Characteristics investigation of Yb3+:YAG crystals for optical refrigeration
Yongqing Lei, Biao Zhong, Xuelu Duan, Chaoyu Wang, Jiajin Xu, Ziheng Zhang, Jinxin Ding, Jianping Yin
Characteristics investigation of Yb3+:YAG crystals for optical refrigeration
Yb3+:YAG crystal is one excellent material for developing high-power radiation-balanced lasers (RBLs). An experimental study of the laser cooling performances of YAG crystals with various doping Yb3+ concentrations, especially for application of RBLs, is reported here. With improved Yb3+ doping concentration in YAG crystal, though the resonance absorption coefficient increases, the corresponding external quantum efficiency has been found to decrease with the average fluorescence wavelength being red shifted, which is detrimental to anti-Stokes fluorescence (ASF) cooling. The decrease of the external quantum efficiency can cause the first zero crossing wavelength to red shift, which is not conducive to RBLs. Based on the comprehensive study of the cooling characteristics of the series of Yb3+-doped YAG crystals, the optimal Yb3+ doping concentration for ASF cooling has been suggested.
anti-Stokes fluorescence cooling / Yb3+:YAG crystal / radiation-balanced lasers
[1] |
N. Djeu, W. Whitney. Laser cooling by spontaneous anti-Stokes scattering. Phys. Rev. Lett., 1981, 46(4): 236
CrossRef
ADS
Google scholar
|
[2] |
E. A. Cornell, C. E. Wieman. Bose–Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys., 2002, 74(3): 875
CrossRef
ADS
Google scholar
|
[3] |
T. W. Hänsch, A. L. Schawlow. Cooling of gases by laser radiation. Opt. Commun., 1975, 13(1): 68
CrossRef
ADS
Google scholar
|
[4] |
D. S. Jin, J. Ye. Polar molecules in the quantum regime. Phys. Today, 2011, 64(5): 27
CrossRef
ADS
Google scholar
|
[5] |
C. Zander, K. H. Drexhage. Cooling of a dye solution by anti-Stokes fluorescence. Adv. Photochem., 1995, 20: 59
CrossRef
ADS
Google scholar
|
[6] |
R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, C. E. Mungan. Observation of laser-induced fluorescent cooling of a solid. Nature, 1995, 377(6549): 500
CrossRef
ADS
Google scholar
|
[7] |
D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, M. Sheik-Bahae. Laser cooling of solids to cryogenic temperatures. Nat. Photonics, 2010, 4(3): 161
CrossRef
ADS
Google scholar
|
[8] |
S. D. Melgaard, A. R. Albrecht, M. P. Hehlen, M. Sheik-Bahae. Solid-state optical refrigeration to sub-100 Kelvin regime. Sci. Rep., 2016, 6(1): 20380
CrossRef
ADS
Google scholar
|
[9] |
D. V. Seletskiy, R. Epstein, M. Sheik-Bahae. Laser cooling in solids: Advances and prospects. Rep. Prog. Phys., 2016, 79(9): 096401
CrossRef
ADS
Google scholar
|
[10] |
W. D. Phillips. Nobel Lecture: Laser cooling and trapping of neutral atoms. Rev. Mod. Phys., 1998, 70(3): 721
CrossRef
ADS
Google scholar
|
[11] |
I. Bloch, J. Dalibard, W. Zwerger. Many-body physics with ultracold gases. Rev. Mod. Phys., 2008, 80(3): 885
CrossRef
ADS
Google scholar
|
[12] |
A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, P. O. Schmidt. Optical atomic clocks. Rev. Mod. Phys., 2015, 87(2): 637
CrossRef
ADS
Google scholar
|
[13] |
R. Horchani. Laser cooling of internal degrees of freedom of molecules. Front. Phys., 2016, 11(4): 113301
CrossRef
ADS
Google scholar
|
[14] |
J. L. Bohn, A. M. Rey, J. Ye. Cold molecules: Progress in quantum engineering of chemistry and quantum matter. Science, 2017, 357(6355): 1002
CrossRef
ADS
Google scholar
|
[15] |
S. A. Malinovskaya. Laser cooling using adiabatic rapid passage. Front. Phys., 2021, 16(5): 52601
CrossRef
ADS
Google scholar
|
[16] |
Q. Liang, T. Chen, W. H. Bu, Y. H. Zhang, B. Yan. Laser cooling with adiabatic passage for type-II transitions. Front. Phys., 2021, 16(3): 32501
CrossRef
ADS
Google scholar
|
[17] |
K. Yan, R. Gu, D. Wu, J. Wei, Y. Xia, J. Yin. Simulation of EOM-based frequency-chirped laser slowing of MgF radicals. Front. Phys., 2022, 17(4): 42502
CrossRef
ADS
Google scholar
|
[18] |
W. Bu, Y. Zhang, Q. Liang, T. Chen, B. Yan. Saturated absorption spectroscopy of buffer-gas-cooled Barium monofluoride molecules. Front. Phys., 2022, 17(6): 62502
CrossRef
ADS
Google scholar
|
[19] |
Y. Liu, L. Luo. Molecular collisions: From near-cold to ultra-cold. Front. Phys., 2021, 16(4): 42300
CrossRef
ADS
Google scholar
|
[20] |
R. Vicente, G. Nogues, J. M. Niot, T. Wiertz, P. Contini, A. Gardelein. Impacts of laser cooling for low earth orbit observation satellites: An analysis in terms of size, weight and power. Cryogenics, 2020, 105: 103000
CrossRef
ADS
Google scholar
|
[21] |
J. Li, Z. Chen, Y. Liu, P. S. Kollipara, Y. Feng, Z. Zhang, Y. Zheng. Opto-refrigerative tweezers. Sci. Adv., 2021, 7(26): eabh1101
CrossRef
ADS
Google scholar
|
[22] |
M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, M. Sheik-Bahae. First demonstration of an all-solid-state optical cryocooler. Light Sci. Appl., 2018, 7(1): 15
CrossRef
ADS
Google scholar
|
[23] |
J. Knall, M. Engholm, T. Boilard, M. Bernier, P. B. Vigneron, N. Yu, P. D. Dragic, J. Ballato, M. J. F. Digonnet. Radiation-balanced silica fiber laser. Optica, 2021, 8(6): 830
CrossRef
ADS
Google scholar
|
[24] |
F. Caminati, G. Cittadino, E. Damiano, A. Di Lieto, M. Tonelli. A design for optical refrigeration: The parallel configuration. Appl. Phys. Lett., 2023, 122(2): 021102
CrossRef
ADS
Google scholar
|
[25] |
P. Pringsheim. Zwei bemerkungen über den unterschied von lumineszenz-und temperaturstrahlung. Eur. Phys. J. A, 1929, 57(11−12): 739
CrossRef
ADS
Google scholar
|
[26] |
L. Landau. On the thermodynamics of photoluminescence. J. Phys. (Moscow), 1946, 10: 503
|
[27] |
W. Patterson, S. Bigotta, M. Sheik-Bahae, D. Parisi, M. Tonelli, R. Epstein. Anti-Stokes luminescence cooling of Tm3+ doped BaY2F8. Opt. Express, 2008, 16(3): 1704
CrossRef
ADS
Google scholar
|
[28] |
S. Rostami, A. R. Albrecht, A. Volpi, M. P. Hehlen, M. Tonelli, M. Sheik-Bahae. Tm-doped crystals for mid-IR optical cryocoolers and radiation balanced lasers. Opt. Lett., 2019, 44(6): 1419
CrossRef
ADS
Google scholar
|
[29] |
S. Rostami, A. R. Albrecht, A. Volpi, M. Sheik-Bahae. Observation of optical refrigeration in a holmium-doped crystal. Photon. Res., 2019, 7(4): 445
CrossRef
ADS
Google scholar
|
[30] |
A. Gragossian, M. Ghasemkhani, J. Meng, A. Albrecht, M. Tonelli, M. Sheik-Bahae. Optical refrigeration inches toward liquid-nitrogen temperatures. SPIE Newsroom, 2017,
CrossRef
ADS
Google scholar
|
[31] |
S. Bigotta, A. Di Lieto, A. Toncelli, M. Tonelli, D. Seletskiy, M. Hasselbeck, M. Sheik-Bahae, R. Epstein. Laser cooling of solids: New results with single fluoride crystals. Nuovo Cimento-Societa Italiana Di Fisica Sezione B, 2007, 122: 685
|
[32] |
B. Zhong, J. Yin, Y. Jia, L. Chen, Y. Hang, J. Yin. Laser cooling of Yb3+-doped LuLiF4 crystal. Opt. Lett., 2014, 39(9): 2747
CrossRef
ADS
Google scholar
|
[33] |
B. Zhong, Y. Lei, H. Luo, Y. Shi, T. Yang, J. Yin. Laser cooling of the Yb3+-doped LuLiF4 single crystal for optical refrigeration. J. Lumin., 2020, 226: 117472
CrossRef
ADS
Google scholar
|
[34] |
Y. Lei, B. Zhong, T. Yang, X. Duan, M. Xia, C. Wang, J. Xu, Z. Zhang, J. Ding, J. Yin. Laser cooling of Yb3+:LuLiF4 crystal below cryogenic temperature to 121 K. Appl. Phys. Lett., 2022, 120(23): 231101
CrossRef
ADS
Google scholar
|
[35] |
J. Zhang, D. Li, R. Chen, Q. Xiong. Laser cooling of a semiconductor by 40 Kelvin. Nature, 2013, 493(7433): 504
CrossRef
ADS
Google scholar
|
[36] |
J. B. Khurgin. Multi-phonon-assisted absorption and emission in semiconductors and its potential for laser refrigeration. Appl. Phys. Lett., 2014, 104(22): 221115
CrossRef
ADS
Google scholar
|
[37] |
S. T. Ha, C. Shen, J. Zhang, Q. Xiong. Laser cooling of organic–inorganic lead halide perovskites. Nat. Photonics, 2016, 10(2): 115
CrossRef
ADS
Google scholar
|
[38] |
X. Xia, A. Pant, A. S. Ganas, F. Jelezko, P. J. Pauzauskie. Quantum point defects for solid‐state laser refrigeration. Adv. Mater., 2021, 33(23): 1905406
CrossRef
ADS
Google scholar
|
[39] |
J. Zhang, Q. Zhang, X. Wang, L. C. Kwek, Q. Xiong. Resolved-sideband Raman cooling of an optical phonon in semiconductor materials. Nat. Photonics, 2016, 10(9): 600
CrossRef
ADS
Google scholar
|
[40] |
D. Li, J. Zhang, Q. Xiong. Laser cooling of CdS nanobelts: Thickness matters. Opt. Express, 2013, 21(16): 19302
CrossRef
ADS
Google scholar
|
[41] |
S. R. Bowman. Lasers without internal heat generation. IEEE J. Quantum Electron., 1999, 35(1): 115
CrossRef
ADS
Google scholar
|
[42] |
S. R. Bowman, S. P. O’Connor, S. Biswal, N. J. Condon, A. Rosenberg. Minimizing heat generation in solid-state lasers. IEEE J. Quantum Electron., 2010, 46(7): 1076
CrossRef
ADS
Google scholar
|
[43] |
G. Nemova, R. Kashyap. Thin-disk athermal laser system. Opt. Commun., 2014, 319: 100
CrossRef
ADS
Google scholar
|
[44] |
E. Mobini, M. Peysokhan, B. Abaie, A. Mafi. Thermal modeling, heat mitigation, and radiative cooling for double-clad fiber amplifiers. J. Opt. Soc. Am. B, 2018, 35(10): 2484
CrossRef
ADS
Google scholar
|
[45] |
J. M. Knall, M. Engholm, T. Boilard, M. Bernier, M. Digonnet. Radiation-balanced silica fiber amplifier. Phys. Rev. Lett., 2021, 127(1): 013903
CrossRef
ADS
Google scholar
|
[46] |
J. M. Knall, M. J. Digonnet. Design of high-power radiation-balanced silica fiber lasers with a doped core and cladding. J. Lightwave Technol., 2021, 39(8): 2497
CrossRef
ADS
Google scholar
|
[47] |
M. Sheik-Bahae, Z. Yang. Optimum operation of radiation-balanced lasers. IEEE J. Quantum Electron., 2020, 56(1): 1
CrossRef
ADS
Google scholar
|
[48] |
G. Nemova, R. Kashyap. Athermal continuous-wave fiber amplifier. Opt. Commun., 2009, 282(13): 2571
CrossRef
ADS
Google scholar
|
[49] |
E. Mobini, S. Rostami, M. Peysokhan, A. Albrecht, A. Mafi. Laser cooling of ytterbium-doped silica glass. Commun. Phys.-UK, 2020, 3: 1
|
[50] |
E. Mobini, M. Peysokhan, B. Abaie, M. P. Hehlen, A. Mafi. Spectroscopic investigation of Yb-doped silica glass for solid-state optical refrigeration. Phys. Rev. Appl., 2019, 11(1): 014066
CrossRef
ADS
Google scholar
|
[51] |
M. Peysokhan, E. Mobini, B. Abaie, A. Mafi. Method for measuring the resonant absorption coefficient of rare-earth-doped optical fibers. Appl. Opt., 2019, 58(7): 1841
CrossRef
ADS
Google scholar
|
[52] |
X. Xia, A. Pant, E. J. Davis, P. J. Pauzauskie. Design of a radiation-balanced fiber laser via optically active composite cladding materials. J. Opt. Soc. Am. B, 2019, 36(12): 3307
CrossRef
ADS
Google scholar
|
[53] |
Z. Yang, J. Meng, A. R. Albrecht, M. Sheik-Bahae. Radiation-balanced Yb:YAG disk laser. Opt. Express, 2019, 27(2): 1392
CrossRef
ADS
Google scholar
|
[54] |
J. B. Khurgin. Radiation-balanced tandem semiconductor/Yb3+: YLF lasers: Feasibility study. J. Opt. Soc. Am. B, 2020, 37(6): 1886
CrossRef
ADS
Google scholar
|
[55] |
J. Knall, M. Engholm, J. Ballato, P. D. Dragic, N. Yu, M. J. Digonnet. Experimental comparison of silica fibers for laser cooling. Opt. Lett., 2020, 45(14): 4020
CrossRef
ADS
Google scholar
|
[56] |
M. Peysokhan, E. Mobini, A. Allahverdi, B. Abaie, A. Mafi. Characterization of Yb-doped ZBLAN fiber as a platform for radiation-balanced lasers. Photon. Res., 2020, 8(2): 202
CrossRef
ADS
Google scholar
|
[57] |
M. Peysokhan, S. Rostami, E. Mobini, A. R. Albrecht, S. Kuhn, S. Hein, C. Hupel, J. Nold, N. Haarlammert, T. Schreiber, R. Eberhardt, A. Flores, A. Tünnermann, M. Sheik-Bahae, A. Mafi. Implementation of laser-induced anti-stokes fluorescence power cooling of ytterbium-doped silica glass. ACS Omega, 2021, 6(12): 8376
CrossRef
ADS
Google scholar
|
[58] |
R. I. Epstein, J. Brown, B. C. Edwards, A. Gibbs. Measurements of optical refrigeration in ytterbium-doped crystals. J. Appl. Phys., 2001, 90(9): 4815
CrossRef
ADS
Google scholar
|
[59] |
E. S. L. Filho, G. Nemova, S. Loranger, R. Kashyap. Laser-induced cooling of a Yb:YAG crystal in air at atmospheric pressure. Opt. Express, 2013, 21(21): 24711
CrossRef
ADS
Google scholar
|
[60] |
B. Zhong, Y. Lei, X. Duan, T. Yang, J. Yin. Optical refrigeration of the Yb3+-doped YAG crystal close to the thermoelectric cooling limit. Appl. Phys. Lett., 2021, 118(13): 131104
CrossRef
ADS
Google scholar
|
[61] |
M. Sheik-Bahae, R. I. Epstein. Optical refrigeration. Nat. Photonics, 2007, 1(12): 693
CrossRef
ADS
Google scholar
|
[62] |
D. C. Brown, V. A. Vitali. Yb:YAG kinetics model including saturation and power conservation. IEEE J. Quantum Electron., 2011, 47(1): 3
CrossRef
ADS
Google scholar
|
[63] |
S.D. Melgaard, Cryogenic optical refrigeration: Laser cooling of solids below 123 K, Ph.D Thesis, The University of New Mexico, 2013
|
[64] |
X. Duan, B. Zhong, Y. Lei, C. Wang, J. Xu, Z. Zhang, J. Ding, J. Yin. Accurate characterization of the properties of the rare-earth-doped crystal for laser cooling. Appl. Sci. (Basel), 2022, 12(9): 4447
CrossRef
ADS
Google scholar
|
[65] |
H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, R. W. Byren. Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers. IEEE J. Sel. Top. Quantum Electron., 1997, 3(1): 105
CrossRef
ADS
Google scholar
|
[66] |
D. McCumber. Einstein relations connecting broadband emission and absorption spectra. Phys. Rev., 1964, 136(4A): A954
CrossRef
ADS
Google scholar
|
[67] |
A.Volpi, Laser cooling of fluoide crystals, Ph. D Thesis, Università di Pisa, 2015
|
[68] |
G. Nemova, R. Kashyap. Optimization of optical refrigaration in Yb3+:YAG samples. J. Lumin., 2015, 164: 99
CrossRef
ADS
Google scholar
|
[69] |
F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, R. Equall. Laser demonstration of Yb3Al5O12/(YbAG) and materials properties of highly doped Yb:YAG. IEEE J. Quantum Electron., 2001, 37(1): 135
CrossRef
ADS
Google scholar
|
[70] |
F. Auzel, F. Bonfigli, S. Gagliari, G. Baldacchini. The interplay of self-trapping and self-quenching for resonant transitions in solids, role of a cavity. J. Lumin., 2001,
CrossRef
ADS
Google scholar
|
[71] |
C. Goutaudier, K. Lebbou, Y. Guyot, M. Ito, H. Canibano, A. El Hassouni, L. Laversenne, M. T. Cohen-Adad, G. Boulon. Advances in fibre crystals: Growth and optimization of spectroscopic properties for Yb3+ doped laser crystals. Ann. Chim., 2003, 28(6): 73
CrossRef
ADS
Google scholar
|
[72] |
Y. Nakayama, Y. Harada, T. Kita. An energy transfer accompanied by phonon absorption in ytterbium-doped yttrium aluminum perovskite for optical refrigeration. Appl. Phys. Lett., 2020, 117(4): 041104
CrossRef
ADS
Google scholar
|
[73] |
D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, M. Sheik-Bahae. Cryogenic optical refrigeration. Adv. Opt. Photonics, 2012, 4(1): 78
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |