Insight into the growth mechanism of black phosphorus

Yongjie Wang, Qiang Yu, Jie Li, Junyong Wang, Kai Zhang

PDF(9325 KB)
PDF(9325 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (4) : 43603. DOI: 10.1007/s11467-023-1265-7
TOPICAL REVIEW
TOPICAL REVIEW

Insight into the growth mechanism of black phosphorus

Author information +
History +

Abstract

Two-dimensional (2D) black phosphorus (BP) has attracted great attention in recent years in fundamental research as well as optoelectronics applications. The controllable synthesis of high-quality BP is vital to the investigation of its intrinsic physical properties and versatile applications. Originally, BP was mostly synthesized under high temperatures and pressures. Subsequently, metal flux, wet chemical and chemical vapor transport (CVT) methods had been appeared successively. The pulsed laser deposition (PLD) and CVT methods have been used to prepare high-quality BP thin films on silicon substrates, which is significant for its monolithic integration and practical applications. To meet the demand of the scalable applications of BP, the direct preparation of BP films on dielectric substrates that avoids additional transfer process, is crucial to high-performance device implementation. In this review, the growing methods and corresponding mechanisms of BP are summarized and analyzed. Meanwhile, the view on the controllable growth of large-area, high-quality BP films is envisioned.

Graphical abstract

Keywords

black phosphorus / growth mechanism / nucleation / thin films

Cite this article

Download citation ▾
Yongjie Wang, Qiang Yu, Jie Li, Junyong Wang, Kai Zhang. Insight into the growth mechanism of black phosphorus. Front. Phys., 2023, 18(4): 43603 https://doi.org/10.1007/s11467-023-1265-7

References

[1]
A. Pfitzner , M. F. Brau , J. Zweck , G. Brunklaus , H. Eckert . Phosphorus nanorods-two allotropic modifications of a long-known element. Angew. Chem. Int. Ed., 2004, 43(32): 4228
CrossRef ADS Google scholar
[2]
F. Bachhuber , J. von Appen , R. Dronskowski , P. Schmidt , T. Nilges , A. Pfitzner , R. Weihrich . Die erweiterte stabilitätsreihe der phosphorallotropee. Angew. Chem., 2014, 126(43): 11813
CrossRef ADS Google scholar
[3]
M. Ruck , D. Hoppe , B. Wahl , P. Simon , Y. Wang , G. Seifert . Faserförmiger roter phosphor. Angew. Chem., 2005, 117(46): 7788
CrossRef ADS Google scholar
[4]
N. Eckstein , A. Hohmann , R. Weihrich , T. Nilges , P. Schmidt . Synthesis and phase relations of single-phase fibrous phosphorus. Z. Anorg. Allg. Chem., 2013, 639(15): 2741
CrossRef ADS Google scholar
[5]
G. Natta , L. Passerini . The crystal structure of white phosphorus. Nature, 1930, 125(3158): 707
CrossRef ADS Google scholar
[6]
R. L. Keiter , C. P. Gamage . Combustion of white phosphorus. J. Chem. Educ., 2001, 78(7): 908
CrossRef ADS Google scholar
[7]
S. Zhang , H. J. Qian , Z. Liu , H. Ju , Z. Y. Lu , H. Zhang , L. Chi , S. Cui . Towards unveiling the exact molecular structure of amorphous red phosphorus by single-molecule studies. Angew. Chem. Int. Ed., 2019, 58(6): 1659
CrossRef ADS Google scholar
[8]
C. M. Fung , C. C. Er , L. L. Tan , A. R. Mohamed , S. P. Chai . Red Phosphorus: An Up-and-Coming Photocatalyst on the Horizon for Sustainable Energy Development and Environmental Remediation. Chem. Rev., 2022, 122(3): 3879
CrossRef ADS Google scholar
[9]
Z. Sun , B. Zhang , Y. Zhao , M. Khurram , Q. Yan . exfoliation, and transport properties of quasi-1D van der Waals fibrous red phosphorus. Chem. Mater., 2021, 33(15): 6240
CrossRef ADS Google scholar
[10]
Z. Zhu , P. Cui , X. Cai , M. Xia , Y. Jia , S. Zhang , Z. Zhang . Red phosphorus in its two-dimensional limit: Novel clathrates with varying band gaps and superior chemical stabilities. Nanoscale, 2018, 10(29): 13969
CrossRef ADS Google scholar
[11]
W. Hittorf . Zur Kenntniss des Phosphors. Annalen der Physik und Chemie, 1865, 202(10): 193
CrossRef ADS Google scholar
[12]
L. Zhang , H. Huang , Z. Lv , L. Li , M. Gu , X. Zhao , B. Zhang , Y. Cheng , J. Zhang . Phonon properties of bulk violet phosphorus single crystals: Temperature and pressure evolution. ACS Appl. Electron. Mater., 2021, 3(3): 1043
CrossRef ADS Google scholar
[13]
L. Zhang , H. Huang , B. Zhang , M. Gu , D. Zhao , X. Zhao , L. Li , J. Zhou , K. Wu , Y. Cheng , J. Zhang . Structure and properties of violet phosphorus and its phosphorene exfoliation. Angew. Chem. Int. Ed., 2020, 59(3): 1074
CrossRef ADS Google scholar
[14]
L. Zhang , M. Gu , L. Li , X. Zhao , C. Fu , T. Liu , X. Xu , Y. Cheng , J. Zhang . High yield synthesis of violet phosphorus crystals. Chem. Mater., 2020, 32(17): 7363
CrossRef ADS Google scholar
[15]
R. Zhao , S. Liu , X. Zhao , M. Gu , Y. Zhang , M. Jin , Y. Wang , Y. Cheng , J. Zhang . Violet phosphorus quantum dots. J. Mater. Chem. A, 2021, 10(1): 245
CrossRef ADS Google scholar
[16]
X. Chen , J. S. Ponraj , D. Fan , H. Zhang . An overview of the optical properties and applications of black phosphorus. Nanoscale, 2020, 12(6): 3513
CrossRef ADS Google scholar
[17]
R. Gusmão , Z. Sofer , M. Pumera . Black phosphorus rediscovered: From bulk material to monolayers. Angew. Chem. Int. Ed., 2017, 56(28): 8052
CrossRef ADS Google scholar
[18]
J. C. Jamieson . Crystal structures adopted by black phosphorus at high pressures. Science, 1963, 139(356): 1291
CrossRef ADS Google scholar
[19]
W. Lei , G. Liu , J. Zhang , M. Liu . Black phosphorus nanostructures: Recent advances in hybridization, doping and functionalization. Chem. Soc. Rev., 2017, 46(12): 3492
CrossRef ADS Google scholar
[20]
P. W. Bridgman . Two new modifications of phosphorus. J. Am. Chem. Soc., 1914, 36(7): 1344
CrossRef ADS Google scholar
[21]
B. M. L. P. A. G. O’hare , B. M. Lewis , I. Shirotani . Thermodynamic stability of orthorhombic black phosphorus. Thermochim. Acta, 1988, 129(1): 57
CrossRef ADS Google scholar
[22]
M. Zhao , H. Qian , X. Niu , W. Wang , L. Guan , J. Sha , Y. Wang . Growth mechanism and enhanced yield of black phosphorus microribbons. Cryst. Growth Des., 2016, 16(2): 1096
CrossRef ADS Google scholar
[23]
L. Li , Y. Yu , G. J. Ye , Q. Ge , X. Ou , H. Wu , D. Feng , X. H. Chen , Y. Zhang . Black phosphorus field-effect transistors. Nat. Nanotechnol., 2014, 9(5): 372
CrossRef ADS Google scholar
[24]
V. Tran , R. Soklaski , Y. Liang , L. Yang . Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B, 2014, 89(23): 235319
CrossRef ADS Google scholar
[25]
X. Liu , K. W. Ang , W. Yu , J. He , X. Feng , Q. Liu , H. Jiang , Dan Tang , J. Wen , Y. Lu , W. Liu , P. Cao , S. Han , J. Wu , W. Liu , X. Wang , D. Zhu , Z. He . Black phosphorus based field effect transistors with simultaneously achieved near ideal subthreshold swing and high hole mobility at room temperature. Sci. Rep., 2016, 6(1): 24920
CrossRef ADS Google scholar
[26]
G. Long , D. Maryenko , J. Shen , S. Xu , J. Hou , Z. Wu , W. K. Wong , T. Han , J. Lin , Y. Cai , R. Lortz , N. Wang . Achieving ultrahigh carrier mobility in two-dimensional hole gas of black phosphorus. Nano Lett., 2016, 16(12): 7768
CrossRef ADS Google scholar
[27]
Y. Xu , J. Yuan , K. Zhang , Y. Hou , Q. Sun , Y. Yao , S. Li , Q. Bao , H. Zhang , Y. Zhang . Field-induced N-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility. Adv. Funct. Mater., 2017, 27(38): 1702211
CrossRef ADS Google scholar
[28]
X. Feng , X. Huang , L. Chen , W. C. Tan , L. Wang , K. W. Ang . High mobility anisotropic black phosphorus nanoribbon field-effect transistor. Adv. Funct. Mater., 2018, 28(28): 1801524
CrossRef ADS Google scholar
[29]
G. Wang , Z. Guo , C. Chen , W. Yu , B. Xu , B. Lin . Exploring a high-carrier-mobility black phosphorus/MoSe2 heterostructure for high-efficiency thin film solar cells. Sol. Energy, 2022, 236: 576
CrossRef ADS Google scholar
[30]
M. Buscema , D. J. Groenendijk , S. I. Blanter , G. A. Steele , H. S. van der Zant , A. Castellanos-Gomez . Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett., 2014, 14(6): 3347
CrossRef ADS Google scholar
[31]
W. Zhu , M. N. Yogeesh , S. Yang , S. H. Aldave , J. S. Kim , S. Sonde , L. Tao , N. Lu , D. Akinwande . Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. Nano Lett., 2015, 15(3): 1883
CrossRef ADS Google scholar
[32]
Z. Sobiesierski , R. T. Phillips . A time-resolved photoluminescence study of amorphous phosphorus. Solid State Commun., 1986, 60(1): 25
CrossRef ADS Google scholar
[33]
R. J. Suess , J. D. Hart , E. Leong , M. Mittendorff , T. E. Murphy . Black phosphorus frequency mixer for infrared optoelectronic signal processing. APL Photonics, 2019, 4(3): 034502
CrossRef ADS Google scholar
[34]
G. Hu , T. Albrow-Owen , X. Jin , A. Ali , Y. Hu , R. C. T. Howe , K. Shehzad , Z. Yang , X. Zhu , R. I. Woodward , T. C. Wu , H. Jussila , J. B. Wu , P. Peng , P. H. Tan , Z. Sun , E. J. R. Kelleher , M. Zhang , Y. Xu , T. Hasan . Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat. Commun., 2017, 8(1): 278
CrossRef ADS Google scholar
[35]
X. Chen , X. Lu , B. Deng , O. Sinai , Y. Shao , C. Li , S. Yuan , V. Tran , K. Watanabe , T. Taniguchi , D. Naveh , L. Yang , F. Xia . Widely tunable black phosphorus mid-infrared photodetector. Nat. Commun., 2017, 8(1): 1672
CrossRef ADS Google scholar
[36]
M. Valt , M. Caporali , B. Fabbri , A. Gaiardo , S. Krik , E. Iacob , L. Vanzetti , C. Malagu , M. Banchelli , C. D’Andrea , M. Serrano-Ruiz , M. Vanni , M. Peruzzini , V. Guidi . Air stable nickel-decorated black phosphorus and its room-temperature chemiresistive gas sensor capabilities. ACS Appl. Mater. Interfaces, 2021, 13(37): 44711
CrossRef ADS Google scholar
[37]
D. An , X. Zhang , Z. Bi , W. Shan , H. Zhang , S. Xia , M. Qiu . Low‐dimensional black phosphorus in sensor applications: Advances and challenges. Adv. Funct. Mater., 2021, 31(52): 2106484
CrossRef ADS Google scholar
[38]
J. Sun , Y. Sun , M. Pasta , G. Zhou , Y. Li , W. Liu , F. Xiong , Y. Cui . Entrapment of polysulfides by a black-phosphorus-modified separator for lithium-sulfur batteries. Adv. Mater., 2016, 28(44): 9797
CrossRef ADS Google scholar
[39]
Y. Wang , M. He , S. Ma , C. Yang , M. Yu , G. Yin , P. Zuo . Low-temperature solution synthesis of black phosphorus from red phosphorus: Crystallization mechanism and lithium ion battery applications. J. Phys. Chem. Lett., 2020, 11(7): 2708
CrossRef ADS Google scholar
[40]
J. Zhu , G. Xiao , X. Zuo . Two-dimensional black phosphorus: An emerging anode material for lithium-ion batteries. Nano-Micro Lett., 2020, 12(1): 120
CrossRef ADS Google scholar
[41]
L. Bai , X. Wang , S. Tang , Y. Kang , J. Wang , Y. Yu , Z. K. Zhou , C. Ma , X. Zhang , J. Jiang , P. K. Chu , X. F. Yu . Black phosphorus/platinum heterostructure: A highly efficient photocatalyst for solar-driven chemical reactions. Adv. Mater., 2018, 30(40): 1803641
CrossRef ADS Google scholar
[42]
J. Miao , L. Zhang , C. Wang . Black phosphorus electronic and optoelectronic devices. 2D Mater., 2019, 6(3): 032003
CrossRef ADS Google scholar
[43]
T. Yin , L. Long , X. Tang , M. Qiu , W. Liang , R. Cao , Q. Zhang , D. Wang , H. Zhang . Advancing applications of black phosphorus and BP-analog materials in photo/electrocatalysis through structure engineering and surface modulation. Adv. Sci. (Weinh.), 2020, 7(19): 2001431
CrossRef ADS Google scholar
[44]
L. Zhang , B. Wang , Y. Zhou , C. Wang , X. Chen , H. Zhang . Synthesis techniques, optoelectronic properties, and broadband photodetection of thin‐film black phosphorus. Adv. Opt. Mater., 2020, 8(15): 2000045
CrossRef ADS Google scholar
[45]
Z. Xie , M. Peng , R. Lu , X. Meng , W. Liang , Z. Li , M. Qiu , B. Zhang , G. Nie , N. Xie , H. Zhang , P. N. Prasad . Black phosphorus-based photothermal therapy with aCD47-mediated immune checkpoint blockade for enhanced cancer immunotherapy. Light Sci. Appl., 2020, 9(1): 161
CrossRef ADS Google scholar
[46]
C. Xing , S. Chen , M. Qiu , X. Liang , Q. Liu , Q. Zou , Z. Li , Z. Xie , D. Wang , B. Dong , L. Liu , D. Fan , H. Zhang . Conceptually novel black phosphorus/cellulose hydrogels as promising photothermal agents for effective cancer therapy. Adv. Healthc. Mater., 2018, 7(7): 1701510
CrossRef ADS Google scholar
[47]
F. Yin , K. Hu , S. Chen , D. Wang , J. Zhang , M. Xie , D. Yang , M. Qiu , H. Zhang , Z. G. Li . Black phosphorus quantum dot based novel siRNA delivery systems in human pluripotent teratoma PA-1 cells. J. Mater. Chem. B, 2017, 5(27): 5433
CrossRef ADS Google scholar
[48]
J. O. Island , G. A. Steele , H. S. J. v. d. Zant , A. Castellanos-Gomez . Environmental instability of few-layer black phosphorus. 2D Mater., 2015, 2(1): 011002
CrossRef ADS Google scholar
[49]
Y. Y. Illarionov , M. Waltl , G. Rzepa , J. S. Kim , S. Kim , A. Dodabalapur , D. Akinwande , T. Grasser . Long-term stability and reliability of black phosphorus field-effect transistors. ACS Nano, 2016, 10(10): 9543
CrossRef ADS Google scholar
[50]
D. K. Sang , H. Wang , Z. Guo , N. Xie , H. Zhang . Recent developments in stability and passivation techniques of phosphorene toward next‐generation device applications. Adv. Funct. Mater., 2019, 29(45): 1903419
CrossRef ADS Google scholar
[51]
A. Favron , E. Gaufres , F. Fossard , A. L. Phaneuf-L’Heureux , N. Y. Tang , P. L. Levesque , A. Loiseau , R. Leonelli , S. Francoeur , R. Martel . Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater., 2015, 14(8): 826
CrossRef ADS Google scholar
[52]
G. Kim , D. Kim , Y. Choi , A. Ghorai , G. Park , U. Jeong . New approaches to produce large-area single crystal thin films. Adv. Mater., 2022, 35(4): 2203373
CrossRef ADS Google scholar
[53]
A. Zavabeti , A. Jannat , L. Zhong , A. A. Haidry , Z. Yao , J. Z. Ou . Two-dimensional materials in large-areas: Synthesis, properties and applications. Nano-Micro Lett., 2020, 12(1): 66
CrossRef ADS Google scholar
[54]
K. S. Novoselov , D. Jiang , F. Schedin , T. J. Booth , V. V. Khotkevich , S. V. Morozov , A. K. Geim . Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA, 2005, 102(30): 10451
CrossRef ADS Google scholar
[55]
H. Liu , A. T. Neal , Z. Zhu , Z. Luo , X. Xu , D. Tománek , P. D. Ye . Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014, 8(4): 4033
CrossRef ADS Google scholar
[56]
W. Lu , H. Nan , J. Hong , Y. Chen , C. Zhu , Z. Liang , X. Ma , Z. Ni , C. Jin , Z. Zhang . Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Res., 2014, 7(6): 853
CrossRef ADS Google scholar
[57]
J. Kang , S. A. Wells , J. D. Wood , J.-H. Lee , X. Liu , C. R. Ryder , J. Zhu , Jeffrey R Guest , C. A. Husko , M. C. Hersam . Stable aqueous dispersions of optically and electronically active phosphorene. Proc. Natl. Acad. Sci. USA, 2016, 113(42): 11688
CrossRef ADS Google scholar
[58]
D. Hanlon , C. Backes , E. Doherty , C. S. Cucinotta , N. C. Berner , C. Boland , K. Lee , A. Harvey , P. Lynch , Z. Gholamvand , S. Zhang , K. Wang , G. Moynihan , A. Pokle , Q. M. Ramasse , N. McEvoy , W. J. Blau , J. Wang , G. Abellan , F. Hauke , A. Hirsch , S. Sanvito , D. D. O’Regan , G. S. Duesberg , V. Nicolosi , J. N. Coleman . Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun., 2015, 6(1): 8563
CrossRef ADS Google scholar
[59]
P. Yasaei , B. Kumar , T. Foroozan , C. Wang , M. Asadi , D. Tuschel , J. E. Indacochea , R. F. Klie , A. Salehi-Khojin . High-quality black phosphorus atomic layers by liquid-phase exfoliation. Adv. Mater., 2015, 27(11): 1887
CrossRef ADS Google scholar
[60]
X. Wang , A. M. Jones , K. L. Seyler , V. Tran , Y. Jia , H. Zhao , H. Wang , L. Yang , X. Xu , F. Xia . Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol., 2015, 10: 517
CrossRef ADS Google scholar
[61]
L. Q. Sun , M. J. Li , K. Sun , S. H. Yu , R. S. Wang , H. M. Xie . Electrochemical activity of black phosphorus as an anode material for lithium-ion batteries. J. Phys. Chem. C, 2012, 116(28): 14772
CrossRef ADS Google scholar
[62]
N. Antonatos , D. Bousa , S. Shcheka , S. M. Beladi-Mousavi , M. Pumera , Z. Sofer . In situ doping of black phosphorus by high-pressure synthesis. Inorg. Chem., 2019, 58(15): 10227
CrossRef ADS Google scholar
[63]
H. Xiang , Y. T. Nie , H. C. Zheng , X. H. Sun , X. L. Sun , Y. Song . The mechanism of structural changes and crystallization kinetics of amorphous red phosphorus to black phosphorus under high pressure. Chem. Commun. (Camb.), 2019, 55(56): 8094
CrossRef ADS Google scholar
[64]
Y. Akahama , M. Miyakawa , T. Taniguchi , A. Sano-Furukawa , S. Machida , T. Hattori . Structure refinement of black phosphorus under high pressure. J. Chem. Phys., 2020, 153(1): 014704
CrossRef ADS Google scholar
[65]
J. K. Burdett , S. Lee . The pressure-induced black phosphorus to A7 (arsenic) phase transformation: An analysis using the concept of orbital symmetry conservation. J. Solid State Chem., 1982, 44(3): 415
CrossRef ADS Google scholar
[66]
D. Scelta , A. Baldassarre , M. Serrano-Ruiz , K. Dziubek , A. B. Cairns , M. Peruzzini , R. Bini , M. Ceppatelli . Interlayer bond formation in black phosphorus at high pressure. Angew. Chem. Int. Ed., 2017, 56: 14135
CrossRef ADS Google scholar
[67]
H. Krebs , H. Weitz , K. H. Worms . Über die struktur und die eigenschaften der halbmetalle. VIII. Die katalytische darstellung des schwarzen phosphors. Z. Anorg. Allg. Chem., 1955, 280(1–3): 119
CrossRef ADS Google scholar
[68]
M. Baba , F. Izumida , Y. Takeda , A. Morita . Preparation of black phosphorus single crystals by a completely closed bismuth-flux method and their crystal morphology. Jpn. J. Appl. Phys., 1989, 28(6R): 1019
CrossRef ADS Google scholar
[69]
M. Nagao , A. Hayashi , M. Tatsumisago . All-solid-state lithium secondary batteries with high capacity using black phosphorus negative electrode. J. Power Sources, 2011, 196(16): 6902
CrossRef ADS Google scholar
[70]
F. Zhou , L. Ouyang , M. Zeng , J. Liu , H. Wang , H. Shao , M. Zhu . Growth mechanism of black phosphorus synthesized by different ball milling techniques. J. Alloys Compd., 2019, 784: 339
CrossRef ADS Google scholar
[71]
X. Zhu , T. Zhang , Z. Sun , H. Chen , J. Guan , X. Chen , H. Ji , P. Du , S. Yang . Black phosphorus revisited: A missing metal-free elemental photocatalyst for visible light hydrogen evolution. Adv. Mater., 2017, 29(17): 1605776
CrossRef ADS Google scholar
[72]
N. V. Chien , H. Shin , J. Y. Song . Sn-assisted solid state crystallization of red phosphorus to black phosphorus. Scr. Mater., 2020, 177: 128
CrossRef ADS Google scholar
[73]
B. Tian , B. Tian , B. Smith , M. C. Scott , Q. Lei , R. Hua , Y. Tian , Y. Liu . Facile bottom-up synthesis of partially oxidized black phosphorus nanosheets as metal-free photocatalyst for hydrogen evolution. Proc. Natl. Acad. Sci. USA, 2018, 115(17): 4345
CrossRef ADS Google scholar
[74]
B. Tian , B. Tian , B. Smith , M. C. Scott , R. Hua , Q. Lei , Y. Tian . Supported black phosphorus nanosheets as hydrogen-evolving photocatalyst achieving 5.4% energy conversion efficiency at 353 K. Nat. Commun., 2018, 9(1): 1397
CrossRef ADS Google scholar
[75]
T. Nilges , M. Kersting , T. Pfeifer . A fast low-pressure transport route to large black phosphorus single crystals. J. Solid State Chem., 2008, 181(8): 1707
CrossRef ADS Google scholar
[76]
S. Lange , P. Schmidt , T. Nilges . Au3SnP7@black phosphorus: An easy access to black phosphorus. Inorg. Chem., 2007, 46(10): 4028
CrossRef ADS Google scholar
[77]
F. T. Johra , W. G. Jung . Synthesis of black phosphorus via a facile vapor transfer method. Electron. Mater. Lett., 2019, 15(5): 639
CrossRef ADS Google scholar
[78]
N. Izquierdo , J. C. Myers , N. C. A. Seaton , S. K. Pandey , S. A. Campbell . Thin-film deposition of surface passivated black phosphorus. ACS Nano, 2019, 13(6): 7091
CrossRef ADS Google scholar
[79]
M. Wentink , J. Gaberle , M. Aghajanian , A. A. Mostofi , N. J. Curson , J. Lischner , S. R. Schofield , A. L. Shluger , A. J. Kenyon . Substitutional tin acceptor states in black phosphorus. J. Phys. Chem. C, 2021, 125(41): 22883
CrossRef ADS Google scholar
[80]
N. Antonatos , J. Sturala , V. Mazanek , D. Sedmidubsky , M. Vesely , K. Ruzicka , J. Hejtmanek , P. Levinsky , Z. Sofer . Black phosphorus: Fundamental properties and influence of impurities induced by its synthesis. ACS Appl. Mater. Interfaces, 2022, 14(30): 34867
CrossRef ADS Google scholar
[81]
Q. Xu , Y. Zhu , C. Shi , N. Zhang , T. Xie . The preparation of black phosphorus in RP/Sn/I2 system: its nucleation agent and relatively optimal temperature program. J. Mater. Sci. Mater. Electron., 2020, 31(21): 19093
CrossRef ADS Google scholar
[82]
M. M. Shatruk , K. A. Kovnir , A. V. Shevelkov , I. A. Presniakov , B. A. Popovkin . First tin pnictide halides Sn24P19.3I8 and Sn24As19.3I8: Synthesis and the clathrate-i type of the crystal structure. Inorg. Chem., 1999, 38(15): 3455
CrossRef ADS Google scholar
[83]
V. V. Novikov , A. V. Matovnikov , D. V. Avdashchenko , N. V. Mitroshenkov , E. Dikarev , S. Takamizawa , M. A. Kirsanova , A. V. Shevelkov . Low-temperature structure and lattice dynamics of the thermoelectric clathrate Sn24P19.3I8. J. Alloys Compd., 2012, 520: 174
CrossRef ADS Google scholar
[84]
S. Li , X. Liu , X. Fan , Y. Ni , J. Miracle , N. Theodoropoulou , J. Sun , S. Chen , B. Lv , Q. Yu . New strategy for black phosphorus crystal growth through ternary clathrate. Cryst. Growth Des., 2017, 17(12): 6579
CrossRef ADS Google scholar
[85]
Z. Chen , Y. Zhu , J. Lei , W. Liu , Y. Xu , P. Feng . A stage-by-stage phase-induction and nucleation of black phosphorus from red phosphorus under low-pressure mineralization. CrystEngComm, 2017, 19(47): 7207
CrossRef ADS Google scholar
[86]
Z. Zhang , D. H. Xing , J. Li , Q. Yan . Hittorf’s phosphorus: The missing link during transformation of red phosphorus to black phosphorus. CrystEngComm, 2017, 19(6): 905
CrossRef ADS Google scholar
[87]
G. Tiouitchi , M. A. Ali , A. Benyoussef , M. Hamedoun , A. Lachgar , M. Benaissa , A. Kara , A. Ennaoui , A. Mahmoud , F. Boschini , H. Oughaddou , A. El Kenz , O. Mounkachi . An easy route to synthesize high-quality black phosphorus from amorphous red phosphorus. Mater. Lett., 2019, 236: 56
CrossRef ADS Google scholar
[88]
Y. Yu , B. Xing , D. Wang , L. Guan , X. Niu , J. Yao , X. Yan , S. Zhang , Y. Liu , X. Wu , J. Sha , Y. Wang . Improvement in the quality of black phosphorus by selecting a mineralizer. Nanoscale, 2019, 11(42): 20081
CrossRef ADS Google scholar
[89]
Y. Xu , X. Shi , Y. Zhang , H. Zhang , Q. Zhang , Z. Huang , X. Xu , J. Guo , H. Zhang , L. Sun , Z. Zeng , A. Pan , K. Zhang . Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon. Nat. Commun., 2020, 11(1): 1330
CrossRef ADS Google scholar
[90]
D. Han , Q. Liu , Q. Zhang , J. Ji , S. Sang , B. Xu . Synthesis of highly crystalline black phosphorus thin films on GaN. Nanoscale, 2020, 12(48): 24429
CrossRef ADS Google scholar
[91]
Z. Wu , Y. Lyu , Y. Zhang , R. Ding , B. Zheng , Z. Yang , S. P. Lau , X. H. Chen , J. Hao . Large-scale growth of few-layer two-dimensional black phosphorus. Nat. Mater., 2021, 20(9): 1203
CrossRef ADS Google scholar
[92]
P. R. Willmott , J. R. Huber . Pulsed laser vaporization and deposition. Rev. Mod. Phys., 2000, 72(1): 315
CrossRef ADS Google scholar
[93]
Z. Yang , J. Hao . Progress in pulsed laser deposited two-dimensional layered materials for device applications. J. Mater. Chem. C, 2016, 4(38): 8859
CrossRef ADS Google scholar
[94]
Z. Yang , J. Hao , S. Yuan , S. Lin , H. M. Yau , J. Dai , S. P. Lau . Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition. Adv. Mater., 2015, 27(25): 3748
CrossRef ADS Google scholar
[95]
J. B. Smith , D. Hagaman , H. F. Ji . Growth of 2D black phosphorus film from chemical vapor deposition. Nanotechnology, 2016, 27(21): 215602
CrossRef ADS Google scholar
[96]
X. Li , B. Deng , X. Wang , S. Chen , M. Vaisman , S.-I. Karato , G. Pan , M. L. Lee , J. Cha , H. Wang , F. Xia . Synthesis of thin-film black phosphorus on a flexible substrate. 2D Mater., 2015, 2(3): 031002
CrossRef ADS Google scholar
[97]
C. Li , Y. Wu , B. Deng , Y. Xie , Q. Guo , S. Yuan , X. Chen , M. Bhuiyan , Z. Wu , K. Watanabe , T. Taniguchi , H. Wang , J. J. Cha , M. Snure , Y. Fei , F. Xia . Synthesis of crystalline black phosphorus thin film on sapphire. Adv. Mater., 2018, 30(6): 1703748
CrossRef ADS Google scholar
[98]
C. R. Ryder , J. D. Wood , S. A. Wells , Y. Yang , D. Jariwala , T. J. Marks , G. C. Schatz , M. C. Hersam . Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat. Chem., 2016, 8(6): 597
CrossRef ADS Google scholar
[99]
Y. Zhao , H. Wang , H. Huang , Q. Xiao , Y. Xu , Z. Guo , H. Xie , J. Shao , Z. Sun , W. Han , X. F. Yu , P. Li , P. K. Chu . Surface coordination of black phosphorus for robust air and water stability. Angew. Chem. Int. Ed., 2016, 16(55): 5003
CrossRef ADS Google scholar
[100]
Y. Y. Illarionov , M. Waltl , G. Rzepa , T. Knobloch , J. S. Kim , D. Akinwande , T. Grasser . Highly-stable black phosphorus field-effect transistors with low density of oxide traps. npj 2D Mater. Appl., 2017, 1(1):
CrossRef ADS Google scholar
[101]
J. D. Wood , S. A. Wells , D. Jariwala , K. S. Chen , E. Cho , V. K. Sangwan , X. Liu , L. J. Lauhon , T. J. Marks , M. C. Hersam . Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett., 2014, 14(12): 6964
CrossRef ADS Google scholar
[102]
B. Wan , B. Yang , Y. Wang , J. Zhang , Z. Zeng , Z. Liu , W. Wang . Enhanced stability of black phosphorus field-effect transistors with SiO2 passivation. Nanotechnology, 2015, 26(43): 435702
CrossRef ADS Google scholar
[103]
Y. Xu , J. Yuan , L. Fei , X. Wang , Q. Bao , Y. Wang , K. Zhang , Y. Zhang . Selenium-doped black phosphorus for high-responsivity 2D photodetectors. Small, 2016, 12(36): 5000
CrossRef ADS Google scholar
[104]
B. Yang , B. Wan , Q. Zhou , Y. Wang , W. Hu , W. Lv , Q. Chen , Z. Zeng , F. Wen , J. Xiang , S. Yuan , J. Wang , B. Zhang , W. Wang , J. Zhang , B. Xu , Z. Zhao , Y. Tian , Z. Liu . Te-doped black phosphorus field-effect transistors. Adv. Mater., 2016, 28(42): 9408
CrossRef ADS Google scholar
[105]
M. Zhao , X. Niu , L. Guan , H. Qian , W. Wang , J. Sha , Y. Wang . Understanding the growth of black phosphorus crystals. CrystEngComm, 2016, 18(40): 7737
CrossRef ADS Google scholar

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2021YFA1200804), the National Natural Science Foundation of China (Grant Nos. 61922082, 61875223, and 61927813). The support from the Vacuum Interconnected Nanotech Workstation (Nano-X) of Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Sciences is also acknowledged.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(9325 KB)

Accesses

Citations

Detail

Sections
Recommended

/