Photo- and electro-production of narrow exotic states: From light quarks to charm and up to bottom

Xu Cao

PDF(6928 KB)
PDF(6928 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (4) : 44600. DOI: 10.1007/s11467-023-1264-8
TOPICAL REVIEW
TOPICAL REVIEW

Photo- and electro-production of narrow exotic states: From light quarks to charm and up to bottom

Author information +
History +

Abstract

Accessing a full image of the inner content of hadrons represents a central endeavour of modern particle physics, with the main scientific motivation to investigate the strong interaction binding the visible matter. On the one hand, the structure of known exotic candidates is a fundamental open issue addressed widely by scientists. On the other hand, looking for new states of exotic nature is a central component for theoretical and experimental efforts from electron-positron machine and electron accelerator with fixed target to heavy ion and electron-ion colliders. In this article we present a succinct short overview of the attempt to search for exotic narrow N and Z states containing light quarks only or also charm, and its connotation for bottom regions (the latter two are also known as Pc (Zc) and Pb (Zb) states, respectively in the literature). We address the effort of searching for exotic narrow N and Z states in light quark sector. We focus on recent progress in searching for signal of Pc and Zc states photoproduction and its implication into the Pb and Zb photoproduction and their decay properties. We also discuss future perspectives for the field in electron-ion colliders, a good place to disentangle the nature of some of these states and investigate some other enlightening topics including QCD trace anomaly and quarkonium-nucleon scattering length.

Graphical abstract

Keywords

exotic states / photo- and electro-production / electron-ion colliders / hadron

Cite this article

Download citation ▾
Xu Cao. Photo- and electro-production of narrow exotic states: From light quarks to charm and up to bottom. Front. Phys., 2023, 18(4): 44600 https://doi.org/10.1007/s11467-023-1264-8

References

[1]
M. Gell-Mann. A schematic model of baryons and mesons. Phys. Lett., 1964, 8: 214
CrossRef ADS Google scholar
[2]
G. Zweig, An SU(3) model for strong interaction symmetry and its breaking, CERN Report No. 8182/TH. 401, CERN Report No. 8419/TH. 412 (1964)
[3]
E. Klempt and A. Zaitsev, Glueballs, hybrids, multiquarks: Experimental facts versus QCD inspired concepts, Phys. Rep. 454, 1 (2007), arXiv: 0708.4016
[4]
B. Ketzer, B. Grube, and D. Ryabchikov, Light-meson spectroscopy with COMPASS, Prog. Part. Nucl. Phys. 113, 103755 (2020), arXiv: 1909.06366
[5]
C [COMPASS], Odd and even partial waves of ηπ and ηπ in πpηπp at 191 GeV/c, Phys. Lett. B 740, 303 (2015), Erratum: Phys. Lett. B 811, 135913 (2020), arXiv: 1408.4286
[6]
A [JPAC], Determination of the pole position of the lightest hybrid meson candidate, Phys. Rev. Lett. 122, 042002 (2019), arXiv: 1810.04171
[7]
M [BESIII], Observation of an isoscalar resonance with exotic JPC = 1−+ quantum numbers in J/ψγηη′, Phys. Rev. Lett. 129, 192002 (2022), arXiv: 2202.00621
[8]
M [BESIII], Partial wave analysis of J/ψγηη′, Phys. Rev. D 106, 072012 (2022), arXiv: 2202.00623
[9]
J [BaBar], Light meson spectroscopy from Dalitz plot analyses of ηc decays to ηK+K, ηπ+π, and ηπ+π produced in two-photon interactions, Phys. Rev. D 104, 072002 (2021), arXiv: 2106.05157
[10]
M. Ablikim, . [BESIII]. . Observation of an a0-like state with mass of 1.817 GeV in the study of D+s → KS0K+π0 decays. Phys. Rev. Lett., 2022, 129: 182001
CrossRef ADS Google scholar
[11]
M [BESIII], Study of the decay Ds+ → D+s → KS0KS0π+ and observation an isovector partner to f0(1710), Phys. Rev. D 105, L051103 (2022), arXiv: 2110.07650
[12]
C [COMPASS], Observation of a new narrow axial-vector meson a1(1420), Phys. Rev. Lett. 115, 082001 (2015), arXiv: 1501.05732
[13]
G [COMPASS], Triangle singularity as the origin of the a1(1420), Phys. Rev. Lett. 127, 082501 (2021), arXiv: 2006.05342
[14]
M. Mikhasenko, B. Ketzer, and A. Sarantsev, Nature of the a1(1420), Phys. Rev. D 91, 094015 (2015), arXiv: 1501.07023
[15]
F. Aceti, L. R. Dai, and E. Oset, a1(1420) peak as the πf0(980) decay mode of the a1(1260), Phys. Rev. D 94, 096015 (2016), arXiv: 1606.06893
[16]
T. Gershon [LHCb], Exotic hadron naming convention, arXiv: 2206.15233 (2022)
[17]
D. Y. Chen, X. Liu, and T. Matsuki, Two charged strangeonium-like structures observable in the Y(2175) → ϕ(1020)π+π process, Eur. Phys. J. C 72, 2008 (2012), arXiv: 1112.3773
[18]
M [BESIII], Search for a strangeonium-like structure Zs decaying into ϕπ and a measurement of the cross section e+e → ϕππ, Phys. Rev. D 99, 011101 (2019), arXiv: 1801.10384
[19]
R. A. Schumacher, The rise and fall of pentaquarks in experiments, AIP Conf. Proc. 842, 409 (2006), arXiv: nucl-ex/0512042
[20]
H. Huang, X. Zhu, and J. Ping, Pc-like pentaquarks in hidden strange sector, Phys. Rev. D 97, 094019 (2018), arXiv: 1803.05267
[21]
X. Liu, H. Huang, and J. Ping, Hidden strange pentaquark states in constituent quark models, Phys. Rev. C 98, 055203 (2018), arXiv: 1807.03195
[22]
H. Gao, T. S. H. Lee, and V. Marinov, φN bound state, Phys. Rev. C 63, 022201 (2001), arXiv: nucl-th/0010042
[23]
J. He, H. Huang, D. Y. Chen, and X. Zhu, Hidden strange molecular states and the Nϕ bound states via a QCD van der Waals force, Phys. Rev. D 98, 094019 (2018), arXiv: 1804.09383
[24]
P. Yang and W. Chen, QCD sum rule study for hidden-strange pentaquarks, Chin. Phys. C 47(1), 013105 (2023), arXiv: 2203.15616
[25]
B. X. Sun, Y. Y. Fan, and Q. Q. Cao, The ϕp bound state in the unitary coupled-channel approximation, arXiv: 2206.02961 (2022)
[26]
Y. Lyu, T. Doi, T. Hatsuda, Y. Ikeda, J. Meng, K. Sasaki, and T. Sugiura, Attractive N−ϕ interaction and two-pion tail from lattice QCD near physical point, Phys. Rev. D 106, 074507 (2022), arXiv: 2205.10544
[27]
S [ALICE], Experimental evidence for an attractive p−ϕ interaction, Phys. Rev. Lett. 127, 172301 (2021), arXiv: 2105.05578
[28]
J. J. Xie and F. K. Guo, Triangular singularity and a possible ϕp resonance in the Λ c+ → π0ϕp decay, Phys. Lett. B 774, 108 (2017), arXiv: 1709.01416
[29]
B [Belle], Search for Λc + → ϕ0 and branching fraction measurement of Λc+ → Kπ+0, Phys. Rev. D 96, 051102 (2017), arXiv: 1707.00089
[30]
T [LEPS], Near-threshold diffractive ϕ-meson photoproduction on proton, Phys. Rev. Lett. 95, 182001 (2005), arXiv: nucl-ex/0506015
[31]
A. Kiswandhi, J. J. Xie, and S. N. Yang, Is the nonmonotonic behavior in the cross section of ϕ photoproduction near threshold a signature of a resonance? Phys. Lett. B 691, 214 (2010), arXiv: 1005.2105
[32]
A. Kiswandhi and S. N. Yang, On the near-threshold peak structure in the differential cross section of ϕ-meson photoproduction: Indication of a missing resonance with non-negligible strangeness content, Phys. Rev. C 86, 015203 (2012), Erratum: Phys. Rev. C 86, 019904 (2012), arXiv: 1112.6105
[33]
J. He, Nucleon resonances N(1875) and N (2100) as strange partners of LHCb pentaquarks, Phys. Rev. D 95, 074031 (2017), arXiv: 1701.03738
[34]
R. L. Workman, . [Particle Data Group]. . Review of Particle Physics. Prog. Theo. Eep. Phys., 2022, 2022: 083C01
CrossRef ADS Google scholar
[35]
Y. H. Lin, C. W. Shen, and B. S. Zou, Decay behavior of the strange and beauty partners of Pc hadronic molecules, Nucl. Phys. A 980, 21 (2018), arXiv: 1805.06843
[36]
A. Thiel, F. Afzal, and Y. Wunderlich, Light baryon spectroscopy, Prog. Part. Nucl. Phys. 125, 103949 (2022), arXiv: 2202.05055
[37]
V [GRAAL], Evidence for a narrow structure at W~1.68 GeV in η photoproduction on the neutron, Phys. Lett. B 647, 23 (2007), arXiv: hepex/0606065
[38]
D. Werthmüller, L. Witthauer, D. I. Glazier, and B. Krusche, Comment on “Evidence for narrow resonant structures at W ≈ 1.68 GeV and W ≈ 1.72 GeV in real compton scattering off the proton”, Phys. Rev. C 92, 069801 (2015), arXiv: 1511.08249
[39]
L [A2], Helicity-dependent cross sections and double-polarization observable E in η photoproduction from quasifree protons and neutrons, Phys. Rev. C 95, 055201 (2017), arXiv: 1704.00649
[40]
L [A2], Insight into the narrow structure in η photoproduction on the neutron from helicity-dependent cross sections, Phys. Rev. Lett. 117, 132502 (2016), arXiv: 1702.01408
[41]
L [CBELSA/TAPS], Photoproduction of η mesons from the neutron: Cross sections and double polarization observable E, Eur. Phys. J. A 53, 58 (2017), arXiv: 1704.00634
[42]
V [A2], Experimental study of the γpπ0ηp reaction with the A2 setup at the Mainz Microtron, Phys. Rev. C 97, 055212 (2018), arXiv: 1803.00727
[43]
V. Shklyar, H. Lenske, and U. Mosel, η photoproduction in the resonance energy region, Phys. Lett. B 650, 172 (2007), arXiv: nucl-th/0611036
[44]
V. Shklyar, H. Lenske, and U. Mosel, η-meson production in the resonance-energy region, Phys. Rev. C 87, 015201 (2013), arXiv: 1206.5414
[45]
X. Cao and H. Lenske, Compton scattering off proton in the third resonance region, Phys. Lett. B 772, 274 (2017), arXiv: 1702.02692
[46]
X. H. Zhong and Q. Zhao, η photoproduction on the quasi-free nucleons in the chiral quark model, Phys. Rev. C 84, 045207 (2011), arXiv: 1106.2892
[47]
A. V. Anisovich, E. Klempt, B. Krusche, V. A. Nikonov, A. V. Sarantsev, U. Thoma, and D. Werthmüller, Interference phenomena in the JP = 1/2 wave in η photoproduction, Eur. Phys. J. A 51, 72 (2015), arXiv: 1501.02093
[48]
A. V. Anisovich, V. Burkert, E. Klempt, V. A. Nikonov, A. V. Sarantsev, and U. Thoma, Scrutinizing the evidence for N(1685), Phys. Rev. C 95, 035211 (2017), arXiv: 1701.06387
[49]
M. Doring and K. Nakayama, On the cross section ratio σn/σp in η photoproduction, Phys. Lett. B 683, 145 (2010), arXiv: 0909.3538
[50]
I. Strakovsky, W. Briscoe, A. Kudryavtsev, V. Kulikov, M. Martemianov, V. Tarasov, and R. Workman, Progress in neutron EM couplings, arXiv: 1512.01557 (2015)
[51]
W. Briscoe, Update on SAID, Talk at the 12th International Workshop on the Physics of Excited Nucleons, 10−14 June 2019, see Webpage: indico.cern.ch/event/739938/contributions/3453356/attachments/1860303/3057089/NSTAR2019_BRISCOE.pdf
[52]
A. V. Anisovich, V. Burkert, N. Compton, K. Hicks, F. J. Klein, E. Klempt, V. A. Nikonov, A. M. Sandorfi, A. V. Sarantsev, U. Thoma. Neutron helicity amplitudes. Phys. Rev. C, 2017, 96: 055202
CrossRef ADS Google scholar
[53]
C [A2], Experimental study of the γpK0Σ+, γnK0Λ, and γnK0Σ0 reactions at the Mainz Microtron, Eur. Phys. J. A 55, 202 (2019), arXiv: 1811.05547
[54]
K [BGOOD], Measurement of the γnK0Σ0 differential cross section over the K* threshold, arXiv: 2108.13319 (2021)
[55]
N [CLAS], Measurement of the differential and total cross sections of the γdK0Λ(p) reaction within the resonance region, Phys. Rev. C 96, 065201 (2017), arXiv: 1706.04748
[56]
N [CLAS], Beam-spin asymmetry Σ for Σ hyperon photoproduction off the neutron, Phys. Lett. B 827, 136985 (2022), arXiv: 2106.13957
[57]
N. Zachariou, . [CLAS]. . Beam–target helicity asymmetry E in K+Σ photoproduction on the neutron. Phys. Lett. B, 2020, 808: 135662
CrossRef ADS Google scholar
[58]
W [A2], Cross section for γnπ0n at the Mainz A2 experiment, Phys. Rev. C 100, 065205 (2019), arXiv: 1908.02730
[59]
D [CLAS], Beam-target helicity asymmetry for γ →n→ → πp in the N* resonance region, Phys. Rev. Lett. 118, 242002 (2017), arXiv: 1705.04713
[60]
B, Near-threshold π photoproduction on the deuteron, Phys. Rev. C 101, 035207 (2020), arXiv: 1812.03023
[61]
W. J. Briscoe, A. E. Kudryavtsev, I. I. Strakovsky, V. E. Tarasov, and R. L. Workman, Threshold π photoproduction on the neutron, Eur. Phys. J. A 56, 218 (2020), arXiv: 2004.01742
[62]
Y [CLAS], Exclusive π electroproduction off the neutron in deuterium in the resonance region, arXiv: 2203.16785 (2022)
[63]
V, Observation of narrow N+(1685) and N0(1685) resonances in γNηπN reactions, JETP Lett. 106, 693 (2017), arXiv: 1705.05177
[64]
V [CBELSA/TAPS], Observation of a structure in the M invariant mass distribution near 1700 MeV/c2 in the γp0η reaction, Eur. Phys. J. A 57 (12), 325 (2021), arXiv: 2110.05155
[65]
D. Werthmüller, Search for the N(1685) in ηπ-photoproduction, talk at the 12th International Workshop on the Physics of Excited Nucleons, 10−14 June 2019, see Webpage: indico.cern.ch/event/739938/contributions/3441118/attachments/1862081/3060590/talk_werthmueller.pdf
[66]
D. Werthmüller [A2], Search for the N(1685) in ηπ-photoproduction, EPJ Web Conf. 241, 01019 (2020), arXiv: 1911.01754
[67]
V. Kuznetsov, F. Mammoliti, V. Bellini, G. Gervino, F. Ghio, G. Giardina, W. Kim, G. Mandaglio, M. L. Sperduto, and C. M. Sutera, Evidence for narrow resonant structures at W ≈ 1.68 GeV and W ≈ 1.72 GeV in real Compton scattering off the proton, Phys. Rev. C 91, 042201 (2015), arXiv: 1501.04333
[68]
I [EPECUR], High-precision measurements of πp elastic differential cross sections in the second resonance region, Phys. Rev. C 91, 025205 (2015), arXiv: 1410.6418
[69]
A [EPECUR], Search for narrow resonances in πp elastic scattering from the EPECUR experiment, Phys. Rev. C 93, 062201 (2016), arXiv: 1604.02379
[70]
A. V. Anisovich, V. Burkert, M. Dugger, E. Klempt, V. A. Nikonov, B. G. Ritchie, A. V. Sarantsev, and U. Thoma, Proton-η′ interactions at threshold, Phys. Lett. B 785, 626 (2018), arXiv: 1803.06814
[71]
S. D. Bass and P. Moskal, η′ and η mesons with connection to anomalous glue, Rev. Mod. Phys. 91, 015003 (2019), arXiv: 1810.12290
[72]
S [Belle], Observation of a narrow charmonium-like state in exclusive B±K±π+πJ/ψ decays, Phys. Rev. Lett. 91, 262001 (2003), arXiv: hepex/0309032
[73]
S [Belle], Observation of a resonance-like structure in the π±ψ′ mass distribution in exclusive B±ψ′ decays, Phys. Rev. Lett. 100, 142001 (2008), arXiv: 0708.1790
[74]
K [Belle], Experimental constraints on the spin and parity of the Z(4430)+, Phys. Rev. D 88, 074026 (2013), arXiv: 1306.4894
[75]
R [Belle], Dalitz analysis of B+ψ decays and the Z(4430)+, Phys. Rev. D 80, 031104 (2009), arXiv: 0905.2869
[76]
K [Belle], Observation of a new charged charmoniumlike state in B ¯0J/ψKπ+ decays, Phys. Rev. D 90, 112009 (2014), arXiv: 1408.6457
[77]
R [LHCb], Observation of the resonant character of the Z(4430) state, Phys. Rev. Lett. 112, 222002 (2014), arXiv: 1404.1903
[78]
M [BESIII], Observation of a charged charmoniumlike structure in e+eπ+πJ/ψ at s = 4.26 GeV, Phys. Rev. Lett. 110, 252001 (2013), arXiv: 1303.5949
[79]
Z [Belle], Study of e+eπ+πJ/ψ and observation of a charged charmoniumlike state at Belle, Phys. Rev. Lett. 110, 252002 (2013), Erratum: Phys. Rev. Lett. 111, 019901 (2013), arXiv: 1304.0121
[80]
T. Xiao, S. Dobbs, A. Tomaradze, and K. K. Seth, Observation of the charged hadron Zc±(3900) and evidence for the neutral Zc0(3900) in e+eππJ/ψ at s = 4170 MeV, Phys. Lett. B 727, 366 (2013), arXiv: 1304.3036
[81]
M [BESIII], Determination of the spin and parity of the Zc(3900), Phys. Rev. Lett. 119, 072001 (2017), arXiv: 1706.04100
[82]
M [BESIII], Observation of Zc(3900)0 in e+eπ0π0J/ψ, Phys. Rev. Lett. 115, 112003 (2015), arXiv: 1506.06018
[83]
M [BESIII], Observation of a neutral structure near the d* mass threshold in e+e → (D D ¯*)0π0 at s = 4.226 and 4.257 GeV, Phys. Rev. Lett. 115, 222002 (2015), arXiv: 1509.05620
[84]
M [BESIII], Observation of a charged (D*)± mass peak in e+eπD* at s = 4.26 GeV, Phys. Rev. Lett. 112, 022001 (2014), arXiv: 1310.1163
[85]
X. Cao and J. P. Dai, Spin parity of Zc(4100), Z1+(4050) and Z2+(4250), Phys. Rev. D 100, 054004 (2019), arXiv: 1811.06434
[86]
R [LHCb], Study of the doubly charmed tetraquark Tcc+, Nat. Commun. 13, 3351 (2022), arXiv: 2109.01056
[87]
R [LHCb], Observation of an exotic narrow doubly charmed tetraquark, Nat. Phys. 18, 751 (2022), arXiv: 2109.01038
[88]
J. J. Wu, R. Molina, E. Oset, and B. S. Zou, Prediction of narrow N* and Λ* resonances with hidden charm above 4 GeV, Phys. Rev. Lett. 105, 232001 (2010), arXiv: 1007.0573
[89]
J. J. Wu, R. Molina, E. Oset, and B. S. Zou, Dynamically generated N* and Λ* resonances in the hidden charm sector around 4.3 GeV, Phys. Rev. C 84, 015202 (2011), arXiv: 1011.2399
[90]
W. L. Wang, F. Huang, Z. Y. Zhang, and B. S. Zou, ΣcD ¯ and ΛcD ¯ states in a chiral quark model, Phys. Rev. C 84, 015203 (2011), arXiv: 1101.0453
[91]
Z. C. Yang, Z. F. Sun, J. He, X. Liu, and S. L. Zhu, The possible hidden-charm molecular baryons composed of anti-charmed meson and charmed baryon, Chin. Phys. C 36, 6 (2012), arXiv: 1105.2901
[92]
R [LHCb], Observation of J/ψp resonances consistent with pentaquark states in Λb 0 → J/ψKp decays, Phys. Rev. Lett. 115, 072001 (2015), arXiv: 1507.03414
[93]
R [LHCb], Observation of a narrow pentaquark state, Pc(4312)+, and of two-peak structure of the Pc(4450)+, Phys. Rev. Lett. 122, 222001 (2019), arXiv: 1904.03947
[94]
R [LHCb], Evidence for a new tructure in the J/ψp and J/ψp ¯ systems in Bs0 → J/ψpp ¯ decays, Phys. Rev. Lett. 128, 062001 (2022), arXiv: 2108.04720
[95]
S. H. Lee, M. Nielsen, and U. Wiedner, DsD* molecule as an axial meson, J. Korean Phys. Soc. 55, 24 (2009), arXiv: 0803.1168
[96]
D. Y. Chen, X. Liu, and T. Matsuki, Predictions of charged charmoniumlike structures with hidden-charm and open-strange channels, Phys. Rev. Lett. 110, 232001 (2013), arXiv: 1303.6842
[97]
M. B. Voloshin, Strange hadrocharmonium, Phys. Lett. B 798, 135022 (2019), arXiv: 1901.01936
[98]
J. Ferretti and E. Santopinto, Hidden-charm and bottom tetra- and pentaquarks with strangeness in the hadro-quarkonium and compact tetraquark models, J. High Energy Phys. 04, 119 (2020), arXiv: 2001.01067
[99]
M [BESIII], Observation of a near-threshold structure in the K+ recoil-mass spectra in e+eK+(DsD*0 +Ds*−D0), Phys. Rev. Lett. 126, 102001 (2021), arXiv: 2011.07855
[100]
M [BESIII], Evidence for a neutral near-threshold structure in the K0S recoil-mass spectra in e+e → K 0SDs+D*− and e+e → K 0SDs∗+D, Phys. Rev. Lett. 129, 112003 (2022), arXiv: 2204.13703
[101]
R [LHCb], Observation of new resonances decaying to J/ψK+ and J/ψϕ, Phys. Rev. Lett. 127, 082001 (2021), arXiv: 2103.01803
[102]
Z. Yang, X. Cao, F. K. Guo, J. Nieves, and M. P. Valderrama, Strange molecular partners of the Zc(3900) and Zc(4020), Phys. Rev. D 103, 074029 (2021), arXiv: 2011.08725
[103]
X. Cao and Z. Yang, Hunting for the heavy quark spin symmetry partner of Zcs, Eur. Phys. J. C 82, 161 (2022), arXiv: 2110.09760
[104]
M [BESIII], Search for hidden-charm tetraquark with strangeness in e+e → K +Ds∗−D∗0 + c.c., Chin. Phys. C 47(3), 033001 (2023), arXiv: 2211.12060 (2022)
[105]
R [LHCb], A model-independent study of resonant structure in B+D+DK+ decays, Phys. Rev. Lett. 125, 242001 (2020), arXiv: 2009.00025
[106]
R [LHCb], Amplitude analysis of the B+D+DK+ decay, Phys. Rev. D 102, 112003 (2020), arXiv: 2009.00026
[107]
R [LHCb], Evidence of a J/ψΛ structure and observation of excited Ξ states in the ΞbJ/ψΛK decay, Sci. Bull. 66, 1278 (2021), arXiv: 2012.10380
[108]
LHCb Collaboration, Observation of a J/ψΛ resonance consistent with a strange pentaquark candidate in BJ/ψΛp decays, arXiv: 2210.10346 (2022)
[109]
H. X. Chen, W. Chen, X. Liu, and S. L. Zhu, The hidden-charm pentaquark and tetraquark states, Phys. Rep. 639, 1 (2016), arXiv: 1601.02092
[110]
F. K. Guo, C. Hanhart, U. G. Meißner, Q. Wang, Q. Zhao, and B. S. Zou, Hadronic molecules, Rev. Mod. Phys. 90, 015004 (2018), Erratum: Rev. Mod. Phys. 94, 029901 (2022), arXiv: 1705.00141
[111]
R. F. Lebed, R. E. Mitchell, and E. S. Swanson, Heavy-quark QCD exotica, Prog. Part. Nucl. Phys. 93, 143 (2017) arXiv: 1610.04528
[112]
A. Esposito, A. Pilloni, and A. D. Polosa, Multiquark resonances, Phys. Rep. 668, 1 (2017), arXiv: 1611.07920
[113]
S. L. Olsen, T. Skwarnicki, and D. Zieminska, Nonstandard heavy mesons and baryons: Experimental evidence, Rev. Mod. Phys. 90, 015003 (2018), arXiv: 1708.04012
[114]
Y. R. Liu, H. X. Chen, W. Chen, X. Liu, and S. L. Zhu, Pentaquark and tetraquark states, Prog. Part. Nucl. Phys. 107, 237 (2019), arXiv: 1903.11976
[115]
N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C. P. Shen, C. E. Thomas, A. Vairo, and C. Z. Yuan, The XYZ states: Experimental and theoretical status and perspectives, Phys. Rep. 873, 1 (2020), arXiv: 1907.07583
[116]
F. K. Guo, X. H. Liu and S. Sakai, Threshold cusps and triangle singularities in hadronic reactions, Prog. Part. Nucl. Phys. 112, 103757 (2020), arXiv: 1912.07030
[117]
H. X. Chen, W. Chen, X. Liu, Y. R. Liu, and S. L. Zhu, An updated review of the new hadron states, Rep. Prog. Phys. 86(2), 026201 (2023), arXiv: 2204.02649
[118]
F. K. Guo, C. Hidalgo-Duque, J. Nieves, and M. P. Valderrama, Consequences of heavy quark symmetries for hadronic molecules, Phys. Rev. D 88, 054007 (2013), arXiv: 1303.6608
[119]
X. Cao, J. P. Dai, and Z. Yang, Photoproduction of strange hidden-charm and hiddenbottom states, Eur. Phys. J. C 81, 184 (2021), arXiv: 2011.09244
[120]
L. Meng, B. Wang, and S. L. Zhu, Zcs(3985) as the U-spin partner of Zc(3900) and implication of other states in the SU(3)F symmetry and heavy quark symmetry, Phys. Rev. D 102, 111502 (2020), arXiv: 2011.08656
[121]
B. Wang, L. Meng, and S. L. Zhu, Decoding the nature of Zcs(3985) and establishing the spectrum of charged heavy quarkoniumlike states in chiral effective field theory, Phys. Rev. D 103, L021501 (2021), arXiv: 2011.10922
[122]
M. Z. Liu, Y. W. Pan, F. Z. Peng, M. S. Sánchez, L. S. Geng, A. Hosaka, and M. P. Valderrama, Emergence of a complete heavyquark spin symmetry multiplet: Seven molecular pentaquarks in light of the latest LHCb analysis, Phys. Rev. Lett. 122, 242001 (2019), arXiv: 1903.11560
[123]
C. W. Xiao, J. Nieves, and E. Oset, Heavy quark spin symmetric molecular states from D ¯(*)Σc* and other coupled channels in the light of the recent LHCb pentaquarks, Phys. Rev. D 100, 014021 (2019), arXiv: 1904.01296
[124]
F. Z. Peng, M. J. Yan, M. S. Sánchez, and M. P. Valderrama, The Pcs(4459) pentaquark from a combined effective field theory and phenomenological perspective, Eur. Phys. J. C 81, 666 (2021), arXiv: 2011.01915
[125]
A [Belle], Observation of two charged bottomonium-like resonances in Y(5S) decays, Phys. Rev. Lett. 108, 122001 (2012), arXiv: 1110.2251
[126]
I [Belle-II], Observation of e+eωχbJ(1P) and search for XbωΥ(1S) at s near 10.75 GeV, arXiv: 2208.13189
[127]
X. Cao, Disentangling the nature of resonances in coupled-channel models, Chin. Phys. C 39, 041002 (2015), arXiv: 1404.6651
[128]
J. M. Dias, F. Aceti, and E. Oset, Study of BB ¯* and B*B ¯* interactions in I = 1 and relationship to the Zb(10610), Zb(10650) states, Phys. Rev. D 91, 076001 (2015), arXiv: 1410.1785
[129]
M. Karliner and J. L. Rosner, New exotic meson and baryon resonances from doubly-heavy hadronic molecules, Phys. Rev. Lett. 115, 122001 (2015), arXiv: 1506.06386
[130]
E. J. Eichten and C. Quigg, Heavy-quark symmetry implies stable heavy tetraquark mesons QiQj q ¯kq ¯l, Phys. Rev. Lett. 119, 202002 (2017), arXiv: 1707.09575
[131]
J. J. Wu, L. Zhao, and B. S. Zou, Prediction of super-heavy N* and Λ* resonances with hidden beauty, Phys. Lett. B 709, 70 (2012), arXiv: 1011.5743
[132]
C. W. Xiao and E. Oset, Hidden beauty baryon states in the local hidden gauge approach with heavy quark spin symmetry, Eur. Phys. J. A 49, 139 (2013), arXiv: 1305.0786
[133]
M. Karliner and J. L. Rosner, Photoproduction of exotic baryon resonances, Phys. Lett. B 752, 329 (2016), arXiv: 1508.01496
[134]
D. Jido, J. A. Oller, E. Oset, A. Ramos, and U. G. Meissner, Chiral dynamics of the two Λ(1405) states, Nucl. Phys. A 725, 181 (2003), arXiv: nucl-th/0303062
[135]
M. Mai, Review of the Λ(1405) a curious case of a strangeness resonance, Eur. Phys. J. ST 230, 1593 (2021), arXiv: 2010.00056
[136]
F. K. Guo, P. N. Shen, H. C. Chiang, R. G. Ping, and B. S. Zou, Dynamically generated 0+ heavy mesons in a heavy chiral unitary approach, Phys. Lett. B 641, 278 (2006), arXiv: hep-ph/0603072
[137]
L. Liu, K. Orginos, F. K. Guo, C. Hanhart, and U. G. Meissner, Interactions of charmed mesons with light pseudoscalar mesons from lattice QCD and implications on the nature of the Ds 0∗(2317), Phys. Rev. D 87, 014508 (2013), arXiv: 1208.4535
[138]
H. X. Chen, W. Chen, X. Liu, Y. R. Liu, and S. L. Zhu, A review of the open charm and open bottom systems, Rep. Prog. Phys. 80, 076201 (2017), arXiv: 1609.08928
[139]
Z. Yang, G. J. Wang, J. J. Wu, M. Oka, and S. L. Zhu, Novel coupled channel framework connecting the quark model and lattice QCD for the near-threshold Ds states, Phys. Rev. Lett. 128, 11, 11 (2022), arXiv: 2107.04860
[140]
P. G. Ortega, J. Segovia, D. R. Entem, and F. Fernandez, The Ds0(2590)+ as the dressed c s ¯(21S0) meson in a coupled-channels calculation, Phys. Lett. B 827, 136998 (2022), arXiv: 2111.00023
[141]
W. Hao, Y. Lu, and B. S. Zou, Coupled channel effects for the charmed-strange mesons, Phys. Rev. D 106, 074014 (2022), arXiv: 2208.10915
[142]
X. H. Liu and M. Oka, Understanding the nature of heavy pentaquarks and searching for themin pion-induced reactions, Nucl. Phys. A 954, 352 (2016), arXiv: 1602.07069
[143]
F. K. Guo, U. G. Meißner, W. Wang, and Z. Yang, How to reveal the exotic nature of the Pc(4450), Phys. Rev. D 92, 071502 (2015), arXiv: 1507.04950
[144]
S. X. Nakamura, Pc(4312)+, Pc(4380)+, and Pc(4457)+ as double triangle cusps, Phys. Rev. D 103, 111503 (2021), arXiv: 2103.06817
[145]
S. X. Nakamura, A. Hosaka, and Y. Yamaguchi, Pc(4312)+ and Pc(4337)+ as interfering ΣcD ¯* and ΛcD ¯* threshold cusps, Phys. Rev. D 104, L091503 (2021), arXiv: 2109.15235
[146]
X. Cao and J. P. Dai, Confronting pentaquark photoproduction with new LHCb observations, Phys. Rev. D 100, 054033 (2019), arXiv: 1904.06015
[147]
Q. Wang, X. H. Liu, and Q. Zhao, Photoproduction of hidden charm pentaquark states Pc+(4380) and Pc+(4450), Phys. Rev. D 92, 034022 (2015), arXiv: 1508.00339
[148]
Z. M. Ding, J. He, and X. Liu, New reaction approach to reflect exotic structure of hadronic molecular state, arXiv: 2301.01166 (2023)
[149]
J. He and X. Liu, The quasi-fission phenomenon of double charm Tcc+ induced by nucleon, Eur. Phys. J. C 82, 387 (2022), arXiv: 2202.07248
[150]
J. He, D. Y. Chen, Z. W. Liu, and X. Liu, Induced fission-like process of hadronic molecular states, Chin. Phys. Lett. 39, 091401(2022), arXiv: 2109.14395
[151]
M [COMPASS], Search for muoproduction of X(3872) at COMPASS and indication of a new state X~(3872), Phys. Lett. B 783, 334 (2018), arXiv: 1707.01796
[152]
C [COMPASS], Search for exclusive photoproduction of Zc±(3900) at COMPASS, Phys. Lett. B 742, 330 (2015), arXiv: 1407.6186
[153]
A [GlueX], First measurement of near-threshold J/ψ exclusive photoproduction off the proton, Phys. Rev. Lett. 123, 072001 (2019), arXiv: 1905.10811
[154]
Z.E. MezianiS.JoostenM.Paolone E.ChudakovM. Jones, ., A search for the LHCb charmed “pentaquark” using photo-production of J/ψ at threshold in Hall C at Jefferson Lab, arXiv: 1609.00676 (2016)
[155]
S. Joosten and Z. E. Meziani, Heavy quarkonium production at threshold: From JLab to EIC, PoS QCDEV2017, 017 (2018), arXiv: 1802.02616
[156]
S. Joosten, Argonne 1/A-event generator (2021), GitLab repository, See: eicweb.phy.anl.gov/monte_carlo/lager
[157]
B.DuranZ. E. MezianiS.JoostenM.K. JonesS.Prasad, ., When color meets gravity; near-threshold exclusive J/ψ photoproduction on the proton, arXiv: 2207.05212 (2022)
[158]
A, Electron Ion Collider: The next QCD frontier: Understanding the glue that binds us all, Eur. Phys. J. A 52, 268 (2016), arXiv: 1212.1701
[159]
E, eRHIC design study: An Electron-Ion Collider at BNL, arXiv: 1409.1633
[160]
R, Science Requirements and detector concepts for the Electron-Ion Collider: EIC yellow report, Nucl. Phys. A 1026, 122447 (2022), arXiv: 2103.05419
[161]
X. Cao, L. Chang, N. Chang. . Electron Ion Collider in China. Nucl. Tech., 2020, 43(2): 20001
[162]
X. Cao, X. R. Chen, C. Gong. . Physics and detector design of polarized Electron-Ion Collider in China (EicC). Sci. Sin. - Phys. Mech. Astron., 2020, 50: 112005
[163]
D, Electron-ion collider in China, Front. Phys. 16, 64701 (2021), arXiv: 2102.09222
[164]
G. Penner and U. Mosel, Vector meson production and nucleon resonance analysis in a coupled channel approach for energies mN < s < 2-GeV. II. Photon induced results, Phys. Rev. C 66, 055212 (2002), arXiv: nucl-th/0207069
[165]
G. Penner and U. Mosel, Vector meson production and nucleon resonance analysis in a coupled channel approach for energies mN < s < 2-GeV. I. Pion induced results and hadronic parameters, Phys. Rev. C 66, 055211 (2002), arXiv: nucl-th/0207066
[166]
B. S. Zou and F. Hussain, Covariant L-S scheme for the effective N*NM couplings, Phys. Rev. C 67, 015204 (2003), arXiv: hep-ph/0210164
[167]
B. S. Zou and D. V. Bugg, Covariant tensor formalism for partial wave analyses of ψ decay to mesons, Eur. Phys. J. A 16, 537 (2003), arXiv: hep-ph/0211457
[168]
X. Cao, B. S. Zou, and H. S. Xu, Phenomenological analysis of the double pion production in nucleonnucleon collisions up to 2.2 GeV, Phys. Rev. C 81, 065201 (2010), arXiv: 1004.0140
[169]
M [JPAC], XYZ spectroscopy at electron−hadron facilities: Exclusive processes, Phys. Rev. D 102, 114010 (2020), arXiv: 2008.01001
[170]
D. G. Ireland, E. Pasyuk, and I. Strakovsky, Photoproduction reactions and non-strange baryon spectroscopy, Prog. Part. Nucl. Phys. 111, 103752 (2020), arXiv: 1906.04228
[171]
V. Kubarovsky and M. B. Voloshin, Formation of hidden-charm pentaquarks in photon−nucleon collisions, Phys. Rev. D 92, 031502 (2015), arXiv: 1508.00888
[172]
J. J. Sakurai. Theory of strong interactions. Annals Phys., 1960, 11: 1
CrossRef ADS Google scholar
[173]
U. G. Meissner. Low-energy hadron physics from effective chiral Lagrangians with vector mesons. Phys. Rep., 1988, 161: 213
CrossRef ADS Google scholar
[174]
S. Leupold and C. Terschlusen, Towards an effective field theory for vector mesons, PoS BORMIO2012, 024 (2012), arXiv: 1206.2253
[175]
J. I. Friedman. Deep inelastic scattering: Comparisons with the quark model. Rev. Mod. Phys., 1991, 63: 615
CrossRef ADS Google scholar
[176]
Y. Z. Xu, S. Chen, Z. Q. Yao, D. Binosi, Z. F. Cui, and C. D. Roberts, Vector-meson production and vector meson dominance, Eur. Phys. J. C 81, 895 (2021), arXiv: 2107.03488
[177]
L. Favart, M. Guidal, T. Horn, and P. Kroll, Deeply virtual meson production on the nucleon, Eur. Phys. J. A 52, 158 (2016), arXiv: 1511.04535
[178]
L. L. Frankfurt, M. F. McDermott, and M. Strikman, Diffractive photoproduction of v at HERA, J. High Energy Phys. 02, 002 (1999), arXiv: hep-ph/9812316
[179]
X. Cao, F. K. Guo, Y. T. Liang, J. J. Wu, J. J. Xie, Y. P. Xie, Z. Yang, and B. S. Zou, Photoproduction of hidden-bottom pentaquark and related topics, Phys. Rev. D 101, 074010 (2020), arXiv: 1912.12054
[180]
E. Levin, An introduction to pomerons, arXiv: hep-ph/9808486 (1998)
[181]
A. Donnachie, P. V. Landshoff. Elastic scattering and diffraction dissociation. Nucl. Phys. B, 1984, 244: 322
CrossRef ADS Google scholar
[182]
A. Donnachie and P. V. Landshoff, Total crosssections, Phys. Lett. B 296, 227 (1992), arXiv: hep-ph/9209205
[183]
S. J. Brodsky, E. Chudakov, P. Hoyer, and J. M. Laget, Photoproduction of charm near threshold, Phys. Lett. B 498, 23 (2001), arXiv: hep-ph/0010343
[184]
R. L. Workman, R. A. Arndt, W. J. Briscoe, M. W. Paris, and I. I. Strakovsky, Parameterization dependence of T matrix poles and eigenphases from a fit to πN elastic scattering data, Phys. Rev. C 86, 035202 (2012), arXiv: 1204.2277
[185]
A, Strong evidence for nucleon resonances near 1900 MeV, Phys. Rev. Lett. 119, 062004 (2017), arXiv: 1712.07549
[186]
F. Huang, M. Doring, H. Haberzettl, J. Haidenbauer, C. Hanhart, S. Krewald, U. G. Meissner, and K. Nakayama, Pion photoproduction in a dynamical coupled-channels model, Phys. Rev. C 85, 054003 (2012), arXiv: 1110.3833
[187]
D. Rönchen, M. Döring, U. G. Meißner, and C. W. Shen, Light baryon resonances from a coupled-channel study including photoproduction, Eur. Phys. J. A 58, 229 (2022), arXiv: 2208.00089
[188]
Y. F. Wang, D. Rönchen, U. G. Meißner, Y. Lu, C. W. Shen, and J. J. Wu, The reaction πNωN in a dynamical coupled-channel approach, Phys. Rev. D 106(9), 094031 (2022), arXiv: 2208.03061
[189]
H. Kamano, S. X. Nakamura, T. S. H. Lee, and T. Sato, Nucleon resonances within a dynamical coupled-channels model of πN and γN reactions, Phys. Rev. C 88, 035209 (2013), arXiv: 1305.4351
[190]
H. Kamano, S. X. Nakamura, T. S. H. Lee, and T. Sato, Isospin decomposition of γNN* transitions within a dynamical coupled-channels model, Phys. Rev. C 94, 015201 (2016), arXiv: 1605.00363
[191]
H. Kamano, T. S. H. Lee, S. X. Nakamura, and T. Sato, The ANL−Osaka partial-wave amplitudes of πN and γN reactions, arXiv: 1909.11935 (2019)
[192]
V. Shklyar, H. Lenske, U. Mosel, and G. Penner, Coupled-channel analysis of the ω-meson production in πN and γN reactions for c. m. energies up to 2-GeV, Phys. Rev. C 71, 055206 (2005), Erratum: Phys. Rev. C 72, 019903 (2005) arXiv: nucl-th/0412029
[193]
V. Shklyar, H. Lenske, and U. Mosel, 2π production in the Giessen coupled-channel model, Phys. Rev. C 93, 045206 (2016), arXiv: 1409.7920
[194]
E. Martynov, E. Predazzi, and A. Prokudin, Photoproduction of vector mesons in the soft dipole pomeron model, Phys. Rev. D 67, 074023 (2003), arXiv: hep-ph/0207272
[195]
E. Martynov, E. Predazzi, and A. Prokudin, A universal Regge pole model for all vector meson exclusive photoproduction by real and virtual photons, Eur. Phys. J. C 26, 271 (2002), arXiv: hep-ph/0112242
[196]
J, Physics with CEBAF at 12 GeV and future opportunities, Prog. Part. Nucl. Phys. 127, 103985 (2022), arXiv: 2112.00060
[197]
S. R. Klein and Y. P. Xie, Photoproduction of charged final states in ultraperipheral collisions and electroproduction at an electron-ion collider, Phys. Rev. C 100, 024620 (2019), arXiv: 1903.02680
[198]
D. Ronchen, M. Doring, F. Huang, H. Haberzettl, J. Haidenbauer, C. Hanhart, S. Krewald, U. G. Meissner, and K. Nakayama, Coupled-channel dynamics in the reactions πNπN, ηN, KΛ, , Eur. Phys. J. A 49, 44 (2013), arXiv: 1211.6998
[199]
D. Rönchen, M. Döring, and U. G. Meißner, The impact of K+Λ photoproduction on the resonance spectrum, Eur. Phys. J. A 54, 110 (2018), arXiv: 1801.10458
[200]
M [Jülich−Bonn−Washington], Jülich− Bonn−Washington model for pion electroproduction multipoles, Phys. Rev. C 103, 065204 (2021), arXiv: 2104.07312
[201]
M [Jülich−Bonn−Washington], Coupled-channels analysis of pion and η electroproduction within the Jülich−BonnWashington model, Phys. Rev. C 106, 015201 (2022), arXiv: 2111.0477
[202]
H. Kamano, S. X. Nakamura, T. S. H. Lee, and T. Sato, Dynamical coupled-channels model of Kp reactions: Determination of partial-wave amplitudes, Phys. Rev. C 90, 065204 (2014), arXiv: 1407.6839
[203]
H. Kamano, S. X. Nakamura, T. S. H. Lee, and T. Sato, Dynamical coupled-channels model of Kp reactions. II. Extraction of Λ* and Σ* hyperon resonances, Phys. Rev. C 92, 025205 (2015), Erratum: Phys. Rev. C 95, 049903 (2017), arXiv: 1506.01768
[204]
M. Matveev, A. V. Sarantsev, V. A. Nikonov, A. V. Anisovich, U. Thoma, and E. Klempt, Hyperon I: Partial-wave amplitudes for Kp scattering, Eur. Phys. J. A 55, 179 (2019), arXiv: 1907.03645
[205]
A. V. Sarantsev, M. Matveev, V. A. Nikonov, A. V. Anisovich, U. Thoma, and E. Klempt, Hyperon II: Properties of excited hyperons, Eur. Phys. J. A 55, 180 (2019), arXiv: 1907.13387
[206]
A. V. Anisovich, A. V. Sarantsev, V. A. Nikonov, V. Burkert, R. A. Schumacher, U. Thoma, E. Klempt. Hyperon III: KpπΣ coupled-channel dynamics in the Λ(1405) mass region. Eur. Phys. J. A, 2020, 56: 139
CrossRef ADS Google scholar
[207]
A, N* resonances from KΛ amplitudes in sliced bins in energy, Eur. Phys. J. A 53, 242 (2017), arXiv: 1712.07537
[208]
R. G. Edwards, J. J. Dudek, D. G. Richards, and S. J. Wallace, Excited state baryon spectroscopy from lattice QCD, Phys. Rev. D 84, 074508 (2011), arXiv: 1104.5152
[209]
G. Eichmann, C. S. Fischer, and H. Sanchis-Alepuz, Light baryons and their excitations, Phys. Rev. D 94, 094033 (2016), arXiv: 1607.05748
[210]
C. Chen, B. El-Bennich, C. D. Roberts, S. M. Schmidt, J. Segovia, and S. Wan, Structure of the nucleon’s low-lying excitations, Phys. Rev. D 97, 034016 (2018), arXiv: 1711.03142
[211]
X. Cao, V. Shklyar, and H. Lenske, Coupledchannel analysis of KΣ production on the nucleon up to 2.0 GeV, Phys. Rev. C 88, 055204 (2013), arXiv: 1303.2604
[212]
F. Hagelstein, R. Miskimen, and V. Pascalutsa, Nucleon polarizabilities: From Compton scattering to hydrogen atom, Prog. Part. Nucl. Phys. 88, 29 (2016), arXiv: 1512.03765
[213]
N. Krupina, V. Lensky, and V. Pascalutsa, Partialwave analysis of proton Compton scattering data below the pion-production threshold, Phys. Lett. B 782, 34 (2018), arXiv: 1712.05349
[214]
G. Eichmann and G. Ramalho, Nucleon resonances in Compton scattering, Phys. Rev. D 98, 093007 (2018), arXiv: 1806.04579
[215]
G. Eichmann, H. Sanchis-Alepuz, R. Williams, R. Alkofer, and C. S. Fischer, Baryons as relativistic three-quark bound states, Prog. Part. Nucl. Phys. 91, 1 (2016), arXiv: 1606.09602
[216]
M, Diquark correlations in hadron physics: Origin, impact and evidence, Prog. Part. Nucl. Phys. 116, 103835 (2021), arXiv: 2008.07630
[217]
M [JPAC], Novel approaches in hadron spectroscopy, Prog. Part. Nucl. Phys. 127, 103981 (2022), arXiv: 2112.13436
[218]
M [BESIII], Future physics programme of BESIII, Chin. Phys. C 44, 040001 (2020), arXiv: 1912.05983
[219]
M [PANDA], Physics performance report for PANDA: Strong interaction studies with antiprotons, arXiv: 0903.3905
[220]
X. Cao and J. J. Xie, Nucleon resonances in πNηN and J/ψ → pp ¯η*, Chin. Phys. C 40, 083103 (2016), arXiv: 1411.1493
[221]
R. F. Lebed, Do the Pc+ pentaquarks have strange siblings? Phys. Rev. D 92, 114030 (2015), arXiv: 1510.06648
[222]
C. S. An, J. J. Xie, and G. Li, Decay patterns of low-lying Ns s ¯ states to the strangeness channels, Phys. Rev. C 98, 045201 (2018), arXiv: 1809.04934
[223]
H. Gao, H. Huang, T. Liu, J. Ping, F. Wang, and Z. Zhao, Search for a hidden strange baryonmeson bound state from ϕ production in a nuclear medium, Phys. Rev. C 95, 055202 (2017), arXiv: 1701.03210
[224]
A. N. H. Blin, W. Melnitchouk, V. I. Mokeev, V. D. Burkert, V. V. Chesnokov, A. Pilloni, and A. P. Szczepaniak, Resonant contributions to inclusive nucleon structure functions from exclusive meson electroproduction data, Phys. Rev. C 104, 025201 (2021), arXiv: 2105.05834
[225]
M. L. Du, V. Baru, F. K. Guo, C. Hanhart, U. G. Meißner, J. A. Oller, and Q. Wang, Revisiting the nature of the Pc pentaquarks, J. High Energy Phys. 08, 157 (2021), arXiv: 2102.07159
[226]
Y. S. Kalashnikova, Coupled-channel model for charmonium levels and an option for X(3872), Phys. Rev. D 72, 034010 (2005), arXiv: hep-ph/0506270
[227]
P. G. Ortega, J. Segovia, D. R. Entem, and F. Fernandez, Coupled channel approach to the structure of the X(3872), Phys. Rev. D 81, 054023 (2010), arXiv: 0907.3997
[228]
J. Ferretti and E. Santopinto, Threshold corrections of χc(2P) and χb(3P) states and J/ψρ and J/ψω transitions of the X(3872) in a coupled channel model, Phys. Lett. B 789, 550 (2019), arXiv: 1806.02489
[229]
M. L. Du, M. Albaladejo, F. K. Guo, and J. Nieves, Combined analysis of the Zc(3900) and the Zcs(3985) exotic states, Phys. Rev. D 105, 074018 (2022), arXiv: 2201.08253
[230]
M. Albaladejo, Tcc+ coupled channel analysis and predictions, Phys. Lett. B 829, 137052 (2022), arXiv: 2110.02944
[231]
M. L. Du, V. Baru, X. K. Dong, A. Filin, F. K. Guo, C. Hanhart, A. Nefediev, J. Nieves, and Q. Wang, Coupled-channel approach to Tc c+ including three-body effects, Phys. Rev. D 105, 014024 (2022), arXiv: 2110.13765
[232]
Y. Huang, J. He, H. F. Zhang, and X. R. Chen, Discovery potential of hidden charm baryon resonances via photoproduction, J. Phys. G 41, 115004 (2014), arXiv: 1305.4434
[233]
A. N. H Blin, C. Fernández-Ramírez, A. Jackura, V. Mathieu, V. I. Mokeev, A. Pilloni, and A. P. Szczepaniak, Studying the Pc(4450) resonance in J/ψ bhotoproduction o protons, Phys. Rev. D 94, 034002 (2016), arXiv: 1606.08912
[234]
S. Sakai, H. J. Jing, and F. K. Guo, Decays of Pc into J/ψN and ηcN with heavy quark spin symmetry, Phys. Rev. D 100, 074007 (2019), arXiv: 1907.03414
[235]
Y. Huang, J. J. Xie, J. He, X. Chen, and H. F. Zhang, Photoproduction of hidden-charm states in the γp → D ¯*0Λc+ reaction near threshold, Chin. Phys. C 40, 124104 (2016), arXiv: 1604.05969
[236]
D. Skoupil, Y. Yamaguchi. Photoproduction of D ¯0Λc+ within the Regge-plus-resonance model. Phys. Rev. D, 2020, 102: 074009
CrossRef ADS Google scholar
[237]
Z. Yang, X. Cao, Y. T. Liang, and J. J. Wu, Identifying hidden charm pentaquark signal from non-resonant background in electron–proton scattering, Chin. Phys. C 44, 084102 (2020), arXiv: 2003.06774
[238]
Y. P. Xie, X. Cao, Y. T. Liang, and X. Chen, Production of hidden-charm and hidden-bottom pentaquark states in electron−proton collisions, Chin. Phys. C 45, 043105 (2021), arXiv: 2003.11729
[239]
T. J. Burns and E. S. Swanson, Experimental constraints on the properties of Pc states, Eur. Phys. J. A 58, 68 (2022), arXiv: 2112.11527
[240]
T. Amano, D. Jido, and S. Leupold, Sum rule for the partial decay rates of bottom hadrons based on the dynamical supersymmetry of the s ¯ quark and the ud diquark, Phys. Rev. D 105, L051504 (2022), arXiv: 2112.03409
[241]
C. Cheng, F. Yang, and Y. Huang, Searching for strange hidden-charm pentaquark state Pcs(4459) in γpK+Pcs(4459) reaction, Phys. Rev. D 104, 116007 (2021), arXiv: 2110.04746
[242]
X, Exclusive J/ψ detection and physics with ECCE, Nucl. Instrum. Meth. A 1048, 167956 (2023), arXiv: 2207.10356
[243]
A.BylinkinC. T. DeanS.FeganD.GangadharanK.Gates, ., Detector Requirements and Simulation Results for the EIC Exclusive, Diffractive and tagging physics program using the ECCE detector concept, arXiv: 2208.14575 (2022)
[244]
J.K. AdkinsY. AkibaA.AlbatainehM.AmaryanI.C. Arsene, ., Design of the ECCE detector for the Electron Ion Collider, arXiv: 2209.02580 (2022)
[245]
D [JPAC], Double polarization observables in pentaquark photoproduction, Phys. Rev. D 100, 034019 (2019), arXiv: 1907.09393
[246]
Z. Yang and F. K. Guo, Semi-inclusive leptoproduction of hidden-charm exotic hadrons, Chin. Phys. C 45, 123101 (2021), arXiv: 2107.12247
[247]
D [Joint Physics Analysis Center], XYZ spectroscopy at electronhadron facilities. II. Semi-inclusive processes with pion exchange, Phys. Rev. D 106, 09 (2022), arXiv: 2209.05882
[248]
P. P. Shi, F. K. Guo, and Z. Yang, Semi-inclusive electroproduction of hidden-charm and double-charm hadronic molecules, Phys. Rev. D 106(11), 114026 (2022), arXiv: 2208.02639
[249]
M [BESIII], Search for Zc(3900)±ωπ±, Phys. Rev. D 92, 032009 (2015), arXiv: 1507.02068
[250]
R [LHCb], Study of charmonium production in b-hadron decays and first evidence for the decay Bs0 → ϕϕϕ, Eur. Phys. J. C 77, 609 (2017), arXiv: 1706.07013
[251]
Belle Collaboration, Search for X(3872) → π+ππ0 at Belle, arXiv: 2206.08592 (2022)
[252]
R [LHCb], Study of Bs0J/ψπ+πK+K decays, J. High Energy Phys. 02, 024 (2021), Erratum: J. High. Energy Phys. 04, 170 (2021), arXiv: 2011.01867
[253]
G. Galata, Photoproduction of Z(4430) through mesonic Regge trajectories exchange, Phys. Rev. C 83, 065203 (2011), arXiv: 1102.2070
[254]
Q. Y. Lin, X. Liu, and H. S. Xu, Charged charmoniumlike state Zc(3900)± via meson photoproduction, Phys. Rev. D 88, 114009 (2013), arXiv: 1308.6345
[255]
X. H. Liu, Q. Zhao, and F. E. Close, Search for tetraquark candidate Z(4430) in meson photoproduction, Phys. Rev. D 77, 094005 (2008), arXiv: 0802.2648
[256]
Y. Huang, H. Q. Zhu, L. S. Geng, and R. Wang, Production of Tcc+ exotic state in the γpD+T ¯c c ¯Λc+ reaction, Phys. Rev. D 104, 116008 (2021), arXiv: 2108.13028
[257]
C. W. Xiao and U. G. Meißner, J/ψ(ηc)N and Υ(ηb)N cross sections, Phys. Rev. D 92, 114002 (2015), arXiv: 1508.00924
[258]
M. L. Du, V. Baru, F. K. Guo, C. Hanhart, U. G. Meißner, A. Nefediev, and I. Strakovsky, Deciphering the mechanism of near-threshold J/ψ photoproduction, Eur. Phys. J. C 80, 11, 1053 (2020), arXiv: 2009.08345
[259]
J. J. Wu and T. S. H. Lee, Photo-production of bound states with hidden charms, Phys. Rev. C 86, 065203 (2012), arXiv: 1210.6009
[260]
J. J. Wu, T. S. H. Lee, and B. S. Zou, Nucleon resonances with hidden charm in γp reactions, Phys. Rev. C 100, 035206 (2019), arXiv: 1906.05375
[261]
R [LHCb], Measurement of the exclusive Υ production cross-section in pp collisions at s = 7 TeV and 8 TeV, J. High Energy Phys. 09, 084 (2015), arXiv: 1505.08139
[262]
J [ZEUS], Measurement of elastic Υ photoproduction at HERA, Phys. Lett. B 437, 432 (1998), arXiv: hep-ex/9807020
[263]
S [ZEUS], Exclusive photoproduction of Υ mesons at HERA, Phys. Lett. B 680, 4 (2009), arXiv: 0903.4205
[264]
C [H1], Elastic photoproduction of J/ψ and Υ mesons at HERA, Phys. Lett. B 483, 23 (2000), arXiv: hep-ex/0003020
[265]
CMS Collaboration, Measurement of exclusive Υ photoproduction in pPb collisions at sNN = 5.02 TeV, CMSPAS-FSQ-13-009
[266]
J. J. Aubert, . [European Muon]. . Observation of wrong sign trimuon events in 250-GeV muon−nucleon interactions. Phys. Lett. B, 1981, 106: 419
CrossRef ADS Google scholar
[267]
S. Lüders, A measurement of the beauty production cross section via BJ/ψX at HERA, Diss., Naturwissenschaften ETH Zürich, Nr. 14480, 2002
[268]
C [H1], Measurement of open beauty production at HERA, Phys. Lett. B 467, 156 (1999), Erratum: Phys. Lett. B 518, 331 (2001), arXiv: hep-ex/9909029
[269]
X. Y. Wang, J. He, and X. Chen, Systematic study of the production of hidden-bottom pentaquarks via γp and πp scatterings, Phys. Rev. D 101, 034032 (2020), arXiv: 1912.07156
[270]
V.D. BurkertL.ElouadrhiriA.Afanasev J.ArringtonM. Contalbrigo, ., Precision studies of QCD in the low energy domain of the EIC, arXiv: 2211.15746 (2022)
[271]
Y. Huang and H. Q. Zhu, Photoproduction of possible pentaquark states Λ b0(5912) and Λb 0(5920) in the γp → Λ b0(∗)B+ reactions, Phys. Rev. D 104, 056027 (2021), arXiv: 2107.03773
[272]
R. Molina, C. W. Xiao, and E. Oset, J/ψ reaction mechanisms and suppression in the nuclear medium, Phys. Rev. C 86, 014604 (2012), arXiv: 1203.0979
[273]
E. Y. Paryev, Study of a possibility of observation of hidden-bottom pentaquark resonances in bottomonium photoproduction on protons and nuclei near threshold, arXiv: 2007.01172 (2020)
[274]
E. Y. Paryev, The possibility to study inmedium modification of J/ψ mesons from their photoproduction on nuclei near threshold in the case of presence of the LHCb pentaquark states P c+ in this photoproduction, Nucl. Phys. A 996, 121711 (2020), arXiv: 2003.00788
[275]
E. Y. Paryev and Y. T. Kiselev, The role of hidden-charm pentaquark resonance Pc+(4450), in J/ψ photoproduction on nuclei near threshold, Nucl. Phys. A 978, 201 (2018), arXiv: 1810.01715
[276]
A. C. Serri, Y. Feng, C. Flore, J. P. Lansberg, M. A. Ozcelik, H. S. Shao, and Y. Yedelkina, Revisiting NLO QCD corrections to total inclusive J/ψ and Υ photoproduction cross sections in lepton−proton collisions, Phys. Lett. B 835, 137556 (2022), arXiv: 2112.05060
[277]
R. K. Ellis and P. Nason, QCD radiative corrections to the photoproduction of heavy quarks, Nucl. Phys. B 312, 551 (1989)
[278]
S. Frixione, M. L. Mangano, P. Nason, and G. Ridolfi, Total cross-sections for heavy flavor production at HERA, Phys. Lett. B 348, 633 (1995), arXiv: hep-ph/9412348
[279]
O. Gryniuk and M. Vanderhaeghen, Accessing the real part of the forward J/ψp scattering amplitude from J/ψ photoproduction on protons around threshold, Phys. Rev. D 94, 074001 (2016), arXiv: 1608.08205
[280]
H. Huang, C. Deng, J. Ping, and F. Wang, Possible pentaquarks with heavy quarks, Eur. Phys. J. C 76, 624 (2016), arXiv: 1510.04648
[281]
H. Huang and J. Ping, Investigating the hiddencharm and hidden-bottom pentaquark resonances in scattering process, Phys. Rev. D 99, 014010 (2019), arXiv: 1811.04260
[282]
V [TOTEM and D0], Odderon exchange from elastic scattering differences between pp and p p ¯ data at 1.96 TeV and from pp forward scattering measurements, Phys. Rev. Lett. 127, 062003 (2021), arXiv: 2012.03981
[283]
Y. Jia, Z. Mo, J. Pan, and J. Y. Zhang, Photoproduction of C-even quarkonia at EIC and EicC, arXiv: 2207.14171 (2022)
[284]
S. J. Brodsky, L. Frankfurt, J. F. Gunion, A. H. Mueller, and M. Strikman, Diffractive leptoproduction of vector mesons in QCD, Phys. Rev. D 50, 3134 (1994), arXiv: hep-ph/9402283
[285]
J. C. Collins, L. Frankfurt, and M. Strikman, Factorization for hard exclusive electroproduction of mesons in QCD, Phys. Rev. D 56, 2982 (1997), arXiv: hep-ph/9611433
[286]
J. Koempel, P. Kroll, A. Metz, and J. Zhou, Exclusive production of quarkonia as a probe of the GPD E for gluons, Phys. Rev. D 85, 051502 (2012), arXiv: 1112.1334
[287]
D. Kharzeev, Quarkonium interactions in QCD, Proc. Int. Sch. Phys. Fermi 130, 105 (1996), arXiv: nucl-th/9601029
[288]
D. Kharzeev, H. Satz, A. Syamtomov, and G. Zinovjev, J/ψ photoproduction and the gluon structure of the nucleon, Eur. Phys. J. C 9, 459 (1999), arXiv: hep-ph/9901375
[289]
Y. Guo, X. Ji, and Y. Liu, QCD analysis of near-threshold photon−proton production of heavy quarkonium, Phys. Rev. D 103, 096010 (2021), arXiv: 2103.11506
[290]
R. Boussarie and Y. Hatta, QCD analysis of near-threshold quarkonium leptoproduction at large photon virtualities, Phys. Rev. D 101, 114004 (2020), arXiv: 2004.12715
[291]
Y. Hatta and D. L. Yang, Holographic J/ψ production near threshold and the proton mass problem, Phys. Rev. D 98, 074003 (2018), arXiv: 1808.02163
[292]
Y. Hatta, A. Rajan, and D. L. Yang, Near threshold J/ψ and Υ photoproduction at JLab and RHIC, Phys. Rev. D 100, 014032 (2019), arXiv: 1906.00894
[293]
P. Sun, X. B. Tong, and F. Yuan, Near threshold heavy quarkonium photoproduction at large momentum transfer, Phys. Rev. D 105, 054032 (2022), arXiv: 2111.07034
[294]
P. Sun, X. B. Tong, and F. Yuan, Perturbative QCD analysis of near threshold heavy quarkonium photoproduction at large momentum transfer, Phys. Lett. B 822, 136655 (2021), arXiv: 2103.12047
[295]
T. S. H. Lee, Pomeron-LQCD model of J/Ψ photo-production on the nucleon, arXiv: 2004.13934
[296]
V. D. Barger, R. J. N. Phillips. Properties of ψN scattering. Phys. Lett. B, 1975, 58: 433
CrossRef ADS Google scholar
[297]
I. Strakovsky, D. Epifanov, and L. Pentchev, J/ψp scattering length from GlueX threshold measurements, Phys. Rev. C 101, 042201 (2020), arXiv: 1911.12686
[298]
I. I. Strakovsky, L. Pentchev, and A. Titov, Comparative analysis of ωp, ϕp, and J/ψp scattering lengths from A2, CLAS, and GlueX threshold measurements, Phys. Rev. C 101, 045201 (2020), arXiv: 2001.08851
[299]
L. Pentchev and I. I. Strakovsky, J/ψp scattering length from the total and differential photoproduction cross sections, Eur. Phys. J. A 57, 56 (2021), arXiv: 2009.04502
[300]
I. I. Strakovsky, W. J. Briscoe, L. Pentchev, and A. Schmidt, Threshold Υ-meson photoproduction at the EIC and EicC, Phys. Rev. D 104, 074028 (2021), arXiv: 2108.02871
[301]
O. Gryniuk, S. Joosten, Z. E. Meziani, and M. Vanderhaeghen, Υ photoproduction on the proton at the Electron-Ion Collider, Phys. Rev. D 102, 014016 (2020), arXiv: 2005.09293
[302]
T. Kawanai and S. Sasaki, Charmonium-nucleon potential from lattice QCD, Phys. Rev. D 82, 091501 (2010), arXiv: 1009.3332
[303]
H. Lenske, M. Dhar, T. Gaitanos, X. Cao. Baryons and baryon resonances in nuclear matter. Prog. Part. Nucl. Phys., 2018, 98: 119
CrossRef ADS Google scholar
[304]
V. Biloshytskyi, V. Pascalutsa, L. Harland-Lang, B. Malaescu, K. Schmieden, and M. Schott, The two-photon decay of X(6900) from light-by-light scattering at the LHC, Phys. Rev. D 106(11), L111902 (2022), arXiv: 2207.13623
[305]
R.Aaij, . [LHCb], Observation of structure in the J/ψ-pair mass spectrum, Sci. Bull. 65, 1983 (2020), arXiv: 2006.16957
[306]
A.M. Sirunyan, . [CMS], Measurement of the Υ(1S) pair production cross section and search for resonances decaying to Υ(1S)µ+µ in proton−proton collisions at s = 13 TeV, Phys. Lett. B 808, 135578 (2020), arXiv: 2002.06393
[307]
C. Li and C. Z. Yuan, Determination of the absolute branching fractions of X(3872) decays, Phys. Rev. D 100, 094003 (2019), arXiv: 1907.09149
[308]
J [BaBar], Measurements of the absolute branching fractions of B±K±X cc ¯, Phys. Rev. Lett. 124, 152001 (2020), arXiv: 1911.11740

Acknowledgements

The accomplishment of this document has benefitted from input from many members of the EicC community, with special thanks to Kuang-Da Chao, Ling-Yun Dai, Feng-Kun Guo, Yu-Tie Liang, Qin-Yong Lin, Xiang Liu, Peng Sun, Jia-Jun Wu, Ju-Jun Xie, Ya-Ping Xie, De-Liang Yao, Zhi Yang, Zhiwen Zhao and Bing-Song Zou. It is grateful to Horst Lenske for collaboration in Section 3 and a proofreading throughout the manuscript. This work was supported by the National Natural Science Foundation of China (Grants Nos. 12075289 and U2032109) and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB34030301).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(6928 KB)

Accesses

Citations

Detail

Sections
Recommended

/