Neuronal avalanches: Sandpiles of self-organized criticality or critical dynamics of brain waves?

Vitaly L. Galinsky, Lawrence R. Frank

PDF(5338 KB)
PDF(5338 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (4) : 45301. DOI: 10.1007/s11467-023-1273-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Neuronal avalanches: Sandpiles of self-organized criticality or critical dynamics of brain waves?

Author information +
History +

Abstract

Analytical expressions for scaling of brain wave spectra derived from the general nonlinear wave Hamiltonian form show excellent agreement with experimental “neuronal avalanche” data. The theory of the weakly evanescent nonlinear brain wave dynamics [Phys. Rev. Research 2, 023061 (2020); J. Cognitive Neurosci. 32, 2178 (2020)] reveals the underlying collective processes hidden behind the phenomenological statistical description of the neuronal avalanches and connects together the whole range of brain activity states, from oscillatory wave-like modes, to neuronal avalanches, to incoherent spiking, showing that the neuronal avalanches are just the manifestation of the different nonlinear side of wave processes abundant in cortical tissue. In a more broad way these results show that a system of wave modes interacting through all possible combinations of the third order nonlinear terms described by a general wave Hamiltonian necessarily produces anharmonic wave modes with temporal and spatial scaling properties that follow scale free power laws. To the best of our knowledge this has never been reported in the physical literature and may be applicable to many physical systems that involve wave processes and not just to neuronal avalanches.

Graphical abstract

Keywords

nonlinear waves / critical exponent / Hamiltonian system / neuronal avalanches / critical dynamics

Cite this article

Download citation ▾
Vitaly L. Galinsky, Lawrence R. Frank. Neuronal avalanches: Sandpiles of self-organized criticality or critical dynamics of brain waves?. Front. Phys., 2023, 18(4): 45301 https://doi.org/10.1007/s11467-023-1273-7

References

[1]
V. L. Galinsky , L. R. Frank . Universal theory of brain waves: From linear loops to nonlinear synchronized spiking and collective brain rhythms. Phys. Rev. Research, 2020, 2: 023061
CrossRef ADS Google scholar
[2]
V. L. Galinsky , L. R. Frank . Brain waves: Emergence of localized, persistent, weakly evanescent cortical loops. J. Cogn. Neurosci., 2020, 32(11): 2178
CrossRef ADS Google scholar
[3]
G.Buzsaki, Rhythms of the Brain, Oxford University Press, 2006
[4]
A. L. Hodgkin , A. F. Huxley . A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 1952, 117(4): 500
CrossRef ADS Google scholar
[5]
R. FitzHugh . Impulses and physiological states in theoretical models of nerve membrane. Biophys. J., 1961, 1(6): 445
CrossRef ADS Google scholar
[6]
J. Nagumo , S. Arimoto , S. Yoshizawa . An active pulse transmission line simulating nerve axon. Proceedings of the IRE, 1962, 50(10): 2061
CrossRef ADS Google scholar
[7]
C. Morris , H. Lecar . Voltage oscillations in the barnacle giant muscle fiber. Biophys. J., 1981, 35(1): 193
CrossRef ADS Google scholar
[8]
E. M. Izhikevich . Simple model of spiking neurons. IEEE Trans. Neural Netw., 2003, 14(6): 1569
CrossRef ADS Google scholar
[9]
W.GerstnerW.M. KistlerR.NaudL.Paninski, Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition, Cambridge University Press, New York, NY, USA, 2014
[10]
A. Kulkarni , J. Ranft , V. Hakim . Synchronization, stochasticity, and phase waves in neuronal networks with spatially-structured connectivity. Front. Comput. Neurosci., 2020, 14: 569644
CrossRef ADS Google scholar
[11]
R. Kim , T. J. Sejnowski . Strong inhibitory signaling underlies stable temporal dynamics and working memory in spiking neural networks. Nat. Neurosci., 2021, 24(1): 129
CrossRef ADS Google scholar
[12]
J. M. Beggs , D. Plenz . Neuronal avalanches in neocortical circuits. J. Neurosci., 2003, 23(35): 11167
CrossRef ADS Google scholar
[13]
J. M. Beggs , D. Plenz . Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. J. Neurosci., 2004, 24(22): 5216
CrossRef ADS Google scholar
[14]
D. Plenz , T. L. Ribeiro , S. R. Miller , P. A. Kells , A. Vakili , E. L. Capek . Self-organized criticality in the brain. Front. Phys. (Lausanne), 2021, 9: 639389
CrossRef ADS Google scholar
[15]
N. Friedman , S. Ito , B. A. Brinkman , M. Shimono , R. E. DeVille , K. A. Dahmen , J. M. Beggs , T. C. Butler . Universal critical dynamics in high resolution neuronal avalanche data. Phys. Rev. Lett., 2012, 108(20): 208102
CrossRef ADS Google scholar
[16]
D. R. Chialvo . Emergent complex neural dynamics. Nat. Phys., 2010, 6(10): 744
CrossRef ADS Google scholar
[17]
J. M. Beggs , N. Timme . Being critical of criticality in the brain. Front. Physiol., 2012, 3: 163
CrossRef ADS Google scholar
[18]
V. Priesemann , M. Wibral , M. Valderrama , R. Pröpper , M. Le Van Quyen , T. Geisel , J. Triesch , D. Nikolić , M. H. Munk . Spike avalanches in vivo suggest a driven, slightly subcritical brain state. Front. Syst. Neurosci., 2014, 8: 108
CrossRef ADS Google scholar
[19]
B. Cramer , D. Stöckel , M. Kreft , M. Wibral , J. Schemmel , K. Meier , V. Priesemann . Control of criticality and computation in spiking neuromorphic networks with plasticity. Nat. Commun., 2020, 11(1): 2853
CrossRef ADS Google scholar
[20]
A. J. Fontenele , N. A. P. de Vasconcelos , T. Feliciano , L. A. A. Aguiar , C. Soares-Cunha , B. Coimbra , L. Dalla Porta , S. Ribeiro , A. J. Rodrigues , N. Sousa , P. V. Carelli , M. Copelli . Criticality between cortical states. Phys. Rev. Lett., 2019, 122(20): 208101
CrossRef ADS Google scholar
[21]
L. J. Fosque , R. V. Williams-García , J. M. Beggs , G. Ortiz . Evidence for quasicritical brain dynamics. Phys. Rev. Lett., 2021, 126(9): 098101
CrossRef ADS Google scholar
[22]
P. Bak , C. Tang , K. Wiesenfeld . Self-organized criticality: An explanation of the 1/f noise. Phys. Rev. Lett., 1987, 59(4): 381
CrossRef ADS Google scholar
[23]
P. Bak , C. Tang , K. Wiesenfeld . Self-organized criticality. Phys. Rev. A, 1988, 38(1): 364
CrossRef ADS Google scholar
[24]
S. Zapperi , K. B. Lauritsen , H. E. Stanley . Self-organized branching processes: Mean-field theory for avalanches. Phys. Rev. Lett., 1995, 75(22): 4071
CrossRef ADS Google scholar
[25]
K. Bækgaard Lauritsen , S. Zapperi , H. E. Stanley . Self-organized branching processes: Avalanche models with dissipation. Phys. Rev. E, 1996, 54(3): 2483
CrossRef ADS Google scholar
[26]
C. W. Eurich , J. M. Herrmann , U. A. Ernst . Finite-size effects of avalanche dynamics. Phys. Rev. E, 2002, 66(6): 066137
CrossRef ADS Google scholar
[27]
C. Bédard , H. Kröger , A. Destexhe . Does the 1/f frequency scaling of brain signals reflect self-organized critical states. Phys. Rev. Lett., 2006, 97(11): 118102
CrossRef ADS Google scholar
[28]
J. Touboul , A. Destexhe . Can power-law scaling and neuronal avalanches arise from stochastic dynamics. PLoS One, 2010, 5(2): e8982
CrossRef ADS Google scholar
[29]
J. Touboul , A. Destexhe . Power-law statistics and universal scaling in the absence of criticality. Phys. Rev. E, 2017, 95(1): 012413
CrossRef ADS Google scholar
[30]
P. A. Robinson , C. J. Rennie , J. J. Wright . Propagation and stability of waves of electrical activity in the cerebral cortex. Phys. Rev. E, 1997, 56(1): 826
CrossRef ADS Google scholar
[31]
D. P. Yang , P. A. Robinson . Critical dynamics of Hopf bifurcations in the corticothalamic system: Transitions from normal arousal states to epileptic seizures. Phys. Rev. E, 2017, 95(4): 042410
CrossRef ADS Google scholar
[32]
P. A. Robinson , C. J. Rennie , D. L. Rowe . Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys. Rev. E, 2002, 65(4): 041924
CrossRef ADS Google scholar
[33]
S.di SantoP.VillegasR.BurioniM.A. Muñoz, Landau–Ginzburg theory of cortex dynamics: Scale-free avalanches emerge at the edge of synchronization, Proc. Natl. Acad. Sci. USA 115(7), E1356 (2018), Available at: www.pnas.org/content/115/7/E1356.full.pdf
[34]
E. D. Gireesh , D. Plenz . Neuronal avalanches organize as nested theta- and beta/gamma-oscillations during development of cortical layer 2/3. Proc. Natl. Acad. Sci. USA, 2008, 105(21): 7576
CrossRef ADS Google scholar
[35]
V. Buendía , P. Villegas , R. Burioni , M. A. Muñoz . Hybrid-type synchronization transitions: Where incipient oscillations, scale-free avalanches, and bistability live together. Phys. Rev. Research, 2021, 3(2): 023224
CrossRef ADS Google scholar
[36]
V. L. Galinsky , L. R. Frank . Collective synchronous spiking in a brain network of coupled nonlinear oscillators. Phys. Rev. Lett., 2021, 126(15): 158102
CrossRef ADS Google scholar
[37]
E. Ott , T. M. Antonsen . Long time evolution of phase oscillator systems. Chaos, 2009, 19(2): 023117
CrossRef ADS Google scholar
[38]
I. V. Tyulkina , D. S. Goldobin , L. S. Klimenko , A. Pikovsky . Dynamics of noisy oscillator populations beyond the Ott−Antonsen ansatz. Phys. Rev. Lett., 2018, 120(26): 264101
CrossRef ADS Google scholar
[39]
V.L. GalinskyL.R. Frank, Critically synchronized brain waves form an effective, robust and flexible basis for human memory and learning, doi: 10.21203/rs.3.rs-2285943/v1 (2022)
[40]
L.FrankV.GalinskyJ.TownsendR.A. MuellerB.Keehn, Imaging of brain electric field networks, doi: 10.21203/rs.3.rs-2432269/v1 (2023)
[41]
Y.Kuramoto, Chemical Oscillations, Waves, and Turbulence, Dover Books on Chemistry Series, Dover Publications, Incorporated, 2013
[42]
H. Daido . Generic scaling at the onset of macroscopic mutual entrainment in limit-cycle oscillators with uniform all-to-all coupling. Phys. Rev. Lett., 1994, 73(5): 760
CrossRef ADS Google scholar
[43]
J. D. Crawford . Scaling and singularities in the entrainment of globally coupled oscillators. Phys. Rev. Lett., 1995, 74(21): 4341
CrossRef ADS Google scholar

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author contributions

VLG and LRF developed the theoretical formalism, performed the analytic calculations and performed the numerical simulations. Both VLG and LRF contributed to the final version of the manuscript.

Funding

LRF and VLG were supported by NSF grant ACI-1550405, UCOP MRPI grant MRP17454755 and NIH grant R01 AG054049.

Data availability statement

The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(5338 KB)

Accesses

Citations

Detail

Sections
Recommended

/