When optical microscopy meets all-optical analog computing: A brief review
Yichang Shou, Jiawei Liu, Hailu Luo
When optical microscopy meets all-optical analog computing: A brief review
As a revolutionary observation tool in life science, biomedical, and material science, optical microscopy allows imaging of samples with high spatial resolution and a wide field of view. However, conventional microscopy methods are limited to single imaging and cannot accomplish real-time image processing. The edge detection, image enhancement and phase visualization schemes have attracted great interest with the rapid development of optical analog computing. The two main physical mechanisms that enable optical analog computing originate from two geometric phases: the spin-redirection Rytov-Vlasimirskii-Berry (RVB) phase and the Pancharatnam-Berry (PB) phase. Here, we review the basic principles and recent research progress of the RVB phase and PB phase based optical differentiators. Then we focus on the innovative and emerging applications of optical analog computing in microscopic imaging. Optical analog computing is accelerating the transformation of information processing from classical imaging to quantum techniques. Its intersection with optical microscopy opens opportunities for the development of versatile and compact optical microscopy systems.
optical microscopy / optical analog computing / all-optical image processing
[1] |
D.B. Murphy, Fundamentals of Light Microscopy and Electronic Imaging, John Wiley & Sons, 2002
|
[2] |
F. Zernike . Phase contrast, a new method for the microscopic observation of transparent objects part II. Physica, 1942, 9(10): 974
CrossRef
ADS
Google scholar
|
[3] |
D. L. Lessor , J. S. Hartman , R. L. Gordon . Quantitative surface topography determination by Nomarski reflection microscopy. I. Theory. J. Opt. Soc. Am., 1979, 69(2): 357
CrossRef
ADS
Google scholar
|
[4] |
J. W. Lichtman , J. A. Conchello . Fluorescence microscopy. Nat. Methods, 2005, 2(12): 910
CrossRef
ADS
Google scholar
|
[5] |
B. Huang , H. Babcock , X. Zhuang . Breaking the diffraction barrier: Super-resolution imaging of cells. Cell, 2010, 143(7): 1047
CrossRef
ADS
Google scholar
|
[6] |
M. Fernández-Suárez , A. Y. Ting . Fluorescent probes for super-resolution imaging in living cells. Nat. Rev. Mol. Cell Biol., 2008, 9(12): 929
CrossRef
ADS
Google scholar
|
[7] |
T. A. Klar , S. Jakobs , M. Dyba , A. Egner , S. W. Hell . Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. USA, 2000, 97(15): 8206
CrossRef
ADS
Google scholar
|
[8] |
E. Betzig . Proposed method for molecular optical imaging. Opt. Lett., 1995, 20(3): 237
CrossRef
ADS
Google scholar
|
[9] |
E. Betzig , G. H. Patterson , R. Sougrat , O. W. Lindwasser , S. Olenych , J. S. Bonifacino , M. W. Davidson , J. Lippincott-Schwartz , H. F. Hess . Imaging intracellular fluorescent proteins at nanometer resolution. Science, 2006, 313(5793): 1642
CrossRef
ADS
Google scholar
|
[10] |
M. J. Rust , M. Bates , X. Zhuang . Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods, 2006, 3(10): 793
CrossRef
ADS
Google scholar
|
[11] |
M. G. L. Gustafsson . Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA, 2005, 102(37): 13081
CrossRef
ADS
Google scholar
|
[12] |
W. R. Zipfel , R. M. Williams , W. W. Webb . Nonlinear magic: Multiphoton microscopy in the biosciences. Nat. Biotechnol., 2003, 21(11): 1369
CrossRef
ADS
Google scholar
|
[13] |
H. J. Caulfield , S. Dolev . Why future supercomputing requires optics. Nat. Photonics, 2010, 4(5): 261
CrossRef
ADS
Google scholar
|
[14] |
A. Silva , F. Monticone , G. Castaldi , V. Galdi , A. Alù , N. Engheta . Performing mathematical operations with metamaterials. Science, 2014, 343(6167): 160
CrossRef
ADS
Google scholar
|
[15] |
D. R. Solli , B. Jalali . Analog optical computing. Nat. Photonics, 2015, 9(11): 704
CrossRef
ADS
Google scholar
|
[16] |
M. Ferrera , Y. Park , L. Razzari , B. E. Little , S. T. Chu , R. Morandotti , D. J. Moss , J. Azaña . On-chip CMOS-compatible all-optical integrator. Nat. Commun., 2010, 1(1): 29
CrossRef
ADS
Google scholar
|
[17] |
Z. Ruan . Spatial mode control of surface plasmon polariton excitation with gain medium: from spatial differentiator to integrator. Opt. Lett., 2015, 40(4): 601
CrossRef
ADS
Google scholar
|
[18] |
D. A. Bykov , L. L. Doskolovich , E. A. Bezus , V. A. Soifer . Optical computation of the Laplace operator using phase-shifted Bragg grating. Opt. Express, 2014, 22(21): 25084
CrossRef
ADS
Google scholar
|
[19] |
L. L. Doskolovich , D. A. Bykov , E. A. Bezus , V. A. Soifer . Spatial differentiation of optical beams using phase-shifted Bragg grating. Opt. Lett., 2014, 39(5): 1278
CrossRef
ADS
Google scholar
|
[20] |
J. Zhou , H. Qian , C. Chen , J. Zhao , G. Li , Q. Wu , H. Luo , S. Wen , Z. Liu . Optical edge detection based on high-efficiency dielectric metasurface. Proc. Natl. Acad. Sci. USA, 2019, 116(23): 11137
CrossRef
ADS
Google scholar
|
[21] |
S. Abdollahramezani , A. Chizari , A. E. Dorche , M. V. Jamali , J. A. Salehi . Dielectric metasurfaces solve differential and integro-differential equations. Opt. Lett., 2017, 42(7): 1197
CrossRef
ADS
Google scholar
|
[22] |
N. Mohammadi Estakhri , B. Edwards , N. Engheta . Inverse-designed metastructures that solve equations. Science, 2019, 363(6433): 1333
CrossRef
ADS
Google scholar
|
[23] |
S. He , R. Wang , H. Luo . Computing metasurfaces for all-optical image processing: A brief review. Nanophotonics, 2022, 11(6): 1083
CrossRef
ADS
Google scholar
|
[24] |
Y. Zhou , H. Zheng , I. I. Kravchenko , J. Valentine . Flat optics for image differentiation. Nat. Photonics, 2020, 14(5): 316
CrossRef
ADS
Google scholar
|
[25] |
P. Huo , C. Zhang , W. Zhu , M. Liu , S. Zhang , S. Zhang , L. Chen , H. J. Lezec , A. Agrawal , Y. Lu , T. Xu . Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging. Nano Lett., 2020, 20(4): 2791
CrossRef
ADS
Google scholar
|
[26] |
J. Zhou , H. Qian , J. Zhao , M. Tang , Q. Wu , M. Lei , H. Luo , S. Wen , S. Chen , Z. Liu . Two-dimensional optical spatial differentiation and high-contrast imaging. Natl. Sci. Rev., 2021, 8(6): nwaa176
CrossRef
ADS
Google scholar
|
[27] |
W. Fu , D. Zhao , Z. Li , S. Liu , C. Tian , K. Huang . Ultracompact meta-imagers for arbitrary all-optical convolution. Light Sci. Appl., 2022, 11(1): 62
CrossRef
ADS
Google scholar
|
[28] |
J. Zhou , S. Liu , H. Qian , Y. Li , H. Luo , S. Wen , Z. Zhou , G. Guo , B. Shi , Z. Liu . Metasurface enabled quantum edge detection. Sci. Adv., 2020, 6(51): eabc4385
CrossRef
ADS
Google scholar
|
[29] |
J. Liu , Q. Yang , S. Chen , Z. Xiao , S. Wen , H. Luo . Intrinsic optical spatial differentiation enabled quantum dark-field microscopy. Phys. Rev. Lett., 2022, 128(19): 193601
CrossRef
ADS
Google scholar
|
[30] |
Y. Zhou , W. Wu , R. Chen , W. Chen , R. Chen , Y. Ma . Analog optical spatial differentiators based on dielectric metasurfaces. Adv. Opt. Mater., 2020, 8(4): 1901523
CrossRef
ADS
Google scholar
|
[31] |
L. Wan , D. Pan , S. Yang , W. Zhang , A. A. Potapov , X. Wu , W. Liu , T. Feng , Z. Li . Optical analog computing of spatial differentiation and edge detection with dielectric metasurfaces. Opt. Lett., 2020, 45(7): 2070
CrossRef
ADS
Google scholar
|
[32] |
F. Zangeneh-Nejad , D. L. Sounas , A. Alù , R. Fleury . Analogue computing with metamaterials. Nat. Rev. Mater., 2020, 6(3): 207
CrossRef
ADS
Google scholar
|
[33] |
T. Xiao , H. Yang , Q. Yang , D. Xu , R. Wang , S. Chen , H. Luo . Realization of tunable edge-enhanced images based on computing metasurfaces. Opt. Lett., 2022, 47(4): 925
CrossRef
ADS
Google scholar
|
[34] |
Z. Wang , G. Hu , X. Wang , X. Ding , K. Zhang , H. Li , S. N. Burokur , Q. Wu , J. Liu , J. Tan , C. Qiu . Single-layer spatial analog meta-processor for imaging processing. Nat. Commun., 2022, 13(1): 2188
CrossRef
ADS
Google scholar
|
[35] |
D.XuS.WenH.Luo, Metasurface-based optical analog computing: From fundamentals to applications, Adv. Devices Instrum., doi:
|
[36] |
A. Youssefi , F. Zangeneh-Nejad , S. Abdollahramezani , A. Khavasi . Analog computing by Brewster effect. Opt. Lett., 2016, 41(15): 3467
CrossRef
ADS
Google scholar
|
[37] |
T. Zhu , Y. Lou , Y. Zhou , J. Zhang , J. Huang , Y. Li , H. Luo , S. Wen , S. Zhu , Q. Gong , M. Qiu , Z. Ruan . Generalized spatial differentiation from the spin Hall effect of light and its application in image processing of edge detection. Phys. Rev. Appl., 2019, 11(3): 034043
CrossRef
ADS
Google scholar
|
[38] |
S. He , J. Zhou , S. Chen , W. Shu , H. Luo , S. Wen . Wavelength-independent optical fully differential operation based on the spin−orbit interaction of light. APL Photonics, 2020, 5(3): 036105
CrossRef
ADS
Google scholar
|
[39] |
D. Xu , S. He , J. Zhou , S. Chen , S. Wen , H. Luo . Goos–Hänchen effect enabled optical differential operation and image edge detection. Appl. Phys. Lett., 2020, 116(21): 211103
CrossRef
ADS
Google scholar
|
[40] |
K. Y. Bliokh , Y. Gorodetski , V. Kleiner , E. Hasman . Coriolis effect in optics: Unified geometric phase and spin-Hall effect. Phys. Rev. Lett., 2008, 101(3): 030404
CrossRef
ADS
Google scholar
|
[41] |
X. Yin , Z. Ye , J. Rho , Y. Wang , X. Zhang . Photonic spin Hall effect at metasurfaces. Science, 2013, 339(6126): 1405
CrossRef
ADS
Google scholar
|
[42] |
X. Ling , X. Zhou , X. Yi , W. Shu , Y. Liu , S. Chen , H. Luo , S. Wen , D. Fan . Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence. Light Sci. Appl., 2015, 4(5): e290
CrossRef
ADS
Google scholar
|
[43] |
S. Wäldchen , J. Lehmann , T. Klein , S. Van De Linde , M. Sauer . Light-induced cell damage in live-cell super-resolution microscopy. Sci. Rep., 2015, 5(1): 15348
CrossRef
ADS
Google scholar
|
[44] |
T. Zhu , J. Huang , Z. Ruan . Optical phase mining by adjustable spatial differentiator. Adv. Photonics, 2020, 2(1): 016001
CrossRef
ADS
Google scholar
|
[45] |
Y. Kim , G. Y. Lee , J. Sung , J. Jang , B. Lee . Spiral metalens for phase contrast imaging. Adv. Funct. Mater., 2022, 32(5): 2106050
CrossRef
ADS
Google scholar
|
[46] |
X. Zhang , B. Bai , H. B. Sun , G. Jin , J. Valentine . Incoherent optoelectronic differentiation based on optimized multilayer films. Laser Photonics Rev., 2022, 16(9): 2200038
CrossRef
ADS
Google scholar
|
[47] |
Y.WangQ.YangS.HeR.WangH.Luo, Computing metasurfaces enabled broad-band vectorial differential interference contrast microscopy, ACS Photonics, doi:
|
[48] |
R. Wang , S. He , H. Luo . Photonic spin-Hall differential microscopy. Phys. Rev. Appl., 2022, 18(4): 044016
CrossRef
ADS
Google scholar
|
[49] |
L. Wesemann , J. Rickett , J. Song , J. Lou , E. Hinde , T. J. Davis , A. Roberts . Nanophotonics enhanced coverslip for phase imaging in biology. Light Sci. Appl., 2021, 10(1): 98
CrossRef
ADS
Google scholar
|
[50] |
S. Pancharatnam . Generalized theory of interference and its applications. Proc. Indian Acad. Sci. Sect. A, 1956, 44(6): 398
CrossRef
ADS
Google scholar
|
[51] |
A.ShapereF.Wilczek, Geometric Phases in Physics, World Scientific, Singapore, 1989
|
[52] |
M. V. Berry . Quantal phase factors accompanying adiabatic changes. Proc. Roy. Soc. A, 1984, 392(1802): 45
CrossRef
ADS
Google scholar
|
[53] |
Z. Bomzon , G. Biener , V. Kleiner , E. Hasman . Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett., 2002, 27(13): 1141
CrossRef
ADS
Google scholar
|
[54] |
K. Y. Bliokh , Y. P. Bliokh . Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet. Phys. Rev. Lett., 2006, 96(7): 073903
CrossRef
ADS
Google scholar
|
[55] |
S. Liu , S. Chen , S. Wen , H. Luo . Photonic spin Hall effect: fundamentals and emergent applications. Opto-Electronic Sci., 2022, 1(7): 220007
CrossRef
ADS
Google scholar
|
[56] |
K. Y. Bliokh . Geometrodynamics of polarized light: Berry phase and spin Hall effect in a gradient-index medium. J. Opt. A, Pure Appl. Opt., 2009, 11(9): 094009
CrossRef
ADS
Google scholar
|
[57] |
K. Y. Bliokh , F. J. Rodríguez-Fortuño , F. Nori , A. V. Zayats . Spin–orbit interactions of light. Nat. Photonics, 2015, 9(12): 796
CrossRef
ADS
Google scholar
|
[58] |
C. Cisowski , J. B. Götte , S. Franke-Arnold . Colloquium: Geometric phases of light: Insights from fiber bundle theory. Rev. Mod. Phys., 2022, 94(3): 031001
CrossRef
ADS
Google scholar
|
[59] |
Y. Liu , Y. Ke , H. Luo , S. Wen . Photonic spin Hall effect in metasurfaces: A brief review. Nanophotonics, 2017, 6(1): 51
CrossRef
ADS
Google scholar
|
[60] |
M. Onoda , S. Murakami , N. Nagaosa . Hall effect of light. Phys. Rev. Lett., 2004, 93(8): 083901
CrossRef
ADS
Google scholar
|
[61] |
X. Ling , X. Zhou , K. Huang , Y. Liu , C. Qiu , H. Luo , S. Wen . Recent advances in the spin Hall effect of light. Rep. Prog. Phys., 2017, 80(6): 066401
CrossRef
ADS
Google scholar
|
[62] |
M. V. Berry . The adiabatic phase and Pancharatnam’s phase for polarized light. J. Mod. Opt., 1987, 34(11): 1401
CrossRef
ADS
Google scholar
|
[63] |
L. Wesemann , T. J. Davis , A. Roberts . Meta-optical and thin film devices for all-optical information processing. Appl. Phys. Rev., 2021, 8(3): 031309
CrossRef
ADS
Google scholar
|
[64] |
J. Huang , T. Zhu , Z. Ruan . Two-shot calibration method for phase-only spatial light modulators with generalized spatial differentiator. Phys. Rev. Appl., 2020, 14(5): 054040
CrossRef
ADS
Google scholar
|
[65] |
S. He , J. Zhou , S. Chen , W. Shu , H. Luo , S. Wen . Spatial differential operation and edge detection based on the geometric spin Hall effect of light. Opt. Lett., 2020, 45(4): 877
CrossRef
ADS
Google scholar
|
[66] |
D. Xu , S. He , J. Zhou , S. Chen , S. Wen , H. Luo . Optical analog computing of two-dimensional spatial differentiation based on the Brewster effect. Opt. Lett., 2020, 45(24): 6867
CrossRef
ADS
Google scholar
|
[67] |
S. He , R. Wang , W. Xu , Z. Luo , H. Luo . Visualization of transparent particles based on optical spatial differentiation. Opt. Lett., 2022, 47(22): 5754
CrossRef
ADS
Google scholar
|
[68] |
T. Zhu , C. Guo , J. Huang , H. Wang , M. Orenstein , Z. Ruan , S. Fan . Topological optical differentiator. Nat. Commun., 2021, 12(1): 680
CrossRef
ADS
Google scholar
|
[69] |
S. Chen , Z. Li , W. Liu , H. Cheng , J. Tian . From single‐dimensional to multidimensional manipulation of optical waves with metasurfaces. Adv. Mater., 2019, 31(16): 1802458
CrossRef
ADS
Google scholar
|
[70] |
D. Xu , H. Yang , W. Xu , W. Zhang , K. Zeng , H. Luo . Inverse design of Pancharatnam–Berry phase metasurfaces for all-optical image edge detection. Appl. Phys. Lett., 2022, 120(24): 241101
CrossRef
ADS
Google scholar
|
[71] |
Y. Shou , Y. Wang , L. Miao , S. Chen , H. Luo . Realization of all-optical higher-order spatial differentiators based on cascaded operations. Opt. Lett., 2022, 47(22): 5981
CrossRef
ADS
Google scholar
|
[72] |
T. Li , Y. Yang , X. Liu , Y. Wu , Y. Zhou , S. Huang , X. Li , H. Huang . Enhanced optical edge detection based on a Pancharatnam–Berry flat lens with a large focal length. Opt. Lett., 2020, 45(13): 3681
CrossRef
ADS
Google scholar
|
[73] |
H. Kwon , D. Sounas , A. Cordaro , A. Polman , A. Alù . Nonlocal metasurfaces for optical signal processing. Phys. Rev. Lett., 2018, 121(17): 173004
CrossRef
ADS
Google scholar
|
[74] |
A. Komar , R. A. Aoni , L. Xu , M. Rahmani , A. E. Miroshnichenko , D. N. Neshev . Edge detection with Mie-resonant dielectric metasurfaces. ACS Photonics, 2021, 8(3): 864
CrossRef
ADS
Google scholar
|
[75] |
D. Pan , L. Wan , M. Ouyang , W. Zhang , A. A. Potapov , W. Liu , Z. Liang , T. Feng , Z. Li . Laplace metasurfaces for optical analog computing based on quasi-bound states in the continuum. Photon. Res., 2021, 9(9): 1758
CrossRef
ADS
Google scholar
|
[76] |
P. P. Laissue , R. A. Alghamdi , P. Tomancak , E. G. Reynaud , H. Shroff . Assessing phototoxicity in live fluorescence imaging. Nat. Methods, 2017, 14(7): 657
CrossRef
ADS
Google scholar
|
[77] |
R. Wang , S. He , S. Chen , H. Luo . Brewster differential microscopy. Appl. Phys. Lett., 2022, 121(23): 231103
CrossRef
ADS
Google scholar
|
[78] |
H. Kwon , E. Arbabi , S. M. Kamali , M. S. Faraji-Dana , A. Faraon . Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces. Nat. Photonics, 2020, 14(2): 109
CrossRef
ADS
Google scholar
|
[79] |
E. Engay , D. Huo , R. Malureanu , A. I. Bunea , A. Lavrinenko . Polarization-dependent all-dielectric metasurface for single-shot quantitative phase imaging. Nano Lett., 2021, 21(9): 3820
CrossRef
ADS
Google scholar
|
[80] |
Y. Guo , M. Pu , F. Zhang , M. Xu , X. Li , X. Ma , X. Luo . Classical and generalized geometric phase in electromagnetic metasurfaces. Photon. Insights, 2022, 1(1): R03
CrossRef
ADS
Google scholar
|
[81] |
A. Arbabi , E. Arbabi , S. M. Kamali , Y. Horie , S. Han , A. Faraon . Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun., 2016, 7(1): 13682
CrossRef
ADS
Google scholar
|
[82] |
E. Arbabi , J. Li , R. J. Hutchins , S. M. Kamali , A. Arbabi , Y. Horie , P. Van Dorpe , V. Gradinaru , D. A. Wagenaar , A. Faraon . Two-photon microscopy with a double-wavelength metasurface objective lens. Nano Lett., 2018, 18(8): 4943
CrossRef
ADS
Google scholar
|
[83] |
J. Zhou , Q. Wu , J. Zhao , C. Posner , M. Lei , G. Chen , J. Zhang , Z. Liu . Fourier optical spin splitting microscopy. Phys. Rev. Lett., 2022, 129(2): 020801
CrossRef
ADS
Google scholar
|
[84] |
Q. Zhao , S. Tu , Q. Lei , Q. Yue , C. Guo , Y. Cai . Edge enhancement of phase objects through complex media by using transmission-matrix-based spiral phase contrast imaging. Front. Phys., 2022, 17(5): 52503
CrossRef
ADS
Google scholar
|
[85] |
M. Zhao , X. Liang , J. Li , M. Xie , H. Zheng , Y. Zhong , J. Yu , J. Zhang , Z. Chen , W. Zhu . Optical phase contrast microscopy with incoherent vortex phase. Laser Photonics Rev., 2022, 16(11): 2200230
CrossRef
ADS
Google scholar
|
[86] |
F. Wolfgramm , C. Vitelli , F. A. Beduini , N. Godbout , M. W. Mitchell . Entanglement-enhanced probing of a delicate material system. Nat. Photonics, 2013, 7(1): 28
CrossRef
ADS
Google scholar
|
[87] |
M. A. Taylor , J. Janousek , V. Daria , J. Knittel , B. Hage , H. A. Bachor , W. P. Bowen . Subdiffraction-limited quantum imaging within a living cell. Phys. Rev. X, 2014, 4(1): 011017
CrossRef
ADS
Google scholar
|
[88] |
S. Lloyd . Enhanced sensitivity of photodetection via quantum illumination. Science, 2008, 321(5895): 1463
CrossRef
ADS
Google scholar
|
[89] |
E. D. Lopaeva , I. Ruo Berchera , I. P. Degiovanni , S. Olivares , G. Brida , M. Genovese . Experimental realization of quantum illumination. Phys. Rev. Lett., 2013, 110(15): 153603
CrossRef
ADS
Google scholar
|
[90] |
T. Gregory , P. A. Moreau , E. Toninelli , M. J. Padgett . Imaging through noise with quantum illumination. Sci. Adv., 2020, 6(6): eaay2652
CrossRef
ADS
Google scholar
|
[91] |
T. Ono , R. Okamoto , S. Takeuchi . An entanglement-enhanced microscope. Nat. Commun., 2013, 4(1): 2426
CrossRef
ADS
Google scholar
|
[92] |
A. N. Boto , P. Kok , D. S. Abrams , S. L. Braunstein , C. P. Williams , J. P. Dowling . Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett., 2000, 85(13): 2733
CrossRef
ADS
Google scholar
|
[93] |
M. Ornigotti , A. Aiello . The Hertz vector revisited: A simple physical picture. J. Opt., 2014, 16(10): 105705
CrossRef
ADS
Google scholar
|
[94] |
D. G. England , B. Balaji , B. J. Sussman . Quantum-enhanced standoff detection using correlated photon pairs. Phys. Rev. A, 2019, 99(2): 023828
CrossRef
ADS
Google scholar
|
[95] |
P. A. Moreau , E. Toninelli , T. Gregory , R. S. Aspden , P. A. Morris , M. J. Padgett . Imaging Bell-type nonlocal behavior. Sci. Adv., 2019, 5(7): eaaw2563
CrossRef
ADS
Google scholar
|
[96] |
S. Liu , C. Yang , S. Liu , Z. Zhou , Y. Li , Y. Li , Z. Xu , G. Guo , B. Shi . Up-conversion imaging processing with field-of-view and edge enhancement. Phys. Rev. Appl., 2019, 11(4): 044013
CrossRef
ADS
Google scholar
|
[97] |
S. Liu , Y. Li , S. Liu , Z. Zhou , Y. Li , C. Yang , G. Guo , B. Shi . Real-time quantum edge enhanced imaging. Opt. Express, 2020, 28(24): 35415
CrossRef
ADS
Google scholar
|
[98] |
M. A. Taylor , W. P. Bowen . Quantum metrology and its application in biology. Phys. Rep., 2016, 615: 1
CrossRef
ADS
Google scholar
|
[99] |
Y. Israel , S. Rosen , Y. Silberberg . Supersensitive polarization microscopy using NOON states of light. Phys. Rev. Lett., 2014, 112(10): 103604
CrossRef
ADS
Google scholar
|
[100] |
P. A. Morris , R. S. Aspden , J. E. C. Bell , R. W. Boyd , M. J. Padgett . Imaging with a small number of photons. Nat. Commun., 2015, 6(1): 5913
CrossRef
ADS
Google scholar
|
[101] |
N. Samantaray , I. Ruo-Berchera , A. Meda , M. Genovese . Realization of the first sub-shot-noise wide field microscope. Light Sci. Appl., 2017, 6(7): e17005
CrossRef
ADS
Google scholar
|
[102] |
I. Kviatkovsky , H. M. Chrzanowski , E. G. Avery , H. Bartolomaeus , S. Ramelow . Microscopy with undetected photons in the mid-infrared. Sci. Adv., 2020, 6(42): eabd0264
CrossRef
ADS
Google scholar
|
[103] |
C. A. Casacio , L. S. Madsen , A. Terrasson , M. Waleed , K. Barnscheidt , B. Hage , M. A. Taylor , W. P. Bowen . Quantum-enhanced nonlinear microscopy. Nature, 2021, 594(7862): 201
CrossRef
ADS
Google scholar
|
[104] |
D. J. Stephens , V. J. Allan . Light microscopy techniques for live cell imaging. Science, 2013, 300(5616): 82
CrossRef
ADS
Google scholar
|
[105] |
K. Frischwasser , K. Cohen , J. Kher-Alden , S. Dolev , S. Tsesses , G. Bartal . Real-time sub-wavelength imaging of surface waves with nonlinear near-field optical microscopy. Nat. Photonics, 2021, 15(6): 442
CrossRef
ADS
Google scholar
|
[106] |
L. E. Villegas-Hernández , V. Dubey , M. Nystad , J. C. Tinguely , D. A. Coucheron , F. T. Dullo , A. Priyadarshi , S. Acuña , A. Ahmad , J. M. Mateos , G. Barmettler , U. Ziegler , Å. B. Birgisdottir , A. M. K. Hovd , K. A. Fenton , G. Acharya , K. Agarwal , B. S. Ahluwalia . Chip-based multimodal super-resolution microscopy for histological investigations of cryopreserved tissue sections. Light Sci. Appl., 2022, 11(1): 43
CrossRef
ADS
Google scholar
|
[107] |
J. Li , N. Zhou , J. Sun , S. Zhou , Z. Bai , L. Lu , Q. Chen , C. Zuo . Transport of intensity diffraction tomography with non-interferometric synthetic aperture for three-dimensional label-free microscopy. Light Sci. Appl., 2022, 11(1): 154
CrossRef
ADS
Google scholar
|
[108] |
P. A. Moreau , E. Toninelli , T. Gregory , M. J. Padgett . Imaging with quantum states of light. Nat. Rev. Phys., 2019, 1(6): 367
CrossRef
ADS
Google scholar
|
[109] |
M. G. Basset , F. Setzpfandt , F. Steinlechner , E. Beckert , T. Pertsch , M. Gräfe . Perspectives for applications of quantum imaging. Laser Photonics Rev., 2019, 13(10): 1900097
CrossRef
ADS
Google scholar
|
[110] |
O. Varnavski , C. Gunthardt , A. Rehman , G. D. Luker , T. Goodson . Quantum light-enhanced two-photon imaging of breast cancer cells. J. Phys. Chem. Lett., 2022, 13(12): 2772
CrossRef
ADS
Google scholar
|
[111] |
A. V. Paterova , H. Yang , Z. S. D. Toa , L. A. Krivitsky . Quantum imaging for the semiconductor industry. Appl. Phys. Lett., 2020, 117(5): 054004
CrossRef
ADS
Google scholar
|
[112] |
H. Goh , A. Alù . Nonlocal scatterer for compact wave-based analog computing. Phys. Rev. Lett., 2022, 128(7): 073201
CrossRef
ADS
Google scholar
|
[113] |
J. Wu , X. Lin , Y. Guo , J. Liu , L. Fang , S. Jiao , Q. Dai . Analog optical computing for artificial intelligence. Engineering, 2021, 10(1): 133
CrossRef
ADS
Google scholar
|
[114] |
M. K. Chen , Y. Yan , X. Liu , Y. Wu , J. Zhang , J. Yuan , Z. Zhang , D. P. Tsai . Edge detection with meta-lens: From one dimension to three dimensions. Nanophotonics, 2021, 10(14): 3709
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |