Google scholar
[38]
Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, B. I. Halperin. Nonlocal magnetization dynamics in ferromagnetic heterostructures. Rev. Mod. Phys., 2005, 77(4): 1375
CrossRef ADS Google scholar
[39]
A. Azevedo, L. H. V. Leão, R. L. Rodriguez-Suarez, A. B. Oliveira, S. M. Rezende. dc effect in ferromagnetic resonance: Evidence of the spin-pumping effect?. J. Appl. Phys., 2005, 97: 10C715
CrossRef ADS Google scholar
[40]
E. Saitoh, M. Ueda, H. Miyajima, G. Tatara. Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Appl. Phys. Lett., 2006, 88(18): 182509
CrossRef ADS Google scholar
[41]
K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, E. Saitoh. Observation of the spin Seebeck effect. Nature, 2008, 455(7214): 778
CrossRef ADS Google scholar
[42]
K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer, S. Maekawa, E. Saitoh. Spin Seebeck insulator. Nat. Mater., 2010, 9(11): 894
CrossRef ADS Google scholar
[43]
G. E. W. Bauer, E. Saitoh, B. J. vanWees. Spin caloritronics. Nat. Mater., 2012, 11(5): 391
CrossRef ADS Google scholar
[44]
H. Adachi, K. Uchida, E. Saitoh, S. Maekawa. Theory of the spin Seebeck effect. Rep. Prog. Phys., 2013, 76(3): 036501
CrossRef ADS Google scholar
[45]
G. M. Tang, X. B. Chen, J. Ren, J. Wang. Rectifying full-counting statistics in a spin Seebeck engine. Phys. Rev. B, 2018, 97(8): 081407
CrossRef ADS Google scholar
[46]
H. Wu, L. Huang, C. Fang, B. S. Yang, C. H. Wan, G. Q. Yu, J. F. Feng, H. X. Wei, X. F. Han. Magnon valve effect between two magnetic insulators. Phys. Rev. Lett., 2018, 120(9): 097205
CrossRef ADS Google scholar
[47]
B. F. Miao, S. Y. Huang, D. Qu, C. L. Chien. Inverse spin Hall effect in a ferromagnetic metal. Phys. Rev. Lett., 2013, 111(6): 066602
CrossRef ADS Google scholar
[48]
M. F. Jakobsen, A. Qaiumzadeh, A. Brataas. Scattering theory of transport through disordered magnets. Phys. Rev. B, 2019, 100(13): 134431
CrossRef ADS Google scholar
[49]
L. Yang, Y. Gu, L. Chen, K. Zhou, Q. Fu, W. Wang, L. Li, C. Yan, H. Li, L. Liang, Z. Li, Y. Pu, Y. Du, R. Liu. Absence of spin transport in amorphous YIG evidenced by nonlocal spin transport experiments. Phys. Rev. B, 2021, 104(14): 144415
CrossRef ADS Google scholar
[50]
G. Li, H. Jin, Y. Wei, J. Wang. Giant effective electron−magnon coupling in a nonmagnetic metal–ferromagnetic insulator heterostructure. Phys. Rev. B, 2022, 106(20): 205303
CrossRef ADS Google scholar
[51]
J. S. Wang, B. K. Agarwalla, H. Li, J. Thingna. Nonequilibrium Green’s function method for quantum thermal transport. Front. Phys., 2014, 9(6): 673
CrossRef ADS Google scholar
[52]
C. Zhang, F. Xu, J. Wang. Full counting statistics of phonon transport in disordered systems. Front. Phys., 2021, 16(3): 33502
CrossRef ADS Google scholar
[53]
Z.Z. YuG. H. XiongL.F. Zhang, A brief review of thermal transport in mesoscopic systems from nonequilibrium Green’s function approach, Front. Phys. 16(4), 43201 (2021)
[54]
J. S. Wang, J. Peng, Z. Q. Zhang, Y. M. Zhang, T. Zhu. Transport in electron–photon systems. Front. Phys., 2023, 18(4): 43602
CrossRef ADS Google scholar
[55]
T. Holstein, H. Primakoff. Field dependence of the intrinsic domain magnetization of a ferromagnet. Phys. Rev., 1940, 58(12): 1098
CrossRef ADS Google scholar
[56]
J. S. Zheng, S. Bender, J. Armaitis, R. E. Troncoso, R. A. Duine. Green’s function formalism for spin transport in metal−insulator−metal heterostructures. Phys. Rev. B, 2017, 96(17): 174422
CrossRef ADS Google scholar
[57]
J. Ren. Predicted rectification and negative differential spin Seebeck effect at magnetic interfaces. Phys. Rev. B, 2013, 88(22): 220406
CrossRef ADS Google scholar
[58]
T. Christen, M. Buttiker. Low frequency admittance of a quantum point contact. Phys. Rev. Lett., 1996, 77(1): 143
CrossRef ADS Google scholar
[59]
S.Datta, Electronic Transport in Mesoscopic Systems, Cambridge University Press, New York, 1995, Chapter 3
[60]
V.I. Melnikov, Fluctuations in the resistivity of a finite disordered system, Fiz. Tverd. Tela (Leningrad) 23, 782 (1981) [Sov. Phys. Solid State 23, 444 (1981)]
[61]
A. A. Abrikosov. The paradox with the static conductivity of a one-dimensional metal. Solid State Commun., 1981, 37(12): 997
CrossRef ADS Google scholar
[62]
M. Janssen. Statistics and scaling in disordered mesoscopic electron systems. Phys. Rep., 1998, 295(1−2): 1
CrossRef ADS Google scholar
[63]
W. Ren, J. Wang, Z. S. Ma. Conductance fluctuations and higher order moments of a disordered carbon nanotube. Phys. Rev. B, 2005, 72(19): 195407
CrossRef ADS Google scholar
[64]
When calculating spin conductance for one specific disorder sample, one has to perform a double integration [see Eq. (13)]. In the calculation, we have chosen grid points 100 × 100 which amounts to an increase of computational cost by the factor of 10000 comparing with the charge conductance calculation in normal metal systems
[65]
The Fermi energies used in scaling analysis (Fig.5 and Fig.6) are near the center of the first subband. This is the region where SPS works in normal metal system [20]. Although the ranges of Fermi energies and temperatures are not very wide, the spin conductance in Fig.5(a) varies large enough in magnitude to support our scaling analysis.
[66]
P. Mohanty, R. A. Webb. Anomalous conductance distribution in quasi-one-dimensional gold wires: Possible violation of the one-parameter scaling hypothesis. Phys. Rev. Lett., 2002, 88: 146601
CrossRef ADS Google scholar
[67]
A. M. Somoza, J. Prior, M. Ortuño. Conductance fluctuations in the localized regime: Numerical study in disordered noninteracting systems. Phys. Rev. B, 2006, 73: 184201
CrossRef ADS Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants Nos. 12034014 and 12174262).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(5630 KB)

Accesses

Citations

Detail

Sections
Recommended

/