Demonstration of fully-connected quantum communication network exploiting entangled sideband modes

Fan Li, Xiaoli Zhang, Jianbo Li, Jiawei Wang, Shaoping Shi, Long Tian, Yajun Wang, Lirong Chen, Yaohui Zheng

PDF(4699 KB)
PDF(4699 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (4) : 42303. DOI: 10.1007/s11467-023-1269-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Demonstration of fully-connected quantum communication network exploiting entangled sideband modes

Author information +
History +

Abstract

Quantum communication network scales point-to-point quantum communication protocols to more than two detached parties, which would permit a wide variety of quantum communication applications. Here, we demonstrate a fully-connected quantum communication network, exploiting three pairs of Einstein−Podolsky−Rosen (EPR) entangled sideband modes, with high degree entanglement of 8.0 dB, 7.6 dB, and 7.2 dB. Each sideband modes from a squeezed field are spatially separated by demultiplexing operation, then recombining into new group according to network requirement. Each group of sideband modes are distributed to one of the parties via a single physical path, making sure each pair of parties build their own private communication links with high channel capacity better than any classical scheme.

Graphical abstract

Keywords

quantum network / quantum communication / entangled sideband modes / quantum dense coding

Cite this article

Download citation ▾
Fan Li, Xiaoli Zhang, Jianbo Li, Jiawei Wang, Shaoping Shi, Long Tian, Yajun Wang, Lirong Chen, Yaohui Zheng. Demonstration of fully-connected quantum communication network exploiting entangled sideband modes. Front. Phys., 2023, 18(4): 42303 https://doi.org/10.1007/s11467-023-1269-3

References

[1]
C. Weedbrook , S. Pirandola , R. García-Patrón , N. J. Cerf , T. C. Ralph , J. H. Shapiro , S. Lloyd . Gaussian quantum information. Rev. Mod. Phys., 2012, 84(2): 621
CrossRef ADS Google scholar
[2]
S. L. Braunstein , P. van Loock . Quantum information with continuous variables. Rev. Mod. Phys., 2005, 77(2): 513
CrossRef ADS Google scholar
[3]
H. J. Kimble . The quantum internet. Nature, 2008, 453(7198): 1023
CrossRef ADS Google scholar
[4]
A. Furusawa , N. Takei . Quantum teleportation for continuous variables and related quantum information processing. Phys. Rep., 2007, 443(3): 97
CrossRef ADS Google scholar
[5]
T. Liu , B. Q. Guo , Y. H. Zhou , J. L. Zhao , Y. L. Fang , Q. C. Wu , C. P. Yang . Transfer of quantum entangled states between superconducting qubits and microwave field qubits. Front. Phys., 2022, 17(6): 61502
CrossRef ADS Google scholar
[6]
V. Giovannetti , S. Lloyd , L. Maccone . Advances in quantum metrology. Nat. Photonics, 2011, 5(4): 222
CrossRef ADS Google scholar
[7]
V. Giovannetti , S. Lloyd , L. Maccone . Quantum metrology. Phys. Rev. Lett., 2006, 96(1): 010401
CrossRef ADS Google scholar
[8]
L. Pezzè , A. Smerzi , M. K. Oberthaler , R. Schmied , P. Treutlein . Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys., 2018, 90(3): 035005
CrossRef ADS Google scholar
[9]
R. Raussendorf , H. J. Briegel . A one-way quantum computer. Phys. Rev. Lett., 2001, 86(22): 5188
CrossRef ADS Google scholar
[10]
S. Takeda , A. Furusawa . Toward large-scale fault-tolerant universal photonic quantum computing. APL Photonics, 2019, 4(6): 060902
CrossRef ADS Google scholar
[11]
B. Cheng , X. H. Deng , X. Gu , Y. He , G. C. Hu , P. H. Huang , J. Li , B. C. Lin , D. W. Lu , Y. Lu , C. D. Qiu , H. Wang , T. Xin , S. Yu , M. H. Yung , J. K. Zeng , S. Zhang , Y. P. Zhong , X. H. Peng , F. Nori , D. P. Yu . Noisy intermediate-scale quantum computers. Front. Phys., 2023, 18(2): 21308
[12]
H. K. Lo , M. Curty , K. Tamaki . Secure quantum key distribution. Nat. Photonics, 2014, 8(8): 595
CrossRef ADS Google scholar
[13]
F. Grosshans , G. Van Assche , J. Wenger , R. Brouri , N. J. Cerf , P. Grangier . Quantum key distribution using Gaussian-modulated coherent states. Nature, 2003, 421: 238
CrossRef ADS Google scholar
[14]
S. K. Liao , W. Q. Cai , J. Handsteiner , B. Liu , J. Yin , L. Zhang , D. Rauch , M. Fink , J. G. Ren , W. Y. Liu , Y. Li , Q. Shen , Y. Cao , F. Z. Li , J. F. Wang , Y. M. Huang , L. Deng , T. Xi , L. Ma , T. Hu , L. Li , N. L. Liu , F. Koidl , P. Wang , Y. A. Chen , X. B. Wang , M. Steindorfer , G. Kirchner , C. Y. Lu , R. Shu , R. Ursin , T. Scheidl , C. Z. Peng , J. Y. Wang , A. Zeilinger , J. W. Pan . Satellite-relayed intercontinental quantum network. Phys. Rev. Lett., 2018, 120(3): 030501
CrossRef ADS Google scholar
[15]
H. Y. Liu , X. H. Tian , C. Gu , P. Fan , X. Ni , R. Yang , J. N. Zhang , M. Hu , J. Guo , X. Cao , X. Hu , G. Zhao , Y. Q. Lu , Y. X. Gong , Z. Xie , S. N. Zhu . Optical-relayed entanglement distribution using drones as mobile nodes. Phys. Rev. Lett., 2021, 126(2): 020503
CrossRef ADS Google scholar
[16]
H. Yonezawa , T. Aoki , A. Furusawa . Demonstration of a quantum teleportation network for continuous variables. Nature, 2004, 431(7007): 430
CrossRef ADS Google scholar
[17]
T. Y. Chen , J. Wang , H. Liang , W. Y. Liu , Y. Liu , X. Jiang , Y. Wang , X. Wan , W. Q. Cai , L. Ju , L. K. Chen , L. J. Wang , Y. Gao , K. Chen , C. Z. Peng , Z. B. Chen , J. W. Pan . Metropolitan all-pass and inter-city quantum communication network. Opt. Express, 2010, 18(26): 27217
CrossRef ADS Google scholar
[18]
W. Wang , K. Zhang , J. T. Jing . Large-scale quantum network over 66 orbital angular momentum optical modes. Phys. Rev. Lett., 2020, 125(14): 140501
CrossRef ADS Google scholar
[19]
N. Huo , Y. Liu , J. Li , L. Cui , X. Chen , R. Palivela , T. Xie , X. Li , Z. Y. Ou . Direct temporal mode measurement for the characterization of temporally multiplexed high dimensional quantum entanglement in continuous variables. Phys. Rev. Lett., 2020, 124(21): 213603
CrossRef ADS Google scholar
[20]
X. Wang , J. Fu , S. Liu , Y. Wei , J. Jing . Self-healing of multipartite entanglement in optical quantum net-works. Optica, 2022, 9(6): 663
CrossRef ADS Google scholar
[21]
W. Asavanant , Y. Shiozawa , S. Yokoyama , B. Charoensombutamon , H. Emura , R. N. Alexander , S. Takeda , J. Yoshikawa , N. C. Menicucci , H. Yonezawa , A. Furusawa . Generation of time-domain-multiplexed two-dimensional cluster state. Science, 2019, 366(6463): 373
CrossRef ADS Google scholar
[22]
M. V. Larsen , X. Guo , C. R. Breum , J. S. Neergaard-Nielsen , U. L. Andersen . Deterministic generation of a two-dimensional cluster state. Science, 2019, 366(6463): 369
CrossRef ADS Google scholar
[23]
Y. Liu , N. Huo , J. Li , X. Li . Long-distance distribution of the telecom band intensity difference squeezing generated in a fiber optical parametric amplifier. Opt. Lett., 2018, 43(22): 5559
CrossRef ADS Google scholar
[24]
Q. Zhuang , Z. Zhang , J. H. Shapiro . Distributed quantum sensing using continuous-variable multipartite entanglement. Phys. Rev. A, 2018, 97(3): 032329
CrossRef ADS Google scholar
[25]
C. Oh , C. Lee , S. H. Lie , H. Jeong . Optimal distributed quantum sensing using Gaussian states. Phys. Rev. Res., 2020, 2(2): 023030
CrossRef ADS Google scholar
[26]
X. D. Wu , Y. J. Wang , H. Zhong , Q. Liao , Y. Guo . Plug-and-play dual-phase-modulated continuous-variable quantum key distribution with photon subtraction. Front. Phys., 2019, 14(4): 41501
CrossRef ADS Google scholar
[27]
S. P. Shi , L. Tian , Y. J. Wang , Y. H. Zheng , C. D. Xie , K. C. Peng . Demonstration of channel multiplexing quantum communication exploiting entangled sideband modes. Phys. Rev. Lett., 2020, 125(7): 070502
CrossRef ADS Google scholar
[28]
E. D. Black . An introduction to Pound−Drever−Hall laser frequency stabilization. Am. J. Phys., 2001, 69(1): 79
CrossRef ADS Google scholar
[29]
W. H. Yang , S. P. Shi , Y. J. Wang , W. G. Ma , Y. H. Zheng , K. C. Peng . Detection of stably bright squeezed light with the quantum noise reduction of 12.6 dB by mutually compensating the phase fluctuations. Opt. Lett., 2017, 42(21): 4553
CrossRef ADS Google scholar
[30]
L. Tian , S. P. Shi , Y. H. Tian , Y. J. Wang , Y. H. Zheng , K. C. Peng . Resource reduction for simultaneous generation of two types of continuous variable nonclassical states. Front. Phys., 2021, 16(2): 21502
CrossRef ADS Google scholar
[31]
J. Roslund , R. M. de Ara’ujo , S. Jiang , C. Fabre , N. Treps . Wavelength-multiplexed quantum networks with ultrafast frequency combs. Nat. Photonics, 2014, 8(2): 109
CrossRef ADS Google scholar
[32]
H. Yonezawa , S. L. Braunstein , A. Furusawa . Experimental demonstration of quantum teleportation of broadband squeezing. Phys. Rev. Lett., 2007, 99(11): 110503
CrossRef ADS Google scholar
[33]
S. Ast , A. Samblowski , M. Mehmet , S. Steinlechner , T. Eberle , R. Schnabel . Continuous-wave nonclassical light with gigahertz squeezing bandwidth. Opt. Lett., 2012, 37(12): 2367
CrossRef ADS Google scholar
[34]
S. Ast , M. Ast , M. Mehmet , R. Schnabel . Gaussian entanglement distribution with gigahertz bandwidth. Opt. Lett., 2016, 41(21): 5094
CrossRef ADS Google scholar
[35]
K. Mattle , H. Weinfurter , P. G. Kwiat , A. Zeilinger . Dense coding in experimental quantum communication. Phys. Rev. Lett., 1996, 76(25): 4656
CrossRef ADS Google scholar
[36]
S. L. Braunstein , H. J. Kimble . Dense coding for continuous variables. Phys. Rev. A, 2000, 61(4): 042302
CrossRef ADS Google scholar
[37]
X. L. Jin , J. Su , Y. H. Zheng , C. Y. Chen , W. Z. Wang , K. C. Peng . Balanced homodyne detection with high common mode rejection ratio based on parameter compensation of two arbitrary photodiodes. Opt. Express, 2015, 23(18): 23859
CrossRef ADS Google scholar
[38]
L. M. Duan , G. Giedke , J. I. Cirac , P. Zoller . Inseparability criterion for continuous variable systems. Phys. Rev. Lett., 2000, 84(12): 2722
CrossRef ADS Google scholar
[39]
J. T. Jing , J. Zhang , Y. Yan , F. G. Zhao , C. D. Xie , K. C. Peng . Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables. Phys. Rev. Lett., 2003, 90(16): 167903
CrossRef ADS Google scholar
[40]
S. Yokoyama , R. Ukai , S. C. Armstrong , C. Sornphiphatphong , T. Kaji , S. Suzuki , J. Yoshikawa , H. Yonezawa , N. C. Menicucci , A. Furusawa . Ultra-large-scale continuous-variable cluster states multiplexed in the time domain. Nat. Photonics, 2013, 7(12): 982
CrossRef ADS Google scholar
[41]
J. Mizuno , K. Wakui , A. Furusawa , M. Sasaki . Experimental demonstration of entanglement-assisted coding using a two-mode squeezed vacuum state. Phys. Rev. A, 2005, 71(1): 012304
CrossRef ADS Google scholar
[42]
M. Stefszky , R. Ricken , C. Eigner , V. Quiring , H. Herrmann , C. Silberhorn . Waveguide cavity resonator as a source of optical squeezing. Phys. Rev. Appl., 2017, 7(4): 044026
CrossRef ADS Google scholar
[43]
A. Dutt , S. Miller , K. Luke , J. Cardenas , A. L. Gaeta , P. Nussenzveig , M. Lipson . Tunable squeezing using coupled ring resonators on a silicon nitride chip. Opt. Lett., 2016, 41(2): 223
CrossRef ADS Google scholar
[44]
J. S. Levy , A. Gondarenko , M. A. Foster , A. C. Turner-Foster , A. L. Gaeta , M. Lipson . CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat. Photonics, 2010, 4(1): 37
CrossRef ADS Google scholar
[45]
G. Masada , K. Miyata , A. Politi , T. Hashimoto , J. L. O’Brien , A. Furusawa . Continuous-variable entanglement on a chip. Nat. Photonics, 2015, 9(5): 316
CrossRef ADS Google scholar

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (NSFC) (Grant Nos. 62225504, 62027821, 62035015, U22A6003, and 12174234), the National Key R&D Program of China (Grant No. 2020YFC2200402), and the Program for Sanjin Scholar of Shanxi Province.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(4699 KB)

Accesses

Citations

Detail

Sections
Recommended

/