
Demonstration of fully-connected quantum communication network exploiting entangled sideband modes
Fan Li, Xiaoli Zhang, Jianbo Li, Jiawei Wang, Shaoping Shi, Long Tian, Yajun Wang, Lirong Chen, Yaohui Zheng
Front. Phys. ›› 2023, Vol. 18 ›› Issue (4) : 42303.
Demonstration of fully-connected quantum communication network exploiting entangled sideband modes
Quantum communication network scales point-to-point quantum communication protocols to more than two detached parties, which would permit a wide variety of quantum communication applications. Here, we demonstrate a fully-connected quantum communication network, exploiting three pairs of Einstein−Podolsky−Rosen (EPR) entangled sideband modes, with high degree entanglement of 8.0 dB, 7.6 dB, and 7.2 dB. Each sideband modes from a squeezed field are spatially separated by demultiplexing operation, then recombining into new group according to network requirement. Each group of sideband modes are distributed to one of the parties via a single physical path, making sure each pair of parties build their own private communication links with high channel capacity better than any classical scheme.
quantum network / quantum communication / entangled sideband modes / quantum dense coding
[1] |
C. Weedbrook , S. Pirandola , R. García-Patrón , N. J. Cerf , T. C. Ralph , J. H. Shapiro , S. Lloyd . Gaussian quantum information. Rev. Mod. Phys., 2012, 84(2): 621
CrossRef
ADS
Google scholar
|
[2] |
S. L. Braunstein , P. van Loock . Quantum information with continuous variables. Rev. Mod. Phys., 2005, 77(2): 513
CrossRef
ADS
Google scholar
|
[3] |
H. J. Kimble . The quantum internet. Nature, 2008, 453(7198): 1023
CrossRef
ADS
Google scholar
|
[4] |
A. Furusawa , N. Takei . Quantum teleportation for continuous variables and related quantum information processing. Phys. Rep., 2007, 443(3): 97
CrossRef
ADS
Google scholar
|
[5] |
T. Liu , B. Q. Guo , Y. H. Zhou , J. L. Zhao , Y. L. Fang , Q. C. Wu , C. P. Yang . Transfer of quantum entangled states between superconducting qubits and microwave field qubits. Front. Phys., 2022, 17(6): 61502
CrossRef
ADS
Google scholar
|
[6] |
V. Giovannetti , S. Lloyd , L. Maccone . Advances in quantum metrology. Nat. Photonics, 2011, 5(4): 222
CrossRef
ADS
Google scholar
|
[7] |
V. Giovannetti , S. Lloyd , L. Maccone . Quantum metrology. Phys. Rev. Lett., 2006, 96(1): 010401
CrossRef
ADS
Google scholar
|
[8] |
L. Pezzè , A. Smerzi , M. K. Oberthaler , R. Schmied , P. Treutlein . Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys., 2018, 90(3): 035005
CrossRef
ADS
Google scholar
|
[9] |
R. Raussendorf , H. J. Briegel . A one-way quantum computer. Phys. Rev. Lett., 2001, 86(22): 5188
CrossRef
ADS
Google scholar
|
[10] |
S. Takeda , A. Furusawa . Toward large-scale fault-tolerant universal photonic quantum computing. APL Photonics, 2019, 4(6): 060902
CrossRef
ADS
Google scholar
|
[11] |
B. Cheng , X. H. Deng , X. Gu , Y. He , G. C. Hu , P. H. Huang , J. Li , B. C. Lin , D. W. Lu , Y. Lu , C. D. Qiu , H. Wang , T. Xin , S. Yu , M. H. Yung , J. K. Zeng , S. Zhang , Y. P. Zhong , X. H. Peng , F. Nori , D. P. Yu . Noisy intermediate-scale quantum computers. Front. Phys., 2023, 18(2): 21308
|
[12] |
H. K. Lo , M. Curty , K. Tamaki . Secure quantum key distribution. Nat. Photonics, 2014, 8(8): 595
CrossRef
ADS
Google scholar
|
[13] |
F. Grosshans , G. Van Assche , J. Wenger , R. Brouri , N. J. Cerf , P. Grangier . Quantum key distribution using Gaussian-modulated coherent states. Nature, 2003, 421: 238
CrossRef
ADS
Google scholar
|
[14] |
S. K. Liao , W. Q. Cai , J. Handsteiner , B. Liu , J. Yin , L. Zhang , D. Rauch , M. Fink , J. G. Ren , W. Y. Liu , Y. Li , Q. Shen , Y. Cao , F. Z. Li , J. F. Wang , Y. M. Huang , L. Deng , T. Xi , L. Ma , T. Hu , L. Li , N. L. Liu , F. Koidl , P. Wang , Y. A. Chen , X. B. Wang , M. Steindorfer , G. Kirchner , C. Y. Lu , R. Shu , R. Ursin , T. Scheidl , C. Z. Peng , J. Y. Wang , A. Zeilinger , J. W. Pan . Satellite-relayed intercontinental quantum network. Phys. Rev. Lett., 2018, 120(3): 030501
CrossRef
ADS
Google scholar
|
[15] |
H. Y. Liu , X. H. Tian , C. Gu , P. Fan , X. Ni , R. Yang , J. N. Zhang , M. Hu , J. Guo , X. Cao , X. Hu , G. Zhao , Y. Q. Lu , Y. X. Gong , Z. Xie , S. N. Zhu . Optical-relayed entanglement distribution using drones as mobile nodes. Phys. Rev. Lett., 2021, 126(2): 020503
CrossRef
ADS
Google scholar
|
[16] |
H. Yonezawa , T. Aoki , A. Furusawa . Demonstration of a quantum teleportation network for continuous variables. Nature, 2004, 431(7007): 430
CrossRef
ADS
Google scholar
|
[17] |
T. Y. Chen , J. Wang , H. Liang , W. Y. Liu , Y. Liu , X. Jiang , Y. Wang , X. Wan , W. Q. Cai , L. Ju , L. K. Chen , L. J. Wang , Y. Gao , K. Chen , C. Z. Peng , Z. B. Chen , J. W. Pan . Metropolitan all-pass and inter-city quantum communication network. Opt. Express, 2010, 18(26): 27217
CrossRef
ADS
Google scholar
|
[18] |
W. Wang , K. Zhang , J. T. Jing . Large-scale quantum network over 66 orbital angular momentum optical modes. Phys. Rev. Lett., 2020, 125(14): 140501
CrossRef
ADS
Google scholar
|
[19] |
N. Huo , Y. Liu , J. Li , L. Cui , X. Chen , R. Palivela , T. Xie , X. Li , Z. Y. Ou . Direct temporal mode measurement for the characterization of temporally multiplexed high dimensional quantum entanglement in continuous variables. Phys. Rev. Lett., 2020, 124(21): 213603
CrossRef
ADS
Google scholar
|
[20] |
X. Wang , J. Fu , S. Liu , Y. Wei , J. Jing . Self-healing of multipartite entanglement in optical quantum net-works. Optica, 2022, 9(6): 663
CrossRef
ADS
Google scholar
|
[21] |
W. Asavanant , Y. Shiozawa , S. Yokoyama , B. Charoensombutamon , H. Emura , R. N. Alexander , S. Takeda , J. Yoshikawa , N. C. Menicucci , H. Yonezawa , A. Furusawa . Generation of time-domain-multiplexed two-dimensional cluster state. Science, 2019, 366(6463): 373
CrossRef
ADS
Google scholar
|
[22] |
M. V. Larsen , X. Guo , C. R. Breum , J. S. Neergaard-Nielsen , U. L. Andersen . Deterministic generation of a two-dimensional cluster state. Science, 2019, 366(6463): 369
CrossRef
ADS
Google scholar
|
[23] |
Y. Liu , N. Huo , J. Li , X. Li . Long-distance distribution of the telecom band intensity difference squeezing generated in a fiber optical parametric amplifier. Opt. Lett., 2018, 43(22): 5559
CrossRef
ADS
Google scholar
|
[24] |
Q. Zhuang , Z. Zhang , J. H. Shapiro . Distributed quantum sensing using continuous-variable multipartite entanglement. Phys. Rev. A, 2018, 97(3): 032329
CrossRef
ADS
Google scholar
|
[25] |
C. Oh , C. Lee , S. H. Lie , H. Jeong . Optimal distributed quantum sensing using Gaussian states. Phys. Rev. Res., 2020, 2(2): 023030
CrossRef
ADS
Google scholar
|
[26] |
X. D. Wu , Y. J. Wang , H. Zhong , Q. Liao , Y. Guo . Plug-and-play dual-phase-modulated continuous-variable quantum key distribution with photon subtraction. Front. Phys., 2019, 14(4): 41501
CrossRef
ADS
Google scholar
|
[27] |
S. P. Shi , L. Tian , Y. J. Wang , Y. H. Zheng , C. D. Xie , K. C. Peng . Demonstration of channel multiplexing quantum communication exploiting entangled sideband modes. Phys. Rev. Lett., 2020, 125(7): 070502
CrossRef
ADS
Google scholar
|
[28] |
E. D. Black . An introduction to Pound−Drever−Hall laser frequency stabilization. Am. J. Phys., 2001, 69(1): 79
CrossRef
ADS
Google scholar
|
[29] |
W. H. Yang , S. P. Shi , Y. J. Wang , W. G. Ma , Y. H. Zheng , K. C. Peng . Detection of stably bright squeezed light with the quantum noise reduction of 12.6 dB by mutually compensating the phase fluctuations. Opt. Lett., 2017, 42(21): 4553
CrossRef
ADS
Google scholar
|
[30] |
L. Tian , S. P. Shi , Y. H. Tian , Y. J. Wang , Y. H. Zheng , K. C. Peng . Resource reduction for simultaneous generation of two types of continuous variable nonclassical states. Front. Phys., 2021, 16(2): 21502
CrossRef
ADS
Google scholar
|
[31] |
J. Roslund , R. M. de Ara’ujo , S. Jiang , C. Fabre , N. Treps . Wavelength-multiplexed quantum networks with ultrafast frequency combs. Nat. Photonics, 2014, 8(2): 109
CrossRef
ADS
Google scholar
|
[32] |
H. Yonezawa , S. L. Braunstein , A. Furusawa . Experimental demonstration of quantum teleportation of broadband squeezing. Phys. Rev. Lett., 2007, 99(11): 110503
CrossRef
ADS
Google scholar
|
[33] |
S. Ast , A. Samblowski , M. Mehmet , S. Steinlechner , T. Eberle , R. Schnabel . Continuous-wave nonclassical light with gigahertz squeezing bandwidth. Opt. Lett., 2012, 37(12): 2367
CrossRef
ADS
Google scholar
|
[34] |
S. Ast , M. Ast , M. Mehmet , R. Schnabel . Gaussian entanglement distribution with gigahertz bandwidth. Opt. Lett., 2016, 41(21): 5094
CrossRef
ADS
Google scholar
|
[35] |
K. Mattle , H. Weinfurter , P. G. Kwiat , A. Zeilinger . Dense coding in experimental quantum communication. Phys. Rev. Lett., 1996, 76(25): 4656
CrossRef
ADS
Google scholar
|
[36] |
S. L. Braunstein , H. J. Kimble . Dense coding for continuous variables. Phys. Rev. A, 2000, 61(4): 042302
CrossRef
ADS
Google scholar
|
[37] |
X. L. Jin , J. Su , Y. H. Zheng , C. Y. Chen , W. Z. Wang , K. C. Peng . Balanced homodyne detection with high common mode rejection ratio based on parameter compensation of two arbitrary photodiodes. Opt. Express, 2015, 23(18): 23859
CrossRef
ADS
Google scholar
|
[38] |
L. M. Duan , G. Giedke , J. I. Cirac , P. Zoller . Inseparability criterion for continuous variable systems. Phys. Rev. Lett., 2000, 84(12): 2722
CrossRef
ADS
Google scholar
|
[39] |
J. T. Jing , J. Zhang , Y. Yan , F. G. Zhao , C. D. Xie , K. C. Peng . Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables. Phys. Rev. Lett., 2003, 90(16): 167903
CrossRef
ADS
Google scholar
|
[40] |
S. Yokoyama , R. Ukai , S. C. Armstrong , C. Sornphiphatphong , T. Kaji , S. Suzuki , J. Yoshikawa , H. Yonezawa , N. C. Menicucci , A. Furusawa . Ultra-large-scale continuous-variable cluster states multiplexed in the time domain. Nat. Photonics, 2013, 7(12): 982
CrossRef
ADS
Google scholar
|
[41] |
J. Mizuno , K. Wakui , A. Furusawa , M. Sasaki . Experimental demonstration of entanglement-assisted coding using a two-mode squeezed vacuum state. Phys. Rev. A, 2005, 71(1): 012304
CrossRef
ADS
Google scholar
|
[42] |
M. Stefszky , R. Ricken , C. Eigner , V. Quiring , H. Herrmann , C. Silberhorn . Waveguide cavity resonator as a source of optical squeezing. Phys. Rev. Appl., 2017, 7(4): 044026
CrossRef
ADS
Google scholar
|
[43] |
A. Dutt , S. Miller , K. Luke , J. Cardenas , A. L. Gaeta , P. Nussenzveig , M. Lipson . Tunable squeezing using coupled ring resonators on a silicon nitride chip. Opt. Lett., 2016, 41(2): 223
CrossRef
ADS
Google scholar
|
[44] |
J. S. Levy , A. Gondarenko , M. A. Foster , A. C. Turner-Foster , A. L. Gaeta , M. Lipson . CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat. Photonics, 2010, 4(1): 37
CrossRef
ADS
Google scholar
|
[45] |
G. Masada , K. Miyata , A. Politi , T. Hashimoto , J. L. O’Brien , A. Furusawa . Continuous-variable entanglement on a chip. Nat. Photonics, 2015, 9(5): 316
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |