Insight into the growth mechanism of black phosphorus
Yongjie Wang, Qiang Yu, Jie Li, Junyong Wang, Kai Zhang
Insight into the growth mechanism of black phosphorus
Two-dimensional (2D) black phosphorus (BP) has attracted great attention in recent years in fundamental research as well as optoelectronics applications. The controllable synthesis of high-quality BP is vital to the investigation of its intrinsic physical properties and versatile applications. Originally, BP was mostly synthesized under high temperatures and pressures. Subsequently, metal flux, wet chemical and chemical vapor transport (CVT) methods had been appeared successively. The pulsed laser deposition (PLD) and CVT methods have been used to prepare high-quality BP thin films on silicon substrates, which is significant for its monolithic integration and practical applications. To meet the demand of the scalable applications of BP, the direct preparation of BP films on dielectric substrates that avoids additional transfer process, is crucial to high-performance device implementation. In this review, the growing methods and corresponding mechanisms of BP are summarized and analyzed. Meanwhile, the view on the controllable growth of large-area, high-quality BP films is envisioned.
black phosphorus / growth mechanism / nucleation / thin films
[1] |
A. Pfitzner , M. F. Brau , J. Zweck , G. Brunklaus , H. Eckert . Phosphorus nanorods-two allotropic modifications of a long-known element. Angew. Chem. Int. Ed., 2004, 43(32): 4228
CrossRef
ADS
Google scholar
|
[2] |
F. Bachhuber , J. von Appen , R. Dronskowski , P. Schmidt , T. Nilges , A. Pfitzner , R. Weihrich . Die erweiterte stabilitätsreihe der phosphorallotropee. Angew. Chem., 2014, 126(43): 11813
CrossRef
ADS
Google scholar
|
[3] |
M. Ruck , D. Hoppe , B. Wahl , P. Simon , Y. Wang , G. Seifert . Faserförmiger roter phosphor. Angew. Chem., 2005, 117(46): 7788
CrossRef
ADS
Google scholar
|
[4] |
N. Eckstein , A. Hohmann , R. Weihrich , T. Nilges , P. Schmidt . Synthesis and phase relations of single-phase fibrous phosphorus. Z. Anorg. Allg. Chem., 2013, 639(15): 2741
CrossRef
ADS
Google scholar
|
[5] |
G. Natta , L. Passerini . The crystal structure of white phosphorus. Nature, 1930, 125(3158): 707
CrossRef
ADS
Google scholar
|
[6] |
R. L. Keiter , C. P. Gamage . Combustion of white phosphorus. J. Chem. Educ., 2001, 78(7): 908
CrossRef
ADS
Google scholar
|
[7] |
S. Zhang , H. J. Qian , Z. Liu , H. Ju , Z. Y. Lu , H. Zhang , L. Chi , S. Cui . Towards unveiling the exact molecular structure of amorphous red phosphorus by single-molecule studies. Angew. Chem. Int. Ed., 2019, 58(6): 1659
CrossRef
ADS
Google scholar
|
[8] |
C. M. Fung , C. C. Er , L. L. Tan , A. R. Mohamed , S. P. Chai . Red Phosphorus: An Up-and-Coming Photocatalyst on the Horizon for Sustainable Energy Development and Environmental Remediation. Chem. Rev., 2022, 122(3): 3879
CrossRef
ADS
Google scholar
|
[9] |
Z. Sun , B. Zhang , Y. Zhao , M. Khurram , Q. Yan . exfoliation, and transport properties of quasi-1D van der Waals fibrous red phosphorus. Chem. Mater., 2021, 33(15): 6240
CrossRef
ADS
Google scholar
|
[10] |
Z. Zhu , P. Cui , X. Cai , M. Xia , Y. Jia , S. Zhang , Z. Zhang . Red phosphorus in its two-dimensional limit: Novel clathrates with varying band gaps and superior chemical stabilities. Nanoscale, 2018, 10(29): 13969
CrossRef
ADS
Google scholar
|
[11] |
W. Hittorf . Zur Kenntniss des Phosphors. Annalen der Physik und Chemie, 1865, 202(10): 193
CrossRef
ADS
Google scholar
|
[12] |
L. Zhang , H. Huang , Z. Lv , L. Li , M. Gu , X. Zhao , B. Zhang , Y. Cheng , J. Zhang . Phonon properties of bulk violet phosphorus single crystals: Temperature and pressure evolution. ACS Appl. Electron. Mater., 2021, 3(3): 1043
CrossRef
ADS
Google scholar
|
[13] |
L. Zhang , H. Huang , B. Zhang , M. Gu , D. Zhao , X. Zhao , L. Li , J. Zhou , K. Wu , Y. Cheng , J. Zhang . Structure and properties of violet phosphorus and its phosphorene exfoliation. Angew. Chem. Int. Ed., 2020, 59(3): 1074
CrossRef
ADS
Google scholar
|
[14] |
L. Zhang , M. Gu , L. Li , X. Zhao , C. Fu , T. Liu , X. Xu , Y. Cheng , J. Zhang . High yield synthesis of violet phosphorus crystals. Chem. Mater., 2020, 32(17): 7363
CrossRef
ADS
Google scholar
|
[15] |
R. Zhao , S. Liu , X. Zhao , M. Gu , Y. Zhang , M. Jin , Y. Wang , Y. Cheng , J. Zhang . Violet phosphorus quantum dots. J. Mater. Chem. A, 2021, 10(1): 245
CrossRef
ADS
Google scholar
|
[16] |
X. Chen , J. S. Ponraj , D. Fan , H. Zhang . An overview of the optical properties and applications of black phosphorus. Nanoscale, 2020, 12(6): 3513
CrossRef
ADS
Google scholar
|
[17] |
R. Gusmão , Z. Sofer , M. Pumera . Black phosphorus rediscovered: From bulk material to monolayers. Angew. Chem. Int. Ed., 2017, 56(28): 8052
CrossRef
ADS
Google scholar
|
[18] |
J. C. Jamieson . Crystal structures adopted by black phosphorus at high pressures. Science, 1963, 139(356): 1291
CrossRef
ADS
Google scholar
|
[19] |
W. Lei , G. Liu , J. Zhang , M. Liu . Black phosphorus nanostructures: Recent advances in hybridization, doping and functionalization. Chem. Soc. Rev., 2017, 46(12): 3492
CrossRef
ADS
Google scholar
|
[20] |
P. W. Bridgman . Two new modifications of phosphorus. J. Am. Chem. Soc., 1914, 36(7): 1344
CrossRef
ADS
Google scholar
|
[21] |
B. M. L. P. A. G. O’hare , B. M. Lewis , I. Shirotani . Thermodynamic stability of orthorhombic black phosphorus. Thermochim. Acta, 1988, 129(1): 57
CrossRef
ADS
Google scholar
|
[22] |
M. Zhao , H. Qian , X. Niu , W. Wang , L. Guan , J. Sha , Y. Wang . Growth mechanism and enhanced yield of black phosphorus microribbons. Cryst. Growth Des., 2016, 16(2): 1096
CrossRef
ADS
Google scholar
|
[23] |
L. Li , Y. Yu , G. J. Ye , Q. Ge , X. Ou , H. Wu , D. Feng , X. H. Chen , Y. Zhang . Black phosphorus field-effect transistors. Nat. Nanotechnol., 2014, 9(5): 372
CrossRef
ADS
Google scholar
|
[24] |
V. Tran , R. Soklaski , Y. Liang , L. Yang . Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B, 2014, 89(23): 235319
CrossRef
ADS
Google scholar
|
[25] |
X. Liu , K. W. Ang , W. Yu , J. He , X. Feng , Q. Liu , H. Jiang , Dan Tang , J. Wen , Y. Lu , W. Liu , P. Cao , S. Han , J. Wu , W. Liu , X. Wang , D. Zhu , Z. He . Black phosphorus based field effect transistors with simultaneously achieved near ideal subthreshold swing and high hole mobility at room temperature. Sci. Rep., 2016, 6(1): 24920
CrossRef
ADS
Google scholar
|
[26] |
G. Long , D. Maryenko , J. Shen , S. Xu , J. Hou , Z. Wu , W. K. Wong , T. Han , J. Lin , Y. Cai , R. Lortz , N. Wang . Achieving ultrahigh carrier mobility in two-dimensional hole gas of black phosphorus. Nano Lett., 2016, 16(12): 7768
CrossRef
ADS
Google scholar
|
[27] |
Y. Xu , J. Yuan , K. Zhang , Y. Hou , Q. Sun , Y. Yao , S. Li , Q. Bao , H. Zhang , Y. Zhang . Field-induced N-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility. Adv. Funct. Mater., 2017, 27(38): 1702211
CrossRef
ADS
Google scholar
|
[28] |
X. Feng , X. Huang , L. Chen , W. C. Tan , L. Wang , K. W. Ang . High mobility anisotropic black phosphorus nanoribbon field-effect transistor. Adv. Funct. Mater., 2018, 28(28): 1801524
CrossRef
ADS
Google scholar
|
[29] |
G. Wang , Z. Guo , C. Chen , W. Yu , B. Xu , B. Lin . Exploring a high-carrier-mobility black phosphorus/MoSe2 heterostructure for high-efficiency thin film solar cells. Sol. Energy, 2022, 236: 576
CrossRef
ADS
Google scholar
|
[30] |
M. Buscema , D. J. Groenendijk , S. I. Blanter , G. A. Steele , H. S. van der Zant , A. Castellanos-Gomez . Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett., 2014, 14(6): 3347
CrossRef
ADS
Google scholar
|
[31] |
W. Zhu , M. N. Yogeesh , S. Yang , S. H. Aldave , J. S. Kim , S. Sonde , L. Tao , N. Lu , D. Akinwande . Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. Nano Lett., 2015, 15(3): 1883
CrossRef
ADS
Google scholar
|
[32] |
Z. Sobiesierski , R. T. Phillips . A time-resolved photoluminescence study of amorphous phosphorus. Solid State Commun., 1986, 60(1): 25
CrossRef
ADS
Google scholar
|
[33] |
R. J. Suess , J. D. Hart , E. Leong , M. Mittendorff , T. E. Murphy . Black phosphorus frequency mixer for infrared optoelectronic signal processing. APL Photonics, 2019, 4(3): 034502
CrossRef
ADS
Google scholar
|
[34] |
G. Hu , T. Albrow-Owen , X. Jin , A. Ali , Y. Hu , R. C. T. Howe , K. Shehzad , Z. Yang , X. Zhu , R. I. Woodward , T. C. Wu , H. Jussila , J. B. Wu , P. Peng , P. H. Tan , Z. Sun , E. J. R. Kelleher , M. Zhang , Y. Xu , T. Hasan . Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat. Commun., 2017, 8(1): 278
CrossRef
ADS
Google scholar
|
[35] |
X. Chen , X. Lu , B. Deng , O. Sinai , Y. Shao , C. Li , S. Yuan , V. Tran , K. Watanabe , T. Taniguchi , D. Naveh , L. Yang , F. Xia . Widely tunable black phosphorus mid-infrared photodetector. Nat. Commun., 2017, 8(1): 1672
CrossRef
ADS
Google scholar
|
[36] |
M. Valt , M. Caporali , B. Fabbri , A. Gaiardo , S. Krik , E. Iacob , L. Vanzetti , C. Malagu , M. Banchelli , C. D’Andrea , M. Serrano-Ruiz , M. Vanni , M. Peruzzini , V. Guidi . Air stable nickel-decorated black phosphorus and its room-temperature chemiresistive gas sensor capabilities. ACS Appl. Mater. Interfaces, 2021, 13(37): 44711
CrossRef
ADS
Google scholar
|
[37] |
D. An , X. Zhang , Z. Bi , W. Shan , H. Zhang , S. Xia , M. Qiu . Low‐dimensional black phosphorus in sensor applications: Advances and challenges. Adv. Funct. Mater., 2021, 31(52): 2106484
CrossRef
ADS
Google scholar
|
[38] |
J. Sun , Y. Sun , M. Pasta , G. Zhou , Y. Li , W. Liu , F. Xiong , Y. Cui . Entrapment of polysulfides by a black-phosphorus-modified separator for lithium-sulfur batteries. Adv. Mater., 2016, 28(44): 9797
CrossRef
ADS
Google scholar
|
[39] |
Y. Wang , M. He , S. Ma , C. Yang , M. Yu , G. Yin , P. Zuo . Low-temperature solution synthesis of black phosphorus from red phosphorus: Crystallization mechanism and lithium ion battery applications. J. Phys. Chem. Lett., 2020, 11(7): 2708
CrossRef
ADS
Google scholar
|
[40] |
J. Zhu , G. Xiao , X. Zuo . Two-dimensional black phosphorus: An emerging anode material for lithium-ion batteries. Nano-Micro Lett., 2020, 12(1): 120
CrossRef
ADS
Google scholar
|
[41] |
L. Bai , X. Wang , S. Tang , Y. Kang , J. Wang , Y. Yu , Z. K. Zhou , C. Ma , X. Zhang , J. Jiang , P. K. Chu , X. F. Yu . Black phosphorus/platinum heterostructure: A highly efficient photocatalyst for solar-driven chemical reactions. Adv. Mater., 2018, 30(40): 1803641
CrossRef
ADS
Google scholar
|
[42] |
J. Miao , L. Zhang , C. Wang . Black phosphorus electronic and optoelectronic devices. 2D Mater., 2019, 6(3): 032003
CrossRef
ADS
Google scholar
|
[43] |
T. Yin , L. Long , X. Tang , M. Qiu , W. Liang , R. Cao , Q. Zhang , D. Wang , H. Zhang . Advancing applications of black phosphorus and BP-analog materials in photo/electrocatalysis through structure engineering and surface modulation. Adv. Sci. (Weinh.), 2020, 7(19): 2001431
CrossRef
ADS
Google scholar
|
[44] |
L. Zhang , B. Wang , Y. Zhou , C. Wang , X. Chen , H. Zhang . Synthesis techniques, optoelectronic properties, and broadband photodetection of thin‐film black phosphorus. Adv. Opt. Mater., 2020, 8(15): 2000045
CrossRef
ADS
Google scholar
|
[45] |
Z. Xie , M. Peng , R. Lu , X. Meng , W. Liang , Z. Li , M. Qiu , B. Zhang , G. Nie , N. Xie , H. Zhang , P. N. Prasad . Black phosphorus-based photothermal therapy with aCD47-mediated immune checkpoint blockade for enhanced cancer immunotherapy. Light Sci. Appl., 2020, 9(1): 161
CrossRef
ADS
Google scholar
|
[46] |
C. Xing , S. Chen , M. Qiu , X. Liang , Q. Liu , Q. Zou , Z. Li , Z. Xie , D. Wang , B. Dong , L. Liu , D. Fan , H. Zhang . Conceptually novel black phosphorus/cellulose hydrogels as promising photothermal agents for effective cancer therapy. Adv. Healthc. Mater., 2018, 7(7): 1701510
CrossRef
ADS
Google scholar
|
[47] |
F. Yin , K. Hu , S. Chen , D. Wang , J. Zhang , M. Xie , D. Yang , M. Qiu , H. Zhang , Z. G. Li . Black phosphorus quantum dot based novel siRNA delivery systems in human pluripotent teratoma PA-1 cells. J. Mater. Chem. B, 2017, 5(27): 5433
CrossRef
ADS
Google scholar
|
[48] |
J. O. Island , G. A. Steele , H. S. J. v. d. Zant , A. Castellanos-Gomez . Environmental instability of few-layer black phosphorus. 2D Mater., 2015, 2(1): 011002
CrossRef
ADS
Google scholar
|
[49] |
Y. Y. Illarionov , M. Waltl , G. Rzepa , J. S. Kim , S. Kim , A. Dodabalapur , D. Akinwande , T. Grasser . Long-term stability and reliability of black phosphorus field-effect transistors. ACS Nano, 2016, 10(10): 9543
CrossRef
ADS
Google scholar
|
[50] |
D. K. Sang , H. Wang , Z. Guo , N. Xie , H. Zhang . Recent developments in stability and passivation techniques of phosphorene toward next‐generation device applications. Adv. Funct. Mater., 2019, 29(45): 1903419
CrossRef
ADS
Google scholar
|
[51] |
A. Favron , E. Gaufres , F. Fossard , A. L. Phaneuf-L’Heureux , N. Y. Tang , P. L. Levesque , A. Loiseau , R. Leonelli , S. Francoeur , R. Martel . Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater., 2015, 14(8): 826
CrossRef
ADS
Google scholar
|
[52] |
G. Kim , D. Kim , Y. Choi , A. Ghorai , G. Park , U. Jeong . New approaches to produce large-area single crystal thin films. Adv. Mater., 2022, 35(4): 2203373
CrossRef
ADS
Google scholar
|
[53] |
A. Zavabeti , A. Jannat , L. Zhong , A. A. Haidry , Z. Yao , J. Z. Ou . Two-dimensional materials in large-areas: Synthesis, properties and applications. Nano-Micro Lett., 2020, 12(1): 66
CrossRef
ADS
Google scholar
|
[54] |
K. S. Novoselov , D. Jiang , F. Schedin , T. J. Booth , V. V. Khotkevich , S. V. Morozov , A. K. Geim . Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA, 2005, 102(30): 10451
CrossRef
ADS
Google scholar
|
[55] |
H. Liu , A. T. Neal , Z. Zhu , Z. Luo , X. Xu , D. Tománek , P. D. Ye . Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014, 8(4): 4033
CrossRef
ADS
Google scholar
|
[56] |
W. Lu , H. Nan , J. Hong , Y. Chen , C. Zhu , Z. Liang , X. Ma , Z. Ni , C. Jin , Z. Zhang . Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Res., 2014, 7(6): 853
CrossRef
ADS
Google scholar
|
[57] |
J. Kang , S. A. Wells , J. D. Wood , J.-H. Lee , X. Liu , C. R. Ryder , J. Zhu , Jeffrey R Guest , C. A. Husko , M. C. Hersam . Stable aqueous dispersions of optically and electronically active phosphorene. Proc. Natl. Acad. Sci. USA, 2016, 113(42): 11688
CrossRef
ADS
Google scholar
|
[58] |
D. Hanlon , C. Backes , E. Doherty , C. S. Cucinotta , N. C. Berner , C. Boland , K. Lee , A. Harvey , P. Lynch , Z. Gholamvand , S. Zhang , K. Wang , G. Moynihan , A. Pokle , Q. M. Ramasse , N. McEvoy , W. J. Blau , J. Wang , G. Abellan , F. Hauke , A. Hirsch , S. Sanvito , D. D. O’Regan , G. S. Duesberg , V. Nicolosi , J. N. Coleman . Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun., 2015, 6(1): 8563
CrossRef
ADS
Google scholar
|
[59] |
P. Yasaei , B. Kumar , T. Foroozan , C. Wang , M. Asadi , D. Tuschel , J. E. Indacochea , R. F. Klie , A. Salehi-Khojin . High-quality black phosphorus atomic layers by liquid-phase exfoliation. Adv. Mater., 2015, 27(11): 1887
CrossRef
ADS
Google scholar
|
[60] |
X. Wang , A. M. Jones , K. L. Seyler , V. Tran , Y. Jia , H. Zhao , H. Wang , L. Yang , X. Xu , F. Xia . Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol., 2015, 10: 517
CrossRef
ADS
Google scholar
|
[61] |
L. Q. Sun , M. J. Li , K. Sun , S. H. Yu , R. S. Wang , H. M. Xie . Electrochemical activity of black phosphorus as an anode material for lithium-ion batteries. J. Phys. Chem. C, 2012, 116(28): 14772
CrossRef
ADS
Google scholar
|
[62] |
N. Antonatos , D. Bousa , S. Shcheka , S. M. Beladi-Mousavi , M. Pumera , Z. Sofer . In situ doping of black phosphorus by high-pressure synthesis. Inorg. Chem., 2019, 58(15): 10227
CrossRef
ADS
Google scholar
|
[63] |
H. Xiang , Y. T. Nie , H. C. Zheng , X. H. Sun , X. L. Sun , Y. Song . The mechanism of structural changes and crystallization kinetics of amorphous red phosphorus to black phosphorus under high pressure. Chem. Commun. (Camb.), 2019, 55(56): 8094
CrossRef
ADS
Google scholar
|
[64] |
Y. Akahama , M. Miyakawa , T. Taniguchi , A. Sano-Furukawa , S. Machida , T. Hattori . Structure refinement of black phosphorus under high pressure. J. Chem. Phys., 2020, 153(1): 014704
CrossRef
ADS
Google scholar
|
[65] |
J. K. Burdett , S. Lee . The pressure-induced black phosphorus to A7 (arsenic) phase transformation: An analysis using the concept of orbital symmetry conservation. J. Solid State Chem., 1982, 44(3): 415
CrossRef
ADS
Google scholar
|
[66] |
D. Scelta , A. Baldassarre , M. Serrano-Ruiz , K. Dziubek , A. B. Cairns , M. Peruzzini , R. Bini , M. Ceppatelli . Interlayer bond formation in black phosphorus at high pressure. Angew. Chem. Int. Ed., 2017, 56: 14135
CrossRef
ADS
Google scholar
|
[67] |
H. Krebs , H. Weitz , K. H. Worms . Über die struktur und die eigenschaften der halbmetalle. VIII. Die katalytische darstellung des schwarzen phosphors. Z. Anorg. Allg. Chem., 1955, 280(1–3): 119
CrossRef
ADS
Google scholar
|
[68] |
M. Baba , F. Izumida , Y. Takeda , A. Morita . Preparation of black phosphorus single crystals by a completely closed bismuth-flux method and their crystal morphology. Jpn. J. Appl. Phys., 1989, 28(6R): 1019
CrossRef
ADS
Google scholar
|
[69] |
M. Nagao , A. Hayashi , M. Tatsumisago . All-solid-state lithium secondary batteries with high capacity using black phosphorus negative electrode. J. Power Sources, 2011, 196(16): 6902
CrossRef
ADS
Google scholar
|
[70] |
F. Zhou , L. Ouyang , M. Zeng , J. Liu , H. Wang , H. Shao , M. Zhu . Growth mechanism of black phosphorus synthesized by different ball milling techniques. J. Alloys Compd., 2019, 784: 339
CrossRef
ADS
Google scholar
|
[71] |
X. Zhu , T. Zhang , Z. Sun , H. Chen , J. Guan , X. Chen , H. Ji , P. Du , S. Yang . Black phosphorus revisited: A missing metal-free elemental photocatalyst for visible light hydrogen evolution. Adv. Mater., 2017, 29(17): 1605776
CrossRef
ADS
Google scholar
|
[72] |
N. V. Chien , H. Shin , J. Y. Song . Sn-assisted solid state crystallization of red phosphorus to black phosphorus. Scr. Mater., 2020, 177: 128
CrossRef
ADS
Google scholar
|
[73] |
B. Tian , B. Tian , B. Smith , M. C. Scott , Q. Lei , R. Hua , Y. Tian , Y. Liu . Facile bottom-up synthesis of partially oxidized black phosphorus nanosheets as metal-free photocatalyst for hydrogen evolution. Proc. Natl. Acad. Sci. USA, 2018, 115(17): 4345
CrossRef
ADS
Google scholar
|
[74] |
B. Tian , B. Tian , B. Smith , M. C. Scott , R. Hua , Q. Lei , Y. Tian . Supported black phosphorus nanosheets as hydrogen-evolving photocatalyst achieving 5.4% energy conversion efficiency at 353 K. Nat. Commun., 2018, 9(1): 1397
CrossRef
ADS
Google scholar
|
[75] |
T. Nilges , M. Kersting , T. Pfeifer . A fast low-pressure transport route to large black phosphorus single crystals. J. Solid State Chem., 2008, 181(8): 1707
CrossRef
ADS
Google scholar
|
[76] |
S. Lange , P. Schmidt , T. Nilges . Au3SnP7@black phosphorus: An easy access to black phosphorus. Inorg. Chem., 2007, 46(10): 4028
CrossRef
ADS
Google scholar
|
[77] |
F. T. Johra , W. G. Jung . Synthesis of black phosphorus via a facile vapor transfer method. Electron. Mater. Lett., 2019, 15(5): 639
CrossRef
ADS
Google scholar
|
[78] |
N. Izquierdo , J. C. Myers , N. C. A. Seaton , S. K. Pandey , S. A. Campbell . Thin-film deposition of surface passivated black phosphorus. ACS Nano, 2019, 13(6): 7091
CrossRef
ADS
Google scholar
|
[79] |
M. Wentink , J. Gaberle , M. Aghajanian , A. A. Mostofi , N. J. Curson , J. Lischner , S. R. Schofield , A. L. Shluger , A. J. Kenyon . Substitutional tin acceptor states in black phosphorus. J. Phys. Chem. C, 2021, 125(41): 22883
CrossRef
ADS
Google scholar
|
[80] |
N. Antonatos , J. Sturala , V. Mazanek , D. Sedmidubsky , M. Vesely , K. Ruzicka , J. Hejtmanek , P. Levinsky , Z. Sofer . Black phosphorus: Fundamental properties and influence of impurities induced by its synthesis. ACS Appl. Mater. Interfaces, 2022, 14(30): 34867
CrossRef
ADS
Google scholar
|
[81] |
Q. Xu , Y. Zhu , C. Shi , N. Zhang , T. Xie . The preparation of black phosphorus in RP/Sn/I2 system: its nucleation agent and relatively optimal temperature program. J. Mater. Sci. Mater. Electron., 2020, 31(21): 19093
CrossRef
ADS
Google scholar
|
[82] |
M. M. Shatruk , K. A. Kovnir , A. V. Shevelkov , I. A. Presniakov , B. A. Popovkin . First tin pnictide halides Sn24P19.3I8 and Sn24As19.3I8: Synthesis and the clathrate-i type of the crystal structure. Inorg. Chem., 1999, 38(15): 3455
CrossRef
ADS
Google scholar
|
[83] |
V. V. Novikov , A. V. Matovnikov , D. V. Avdashchenko , N. V. Mitroshenkov , E. Dikarev , S. Takamizawa , M. A. Kirsanova , A. V. Shevelkov . Low-temperature structure and lattice dynamics of the thermoelectric clathrate Sn24P19.3I8. J. Alloys Compd., 2012, 520: 174
CrossRef
ADS
Google scholar
|
[84] |
S. Li , X. Liu , X. Fan , Y. Ni , J. Miracle , N. Theodoropoulou , J. Sun , S. Chen , B. Lv , Q. Yu . New strategy for black phosphorus crystal growth through ternary clathrate. Cryst. Growth Des., 2017, 17(12): 6579
CrossRef
ADS
Google scholar
|
[85] |
Z. Chen , Y. Zhu , J. Lei , W. Liu , Y. Xu , P. Feng . A stage-by-stage phase-induction and nucleation of black phosphorus from red phosphorus under low-pressure mineralization. CrystEngComm, 2017, 19(47): 7207
CrossRef
ADS
Google scholar
|
[86] |
Z. Zhang , D. H. Xing , J. Li , Q. Yan . Hittorf’s phosphorus: The missing link during transformation of red phosphorus to black phosphorus. CrystEngComm, 2017, 19(6): 905
CrossRef
ADS
Google scholar
|
[87] |
G. Tiouitchi , M. A. Ali , A. Benyoussef , M. Hamedoun , A. Lachgar , M. Benaissa , A. Kara , A. Ennaoui , A. Mahmoud , F. Boschini , H. Oughaddou , A. El Kenz , O. Mounkachi . An easy route to synthesize high-quality black phosphorus from amorphous red phosphorus. Mater. Lett., 2019, 236: 56
CrossRef
ADS
Google scholar
|
[88] |
Y. Yu , B. Xing , D. Wang , L. Guan , X. Niu , J. Yao , X. Yan , S. Zhang , Y. Liu , X. Wu , J. Sha , Y. Wang . Improvement in the quality of black phosphorus by selecting a mineralizer. Nanoscale, 2019, 11(42): 20081
CrossRef
ADS
Google scholar
|
[89] |
Y. Xu , X. Shi , Y. Zhang , H. Zhang , Q. Zhang , Z. Huang , X. Xu , J. Guo , H. Zhang , L. Sun , Z. Zeng , A. Pan , K. Zhang . Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon. Nat. Commun., 2020, 11(1): 1330
CrossRef
ADS
Google scholar
|
[90] |
D. Han , Q. Liu , Q. Zhang , J. Ji , S. Sang , B. Xu . Synthesis of highly crystalline black phosphorus thin films on GaN. Nanoscale, 2020, 12(48): 24429
CrossRef
ADS
Google scholar
|
[91] |
Z. Wu , Y. Lyu , Y. Zhang , R. Ding , B. Zheng , Z. Yang , S. P. Lau , X. H. Chen , J. Hao . Large-scale growth of few-layer two-dimensional black phosphorus. Nat. Mater., 2021, 20(9): 1203
CrossRef
ADS
Google scholar
|
[92] |
P. R. Willmott , J. R. Huber . Pulsed laser vaporization and deposition. Rev. Mod. Phys., 2000, 72(1): 315
CrossRef
ADS
Google scholar
|
[93] |
Z. Yang , J. Hao . Progress in pulsed laser deposited two-dimensional layered materials for device applications. J. Mater. Chem. C, 2016, 4(38): 8859
CrossRef
ADS
Google scholar
|
[94] |
Z. Yang , J. Hao , S. Yuan , S. Lin , H. M. Yau , J. Dai , S. P. Lau . Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition. Adv. Mater., 2015, 27(25): 3748
CrossRef
ADS
Google scholar
|
[95] |
J. B. Smith , D. Hagaman , H. F. Ji . Growth of 2D black phosphorus film from chemical vapor deposition. Nanotechnology, 2016, 27(21): 215602
CrossRef
ADS
Google scholar
|
[96] |
X. Li , B. Deng , X. Wang , S. Chen , M. Vaisman , S.-I. Karato , G. Pan , M. L. Lee , J. Cha , H. Wang , F. Xia . Synthesis of thin-film black phosphorus on a flexible substrate. 2D Mater., 2015, 2(3): 031002
CrossRef
ADS
Google scholar
|
[97] |
C. Li , Y. Wu , B. Deng , Y. Xie , Q. Guo , S. Yuan , X. Chen , M. Bhuiyan , Z. Wu , K. Watanabe , T. Taniguchi , H. Wang , J. J. Cha , M. Snure , Y. Fei , F. Xia . Synthesis of crystalline black phosphorus thin film on sapphire. Adv. Mater., 2018, 30(6): 1703748
CrossRef
ADS
Google scholar
|
[98] |
C. R. Ryder , J. D. Wood , S. A. Wells , Y. Yang , D. Jariwala , T. J. Marks , G. C. Schatz , M. C. Hersam . Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat. Chem., 2016, 8(6): 597
CrossRef
ADS
Google scholar
|
[99] |
Y. Zhao , H. Wang , H. Huang , Q. Xiao , Y. Xu , Z. Guo , H. Xie , J. Shao , Z. Sun , W. Han , X. F. Yu , P. Li , P. K. Chu . Surface coordination of black phosphorus for robust air and water stability. Angew. Chem. Int. Ed., 2016, 16(55): 5003
CrossRef
ADS
Google scholar
|
[100] |
Y. Y. Illarionov , M. Waltl , G. Rzepa , T. Knobloch , J. S. Kim , D. Akinwande , T. Grasser . Highly-stable black phosphorus field-effect transistors with low density of oxide traps. npj 2D Mater. Appl., 2017, 1(1):
CrossRef
ADS
Google scholar
|
[101] |
J. D. Wood , S. A. Wells , D. Jariwala , K. S. Chen , E. Cho , V. K. Sangwan , X. Liu , L. J. Lauhon , T. J. Marks , M. C. Hersam . Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett., 2014, 14(12): 6964
CrossRef
ADS
Google scholar
|
[102] |
B. Wan , B. Yang , Y. Wang , J. Zhang , Z. Zeng , Z. Liu , W. Wang . Enhanced stability of black phosphorus field-effect transistors with SiO2 passivation. Nanotechnology, 2015, 26(43): 435702
CrossRef
ADS
Google scholar
|
[103] |
Y. Xu , J. Yuan , L. Fei , X. Wang , Q. Bao , Y. Wang , K. Zhang , Y. Zhang . Selenium-doped black phosphorus for high-responsivity 2D photodetectors. Small, 2016, 12(36): 5000
CrossRef
ADS
Google scholar
|
[104] |
B. Yang , B. Wan , Q. Zhou , Y. Wang , W. Hu , W. Lv , Q. Chen , Z. Zeng , F. Wen , J. Xiang , S. Yuan , J. Wang , B. Zhang , W. Wang , J. Zhang , B. Xu , Z. Zhao , Y. Tian , Z. Liu . Te-doped black phosphorus field-effect transistors. Adv. Mater., 2016, 28(42): 9408
CrossRef
ADS
Google scholar
|
[105] |
M. Zhao , X. Niu , L. Guan , H. Qian , W. Wang , J. Sha , Y. Wang . Understanding the growth of black phosphorus crystals. CrystEngComm, 2016, 18(40): 7737
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |