Neuronal avalanches: Sandpiles of self-organized criticality or critical dynamics of brain waves?
Vitaly L. Galinsky, Lawrence R. Frank
Neuronal avalanches: Sandpiles of self-organized criticality or critical dynamics of brain waves?
Analytical expressions for scaling of brain wave spectra derived from the general nonlinear wave Hamiltonian form show excellent agreement with experimental “neuronal avalanche” data. The theory of the weakly evanescent nonlinear brain wave dynamics [Phys. Rev. Research 2, 023061 (2020); J. Cognitive Neurosci. 32, 2178 (2020)] reveals the underlying collective processes hidden behind the phenomenological statistical description of the neuronal avalanches and connects together the whole range of brain activity states, from oscillatory wave-like modes, to neuronal avalanches, to incoherent spiking, showing that the neuronal avalanches are just the manifestation of the different nonlinear side of wave processes abundant in cortical tissue. In a more broad way these results show that a system of wave modes interacting through all possible combinations of the third order nonlinear terms described by a general wave Hamiltonian necessarily produces anharmonic wave modes with temporal and spatial scaling properties that follow scale free power laws. To the best of our knowledge this has never been reported in the physical literature and may be applicable to many physical systems that involve wave processes and not just to neuronal avalanches.
nonlinear waves / critical exponent / Hamiltonian system / neuronal avalanches / critical dynamics
[1] |
V. L. Galinsky , L. R. Frank . Universal theory of brain waves: From linear loops to nonlinear synchronized spiking and collective brain rhythms. Phys. Rev. Research, 2020, 2: 023061
CrossRef
ADS
Google scholar
|
[2] |
V. L. Galinsky , L. R. Frank . Brain waves: Emergence of localized, persistent, weakly evanescent cortical loops. J. Cogn. Neurosci., 2020, 32(11): 2178
CrossRef
ADS
Google scholar
|
[3] |
G.Buzsaki, Rhythms of the Brain, Oxford University Press, 2006
|
[4] |
A. L. Hodgkin , A. F. Huxley . A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 1952, 117(4): 500
CrossRef
ADS
Google scholar
|
[5] |
R. FitzHugh . Impulses and physiological states in theoretical models of nerve membrane. Biophys. J., 1961, 1(6): 445
CrossRef
ADS
Google scholar
|
[6] |
J. Nagumo , S. Arimoto , S. Yoshizawa . An active pulse transmission line simulating nerve axon. Proceedings of the IRE, 1962, 50(10): 2061
CrossRef
ADS
Google scholar
|
[7] |
C. Morris , H. Lecar . Voltage oscillations in the barnacle giant muscle fiber. Biophys. J., 1981, 35(1): 193
CrossRef
ADS
Google scholar
|
[8] |
E. M. Izhikevich . Simple model of spiking neurons. IEEE Trans. Neural Netw., 2003, 14(6): 1569
CrossRef
ADS
Google scholar
|
[9] |
W.GerstnerW.M. KistlerR.NaudL.Paninski, Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition, Cambridge University Press, New York, NY, USA, 2014
|
[10] |
A. Kulkarni , J. Ranft , V. Hakim . Synchronization, stochasticity, and phase waves in neuronal networks with spatially-structured connectivity. Front. Comput. Neurosci., 2020, 14: 569644
CrossRef
ADS
Google scholar
|
[11] |
R. Kim , T. J. Sejnowski . Strong inhibitory signaling underlies stable temporal dynamics and working memory in spiking neural networks. Nat. Neurosci., 2021, 24(1): 129
CrossRef
ADS
Google scholar
|
[12] |
J. M. Beggs , D. Plenz . Neuronal avalanches in neocortical circuits. J. Neurosci., 2003, 23(35): 11167
CrossRef
ADS
Google scholar
|
[13] |
J. M. Beggs , D. Plenz . Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. J. Neurosci., 2004, 24(22): 5216
CrossRef
ADS
Google scholar
|
[14] |
D. Plenz , T. L. Ribeiro , S. R. Miller , P. A. Kells , A. Vakili , E. L. Capek . Self-organized criticality in the brain. Front. Phys. (Lausanne), 2021, 9: 639389
CrossRef
ADS
Google scholar
|
[15] |
N. Friedman , S. Ito , B. A. Brinkman , M. Shimono , R. E. DeVille , K. A. Dahmen , J. M. Beggs , T. C. Butler . Universal critical dynamics in high resolution neuronal avalanche data. Phys. Rev. Lett., 2012, 108(20): 208102
CrossRef
ADS
Google scholar
|
[16] |
D. R. Chialvo . Emergent complex neural dynamics. Nat. Phys., 2010, 6(10): 744
CrossRef
ADS
Google scholar
|
[17] |
J. M. Beggs , N. Timme . Being critical of criticality in the brain. Front. Physiol., 2012, 3: 163
CrossRef
ADS
Google scholar
|
[18] |
V. Priesemann , M. Wibral , M. Valderrama , R. Pröpper , M. Le Van Quyen , T. Geisel , J. Triesch , D. Nikolić , M. H. Munk . Spike avalanches in vivo suggest a driven, slightly subcritical brain state. Front. Syst. Neurosci., 2014, 8: 108
CrossRef
ADS
Google scholar
|
[19] |
B. Cramer , D. Stöckel , M. Kreft , M. Wibral , J. Schemmel , K. Meier , V. Priesemann . Control of criticality and computation in spiking neuromorphic networks with plasticity. Nat. Commun., 2020, 11(1): 2853
CrossRef
ADS
Google scholar
|
[20] |
A. J. Fontenele , N. A. P. de Vasconcelos , T. Feliciano , L. A. A. Aguiar , C. Soares-Cunha , B. Coimbra , L. Dalla Porta , S. Ribeiro , A. J. Rodrigues , N. Sousa , P. V. Carelli , M. Copelli . Criticality between cortical states. Phys. Rev. Lett., 2019, 122(20): 208101
CrossRef
ADS
Google scholar
|
[21] |
L. J. Fosque , R. V. Williams-García , J. M. Beggs , G. Ortiz . Evidence for quasicritical brain dynamics. Phys. Rev. Lett., 2021, 126(9): 098101
CrossRef
ADS
Google scholar
|
[22] |
P. Bak , C. Tang , K. Wiesenfeld . Self-organized criticality: An explanation of the 1/f noise. Phys. Rev. Lett., 1987, 59(4): 381
CrossRef
ADS
Google scholar
|
[23] |
P. Bak , C. Tang , K. Wiesenfeld . Self-organized criticality. Phys. Rev. A, 1988, 38(1): 364
CrossRef
ADS
Google scholar
|
[24] |
S. Zapperi , K. B. Lauritsen , H. E. Stanley . Self-organized branching processes: Mean-field theory for avalanches. Phys. Rev. Lett., 1995, 75(22): 4071
CrossRef
ADS
Google scholar
|
[25] |
K. Bækgaard Lauritsen , S. Zapperi , H. E. Stanley . Self-organized branching processes: Avalanche models with dissipation. Phys. Rev. E, 1996, 54(3): 2483
CrossRef
ADS
Google scholar
|
[26] |
C. W. Eurich , J. M. Herrmann , U. A. Ernst . Finite-size effects of avalanche dynamics. Phys. Rev. E, 2002, 66(6): 066137
CrossRef
ADS
Google scholar
|
[27] |
C. Bédard , H. Kröger , A. Destexhe . Does the 1/f frequency scaling of brain signals reflect self-organized critical states. Phys. Rev. Lett., 2006, 97(11): 118102
CrossRef
ADS
Google scholar
|
[28] |
J. Touboul , A. Destexhe . Can power-law scaling and neuronal avalanches arise from stochastic dynamics. PLoS One, 2010, 5(2): e8982
CrossRef
ADS
Google scholar
|
[29] |
J. Touboul , A. Destexhe . Power-law statistics and universal scaling in the absence of criticality. Phys. Rev. E, 2017, 95(1): 012413
CrossRef
ADS
Google scholar
|
[30] |
P. A. Robinson , C. J. Rennie , J. J. Wright . Propagation and stability of waves of electrical activity in the cerebral cortex. Phys. Rev. E, 1997, 56(1): 826
CrossRef
ADS
Google scholar
|
[31] |
D. P. Yang , P. A. Robinson . Critical dynamics of Hopf bifurcations in the corticothalamic system: Transitions from normal arousal states to epileptic seizures. Phys. Rev. E, 2017, 95(4): 042410
CrossRef
ADS
Google scholar
|
[32] |
P. A. Robinson , C. J. Rennie , D. L. Rowe . Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys. Rev. E, 2002, 65(4): 041924
CrossRef
ADS
Google scholar
|
[33] |
S.di SantoP.VillegasR.BurioniM.A. Muñoz, Landau–Ginzburg theory of cortex dynamics: Scale-free avalanches emerge at the edge of synchronization, Proc. Natl. Acad. Sci. USA 115(7), E1356 (2018), Available at:
|
[34] |
E. D. Gireesh , D. Plenz . Neuronal avalanches organize as nested theta- and beta/gamma-oscillations during development of cortical layer 2/3. Proc. Natl. Acad. Sci. USA, 2008, 105(21): 7576
CrossRef
ADS
Google scholar
|
[35] |
V. Buendía , P. Villegas , R. Burioni , M. A. Muñoz . Hybrid-type synchronization transitions: Where incipient oscillations, scale-free avalanches, and bistability live together. Phys. Rev. Research, 2021, 3(2): 023224
CrossRef
ADS
Google scholar
|
[36] |
V. L. Galinsky , L. R. Frank . Collective synchronous spiking in a brain network of coupled nonlinear oscillators. Phys. Rev. Lett., 2021, 126(15): 158102
CrossRef
ADS
Google scholar
|
[37] |
E. Ott , T. M. Antonsen . Long time evolution of phase oscillator systems. Chaos, 2009, 19(2): 023117
CrossRef
ADS
Google scholar
|
[38] |
I. V. Tyulkina , D. S. Goldobin , L. S. Klimenko , A. Pikovsky . Dynamics of noisy oscillator populations beyond the Ott−Antonsen ansatz. Phys. Rev. Lett., 2018, 120(26): 264101
CrossRef
ADS
Google scholar
|
[39] |
V.L. GalinskyL.R. Frank, Critically synchronized brain waves form an effective, robust and flexible basis for human memory and learning, doi:
|
[40] |
L.FrankV.GalinskyJ.TownsendR.A. MuellerB.Keehn, Imaging of brain electric field networks, doi:
|
[41] |
Y.Kuramoto, Chemical Oscillations, Waves, and Turbulence, Dover Books on Chemistry Series, Dover Publications, Incorporated, 2013
|
[42] |
H. Daido . Generic scaling at the onset of macroscopic mutual entrainment in limit-cycle oscillators with uniform all-to-all coupling. Phys. Rev. Lett., 1994, 73(5): 760
CrossRef
ADS
Google scholar
|
[43] |
J. D. Crawford . Scaling and singularities in the entrainment of globally coupled oscillators. Phys. Rev. Lett., 1995, 74(21): 4341
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |