Photo- and electro-production of narrow exotic states: From light quarks to charm and up to bottom
Xu Cao
Photo- and electro-production of narrow exotic states: From light quarks to charm and up to bottom
Accessing a full image of the inner content of hadrons represents a central endeavour of modern particle physics, with the main scientific motivation to investigate the strong interaction binding the visible matter. On the one hand, the structure of known exotic candidates is a fundamental open issue addressed widely by scientists. On the other hand, looking for new states of exotic nature is a central component for theoretical and experimental efforts from electron-positron machine and electron accelerator with fixed target to heavy ion and electron-ion colliders. In this article we present a succinct short overview of the attempt to search for exotic narrow N∗ and Z states containing light quarks only or also charm, and its connotation for bottom regions (the latter two are also known as Pc (Zc) and Pb (Zb) states, respectively in the literature). We address the effort of searching for exotic narrow N∗ and Z states in light quark sector. We focus on recent progress in searching for signal of Pc and Zc states photoproduction and its implication into the Pb and Zb photoproduction and their decay properties. We also discuss future perspectives for the field in electron-ion colliders, a good place to disentangle the nature of some of these states and investigate some other enlightening topics including QCD trace anomaly and quarkonium-nucleon scattering length.
exotic states / photo- and electro-production / electron-ion colliders / hadron
[1] |
M. Gell-Mann. A schematic model of baryons and mesons. Phys. Lett., 1964, 8: 214
CrossRef
ADS
Google scholar
|
[2] |
G. Zweig, An SU(3) model for strong interaction symmetry and its breaking, CERN Report No. 8182/TH. 401, CERN Report No. 8419/TH. 412 (1964)
|
[3] |
E. Klempt and A. Zaitsev, Glueballs, hybrids, multiquarks: Experimental facts versus QCD inspired concepts, Phys. Rep. 454, 1 (2007), arXiv: 0708.4016
|
[4] |
B. Ketzer, B. Grube, and D. Ryabchikov, Light-meson spectroscopy with COMPASS, Prog. Part. Nucl. Phys. 113, 103755 (2020), arXiv: 1909.06366
|
[5] |
C
|
[6] |
A
|
[7] |
M
|
[8] |
M
|
[9] |
J
|
[10] |
M. Ablikim, . [BESIII].
CrossRef
ADS
Google scholar
|
[11] |
M
|
[12] |
C
|
[13] |
G
|
[14] |
M. Mikhasenko, B. Ketzer, and A. Sarantsev, Nature of the a1(1420), Phys. Rev. D 91, 094015 (2015), arXiv: 1501.07023
|
[15] |
F. Aceti, L. R. Dai, and E. Oset, a1(1420) peak as the πf0(980) decay mode of the a1(1260), Phys. Rev. D 94, 096015 (2016), arXiv: 1606.06893
|
[16] |
T. Gershon [LHCb], Exotic hadron naming convention, arXiv: 2206.15233 (2022)
|
[17] |
D. Y. Chen, X. Liu, and T. Matsuki, Two charged strangeonium-like structures observable in the Y(2175) → ϕ(1020)π+π− process, Eur. Phys. J. C 72, 2008 (2012), arXiv: 1112.3773
|
[18] |
M
|
[19] |
R. A. Schumacher, The rise and fall of pentaquarks in experiments, AIP Conf. Proc. 842, 409 (2006), arXiv: nucl-ex/0512042
|
[20] |
H. Huang, X. Zhu, and J. Ping, Pc-like pentaquarks in hidden strange sector, Phys. Rev. D 97, 094019 (2018), arXiv: 1803.05267
|
[21] |
X. Liu, H. Huang, and J. Ping, Hidden strange pentaquark states in constituent quark models, Phys. Rev. C 98, 055203 (2018), arXiv: 1807.03195
|
[22] |
H. Gao, T. S. H. Lee, and V. Marinov, φ−N bound state, Phys. Rev. C 63, 022201 (2001), arXiv: nucl-th/0010042
|
[23] |
J. He, H. Huang, D. Y. Chen, and X. Zhu, Hidden strange molecular states and the Nϕ bound states via a QCD van der Waals force, Phys. Rev. D 98, 094019 (2018), arXiv: 1804.09383
|
[24] |
P. Yang and W. Chen, QCD sum rule study for hidden-strange pentaquarks, Chin. Phys. C 47(1), 013105 (2023), arXiv: 2203.15616
|
[25] |
B. X. Sun, Y. Y. Fan, and Q. Q. Cao, The ϕp bound state in the unitary coupled-channel approximation, arXiv: 2206.02961 (2022)
|
[26] |
Y. Lyu, T. Doi, T. Hatsuda, Y. Ikeda, J. Meng, K. Sasaki, and T. Sugiura, Attractive N−ϕ interaction and two-pion tail from lattice QCD near physical point, Phys. Rev. D 106, 074507 (2022), arXiv: 2205.10544
|
[27] |
S
|
[28] |
J. J. Xie and F. K. Guo, Triangular singularity and a possible ϕp resonance in the Λ c+ → π0ϕp decay, Phys. Lett. B 774, 108 (2017), arXiv: 1709.01416
|
[29] |
B
|
[30] |
T
|
[31] |
A. Kiswandhi, J. J. Xie, and S. N. Yang, Is the nonmonotonic behavior in the cross section of ϕ photoproduction near threshold a signature of a resonance? Phys. Lett. B 691, 214 (2010), arXiv: 1005.2105
|
[32] |
A. Kiswandhi and S. N. Yang, On the near-threshold peak structure in the differential cross section of ϕ-meson photoproduction: Indication of a missing resonance with non-negligible strangeness content, Phys. Rev. C 86, 015203 (2012), Erratum: Phys. Rev. C 86, 019904 (2012), arXiv: 1112.6105
|
[33] |
J. He, Nucleon resonances N(1875) and N (2100) as strange partners of LHCb pentaquarks, Phys. Rev. D 95, 074031 (2017), arXiv: 1701.03738
|
[34] |
R. L. Workman, . [Particle Data Group].
CrossRef
ADS
Google scholar
|
[35] |
Y. H. Lin, C. W. Shen, and B. S. Zou, Decay behavior of the strange and beauty partners of Pc hadronic molecules, Nucl. Phys. A 980, 21 (2018), arXiv: 1805.06843
|
[36] |
A. Thiel, F. Afzal, and Y. Wunderlich, Light baryon spectroscopy, Prog. Part. Nucl. Phys. 125, 103949 (2022), arXiv: 2202.05055
|
[37] |
V
|
[38] |
D. Werthmüller, L. Witthauer, D. I. Glazier, and B. Krusche, Comment on “Evidence for narrow resonant structures at W ≈ 1.68 GeV and W ≈ 1.72 GeV in real compton scattering off the proton”, Phys. Rev. C 92, 069801 (2015), arXiv: 1511.08249
|
[39] |
L
|
[40] |
L
|
[41] |
L
|
[42] |
V
|
[43] |
V. Shklyar, H. Lenske, and U. Mosel, η photoproduction in the resonance energy region, Phys. Lett. B 650, 172 (2007), arXiv: nucl-th/0611036
|
[44] |
V. Shklyar, H. Lenske, and U. Mosel, η-meson production in the resonance-energy region, Phys. Rev. C 87, 015201 (2013), arXiv: 1206.5414
|
[45] |
X. Cao and H. Lenske, Compton scattering off proton in the third resonance region, Phys. Lett. B 772, 274 (2017), arXiv: 1702.02692
|
[46] |
X. H. Zhong and Q. Zhao, η photoproduction on the quasi-free nucleons in the chiral quark model, Phys. Rev. C 84, 045207 (2011), arXiv: 1106.2892
|
[47] |
A. V. Anisovich, E. Klempt, B. Krusche, V. A. Nikonov, A. V. Sarantsev, U. Thoma, and D. Werthmüller, Interference phenomena in the JP = 1/2− wave in η photoproduction, Eur. Phys. J. A 51, 72 (2015), arXiv: 1501.02093
|
[48] |
A. V. Anisovich, V. Burkert, E. Klempt, V. A. Nikonov, A. V. Sarantsev, and U. Thoma, Scrutinizing the evidence for N(1685), Phys. Rev. C 95, 035211 (2017), arXiv: 1701.06387
|
[49] |
M. Doring and K. Nakayama, On the cross section ratio σn/σp in η photoproduction, Phys. Lett. B 683, 145 (2010), arXiv: 0909.3538
|
[50] |
I. Strakovsky, W. Briscoe, A. Kudryavtsev, V. Kulikov, M. Martemianov, V. Tarasov, and R. Workman, Progress in neutron EM couplings, arXiv: 1512.01557 (2015)
|
[51] |
W. Briscoe, Update on SAID, Talk at the 12th International Workshop on the Physics of Excited Nucleons, 10−14 June 2019, see Webpage:
|
[52] |
A. V. Anisovich, V. Burkert, N. Compton, K. Hicks, F. J. Klein, E. Klempt, V. A. Nikonov, A. M. Sandorfi, A. V. Sarantsev, U. Thoma. Neutron helicity amplitudes. Phys. Rev. C, 2017, 96: 055202
CrossRef
ADS
Google scholar
|
[53] |
C
|
[54] |
K
|
[55] |
N
|
[56] |
N
|
[57] |
N. Zachariou, . [CLAS].
CrossRef
ADS
Google scholar
|
[58] |
W
|
[59] |
D
|
[60] |
B
|
[61] |
W. J. Briscoe, A. E. Kudryavtsev, I. I. Strakovsky, V. E. Tarasov, and R. L. Workman, Threshold π− photoproduction on the neutron, Eur. Phys. J. A 56, 218 (2020), arXiv: 2004.01742
|
[62] |
Y
|
[63] |
V
|
[64] |
V
|
[65] |
D. Werthmüller, Search for the N(1685) in ηπ-photoproduction, talk at the 12th International Workshop on the Physics of Excited Nucleons, 10−14 June 2019, see Webpage:
|
[66] |
D. Werthmüller [A2], Search for the N(1685) in ηπ-photoproduction, EPJ Web Conf. 241, 01019 (2020), arXiv: 1911.01754
|
[67] |
V. Kuznetsov, F. Mammoliti, V. Bellini, G. Gervino, F. Ghio, G. Giardina, W. Kim, G. Mandaglio, M. L. Sperduto, and C. M. Sutera, Evidence for narrow resonant structures at W ≈ 1.68 GeV and W ≈ 1.72 GeV in real Compton scattering off the proton, Phys. Rev. C 91, 042201 (2015), arXiv: 1501.04333
|
[68] |
I
|
[69] |
A
|
[70] |
A. V. Anisovich, V. Burkert, M. Dugger, E. Klempt, V. A. Nikonov, B. G. Ritchie, A. V. Sarantsev, and U. Thoma, Proton-η′ interactions at threshold, Phys. Lett. B 785, 626 (2018), arXiv: 1803.06814
|
[71] |
S. D. Bass and P. Moskal, η′ and η mesons with connection to anomalous glue, Rev. Mod. Phys. 91, 015003 (2019), arXiv: 1810.12290
|
[72] |
S
|
[73] |
S
|
[74] |
K
|
[75] |
R
|
[76] |
K
|
[77] |
R
|
[78] |
M
|
[79] |
Z
|
[80] |
T. Xiao, S. Dobbs, A. Tomaradze, and K. K. Seth, Observation of the charged hadron Zc±(3900) and evidence for the neutral Zc0(3900) in e+e− → ππJ/ψ at s = 4170 MeV, Phys. Lett. B 727, 366 (2013), arXiv: 1304.3036
|
[81] |
M
|
[82] |
M
|
[83] |
M
|
[84] |
M
|
[85] |
X. Cao and J. P. Dai, Spin parity of Zc−(4100), Z1+(4050) and Z2+(4250), Phys. Rev. D 100, 054004 (2019), arXiv: 1811.06434
|
[86] |
R
|
[87] |
R
|
[88] |
J. J. Wu, R. Molina, E. Oset, and B. S. Zou, Prediction of narrow N* and Λ* resonances with hidden charm above 4 GeV, Phys. Rev. Lett. 105, 232001 (2010), arXiv: 1007.0573
|
[89] |
J. J. Wu, R. Molina, E. Oset, and B. S. Zou, Dynamically generated N* and Λ* resonances in the hidden charm sector around 4.3 GeV, Phys. Rev. C 84, 015202 (2011), arXiv: 1011.2399
|
[90] |
W. L. Wang, F. Huang, Z. Y. Zhang, and B. S. Zou, ΣcD ¯ and ΛcD ¯ states in a chiral quark model, Phys. Rev. C 84, 015203 (2011), arXiv: 1101.0453
|
[91] |
Z. C. Yang, Z. F. Sun, J. He, X. Liu, and S. L. Zhu, The possible hidden-charm molecular baryons composed of anti-charmed meson and charmed baryon, Chin. Phys. C 36, 6 (2012), arXiv: 1105.2901
|
[92] |
R
|
[93] |
R
|
[94] |
R
|
[95] |
S. H. Lee, M. Nielsen, and U. Wiedner, DsD* molecule as an axial meson, J. Korean Phys. Soc. 55, 24 (2009), arXiv: 0803.1168
|
[96] |
D. Y. Chen, X. Liu, and T. Matsuki, Predictions of charged charmoniumlike structures with hidden-charm and open-strange channels, Phys. Rev. Lett. 110, 232001 (2013), arXiv: 1303.6842
|
[97] |
M. B. Voloshin, Strange hadrocharmonium, Phys. Lett. B 798, 135022 (2019), arXiv: 1901.01936
|
[98] |
J. Ferretti and E. Santopinto, Hidden-charm and bottom tetra- and pentaquarks with strangeness in the hadro-quarkonium and compact tetraquark models, J. High Energy Phys. 04, 119 (2020), arXiv: 2001.01067
|
[99] |
M
|
[100] |
M
|
[101] |
R
|
[102] |
Z. Yang, X. Cao, F. K. Guo, J. Nieves, and M. P. Valderrama, Strange molecular partners of the Zc(3900) and Zc(4020), Phys. Rev. D 103, 074029 (2021), arXiv: 2011.08725
|
[103] |
X. Cao and Z. Yang, Hunting for the heavy quark spin symmetry partner of Zcs, Eur. Phys. J. C 82, 161 (2022), arXiv: 2110.09760
|
[104] |
M
|
[105] |
R
|
[106] |
R
|
[107] |
R
|
[108] |
LHCb Collaboration, Observation of a J/ψΛ resonance consistent with a strange pentaquark candidate in B− → J/ψΛp− decays, arXiv: 2210.10346 (2022)
|
[109] |
H. X. Chen, W. Chen, X. Liu, and S. L. Zhu, The hidden-charm pentaquark and tetraquark states, Phys. Rep. 639, 1 (2016), arXiv: 1601.02092
|
[110] |
F. K. Guo, C. Hanhart, U. G. Meißner, Q. Wang, Q. Zhao, and B. S. Zou, Hadronic molecules, Rev. Mod. Phys. 90, 015004 (2018), Erratum: Rev. Mod. Phys. 94, 029901 (2022), arXiv: 1705.00141
|
[111] |
R. F. Lebed, R. E. Mitchell, and E. S. Swanson, Heavy-quark QCD exotica, Prog. Part. Nucl. Phys. 93, 143 (2017) arXiv: 1610.04528
|
[112] |
A. Esposito, A. Pilloni, and A. D. Polosa, Multiquark resonances, Phys. Rep. 668, 1 (2017), arXiv: 1611.07920
|
[113] |
S. L. Olsen, T. Skwarnicki, and D. Zieminska, Nonstandard heavy mesons and baryons: Experimental evidence, Rev. Mod. Phys. 90, 015003 (2018), arXiv: 1708.04012
|
[114] |
Y. R. Liu, H. X. Chen, W. Chen, X. Liu, and S. L. Zhu, Pentaquark and tetraquark states, Prog. Part. Nucl. Phys. 107, 237 (2019), arXiv: 1903.11976
|
[115] |
N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C. P. Shen, C. E. Thomas, A. Vairo, and C. Z. Yuan, The XYZ states: Experimental and theoretical status and perspectives, Phys. Rep. 873, 1 (2020), arXiv: 1907.07583
|
[116] |
F. K. Guo, X. H. Liu and S. Sakai, Threshold cusps and triangle singularities in hadronic reactions, Prog. Part. Nucl. Phys. 112, 103757 (2020), arXiv: 1912.07030
|
[117] |
H. X. Chen, W. Chen, X. Liu, Y. R. Liu, and S. L. Zhu, An updated review of the new hadron states, Rep. Prog. Phys. 86(2), 026201 (2023), arXiv: 2204.02649
|
[118] |
F. K. Guo, C. Hidalgo-Duque, J. Nieves, and M. P. Valderrama, Consequences of heavy quark symmetries for hadronic molecules, Phys. Rev. D 88, 054007 (2013), arXiv: 1303.6608
|
[119] |
X. Cao, J. P. Dai, and Z. Yang, Photoproduction of strange hidden-charm and hiddenbottom states, Eur. Phys. J. C 81, 184 (2021), arXiv: 2011.09244
|
[120] |
L. Meng, B. Wang, and S. L. Zhu, Zcs(3985)− as the U-spin partner of Zc(3900)− and implication of other states in the SU(3)F symmetry and heavy quark symmetry, Phys. Rev. D 102, 111502 (2020), arXiv: 2011.08656
|
[121] |
B. Wang, L. Meng, and S. L. Zhu, Decoding the nature of Zcs(3985) and establishing the spectrum of charged heavy quarkoniumlike states in chiral effective field theory, Phys. Rev. D 103, L021501 (2021), arXiv: 2011.10922
|
[122] |
M. Z. Liu, Y. W. Pan, F. Z. Peng, M. S. Sánchez, L. S. Geng, A. Hosaka, and M. P. Valderrama, Emergence of a complete heavyquark spin symmetry multiplet: Seven molecular pentaquarks in light of the latest LHCb analysis, Phys. Rev. Lett. 122, 242001 (2019), arXiv: 1903.11560
|
[123] |
C. W. Xiao, J. Nieves, and E. Oset, Heavy quark spin symmetric molecular states from D ¯(*)Σc* and other coupled channels in the light of the recent LHCb pentaquarks, Phys. Rev. D 100, 014021 (2019), arXiv: 1904.01296
|
[124] |
F. Z. Peng, M. J. Yan, M. S. Sánchez, and M. P. Valderrama, The Pcs(4459) pentaquark from a combined effective field theory and phenomenological perspective, Eur. Phys. J. C 81, 666 (2021), arXiv: 2011.01915
|
[125] |
A
|
[126] |
I
|
[127] |
X. Cao, Disentangling the nature of resonances in coupled-channel models, Chin. Phys. C 39, 041002 (2015), arXiv: 1404.6651
|
[128] |
J. M. Dias, F. Aceti, and E. Oset, Study of BB ¯* and B*B ¯* interactions in I = 1 and relationship to the Zb(10610), Zb(10650) states, Phys. Rev. D 91, 076001 (2015), arXiv: 1410.1785
|
[129] |
M. Karliner and J. L. Rosner, New exotic meson and baryon resonances from doubly-heavy hadronic molecules, Phys. Rev. Lett. 115, 122001 (2015), arXiv: 1506.06386
|
[130] |
E. J. Eichten and C. Quigg, Heavy-quark symmetry implies stable heavy tetraquark mesons QiQj q ¯kq ¯l, Phys. Rev. Lett. 119, 202002 (2017), arXiv: 1707.09575
|
[131] |
J. J. Wu, L. Zhao, and B. S. Zou, Prediction of super-heavy N* and Λ* resonances with hidden beauty, Phys. Lett. B 709, 70 (2012), arXiv: 1011.5743
|
[132] |
C. W. Xiao and E. Oset, Hidden beauty baryon states in the local hidden gauge approach with heavy quark spin symmetry, Eur. Phys. J. A 49, 139 (2013), arXiv: 1305.0786
|
[133] |
M. Karliner and J. L. Rosner, Photoproduction of exotic baryon resonances, Phys. Lett. B 752, 329 (2016), arXiv: 1508.01496
|
[134] |
D. Jido, J. A. Oller, E. Oset, A. Ramos, and U. G. Meissner, Chiral dynamics of the two Λ(1405) states, Nucl. Phys. A 725, 181 (2003), arXiv: nucl-th/0303062
|
[135] |
M. Mai, Review of the Λ(1405) a curious case of a strangeness resonance, Eur. Phys. J. ST 230, 1593 (2021), arXiv: 2010.00056
|
[136] |
F. K. Guo, P. N. Shen, H. C. Chiang, R. G. Ping, and B. S. Zou, Dynamically generated 0+ heavy mesons in a heavy chiral unitary approach, Phys. Lett. B 641, 278 (2006), arXiv: hep-ph/0603072
|
[137] |
L. Liu, K. Orginos, F. K. Guo, C. Hanhart, and U. G. Meissner, Interactions of charmed mesons with light pseudoscalar mesons from lattice QCD and implications on the nature of the Ds 0∗(2317), Phys. Rev. D 87, 014508 (2013), arXiv: 1208.4535
|
[138] |
H. X. Chen, W. Chen, X. Liu, Y. R. Liu, and S. L. Zhu, A review of the open charm and open bottom systems, Rep. Prog. Phys. 80, 076201 (2017), arXiv: 1609.08928
|
[139] |
Z. Yang, G. J. Wang, J. J. Wu, M. Oka, and S. L. Zhu, Novel coupled channel framework connecting the quark model and lattice QCD for the near-threshold Ds states, Phys. Rev. Lett. 128, 11, 11 (2022), arXiv: 2107.04860
|
[140] |
P. G. Ortega, J. Segovia, D. R. Entem, and F. Fernandez, The Ds0(2590)+ as the dressed c s ¯(21S0) meson in a coupled-channels calculation, Phys. Lett. B 827, 136998 (2022), arXiv: 2111.00023
|
[141] |
W. Hao, Y. Lu, and B. S. Zou, Coupled channel effects for the charmed-strange mesons, Phys. Rev. D 106, 074014 (2022), arXiv: 2208.10915
|
[142] |
X. H. Liu and M. Oka, Understanding the nature of heavy pentaquarks and searching for themin pion-induced reactions, Nucl. Phys. A 954, 352 (2016), arXiv: 1602.07069
|
[143] |
F. K. Guo, U. G. Meißner, W. Wang, and Z. Yang, How to reveal the exotic nature of the Pc(4450), Phys. Rev. D 92, 071502 (2015), arXiv: 1507.04950
|
[144] |
S. X. Nakamura, Pc(4312)+, Pc(4380)+, and Pc(4457)+ as double triangle cusps, Phys. Rev. D 103, 111503 (2021), arXiv: 2103.06817
|
[145] |
S. X. Nakamura, A. Hosaka, and Y. Yamaguchi, Pc(4312)+ and Pc(4337)+ as interfering ΣcD ¯* and ΛcD ¯* threshold cusps, Phys. Rev. D 104, L091503 (2021), arXiv: 2109.15235
|
[146] |
X. Cao and J. P. Dai, Confronting pentaquark photoproduction with new LHCb observations, Phys. Rev. D 100, 054033 (2019), arXiv: 1904.06015
|
[147] |
Q. Wang, X. H. Liu, and Q. Zhao, Photoproduction of hidden charm pentaquark states Pc+(4380) and Pc+(4450), Phys. Rev. D 92, 034022 (2015), arXiv: 1508.00339
|
[148] |
Z. M. Ding, J. He, and X. Liu, New reaction approach to reflect exotic structure of hadronic molecular state, arXiv: 2301.01166 (2023)
|
[149] |
J. He and X. Liu, The quasi-fission phenomenon of double charm Tcc+ induced by nucleon, Eur. Phys. J. C 82, 387 (2022), arXiv: 2202.07248
|
[150] |
J. He, D. Y. Chen, Z. W. Liu, and X. Liu, Induced fission-like process of hadronic molecular states, Chin. Phys. Lett. 39, 091401(2022), arXiv: 2109.14395
|
[151] |
M
|
[152] |
C
|
[153] |
A
|
[154] |
Z.E. MezianiS.JoostenM.Paolone E.ChudakovM. Jones,
|
[155] |
S. Joosten and Z. E. Meziani, Heavy quarkonium production at threshold: From JLab to EIC, PoS QCDEV2017, 017 (2018), arXiv: 1802.02616
|
[156] |
S. Joosten, Argonne 1/A-event generator (2021), GitLab repository, See:
|
[157] |
B.DuranZ. E. MezianiS.JoostenM.K. JonesS.Prasad,
|
[158] |
A
|
[159] |
E
|
[160] |
R
|
[161] |
X. Cao, L. Chang, N. Chang.
|
[162] |
X. Cao, X. R. Chen, C. Gong.
|
[163] |
D
|
[164] |
G. Penner and U. Mosel, Vector meson production and nucleon resonance analysis in a coupled channel approach for energies mN < s < 2-GeV. II. Photon induced results, Phys. Rev. C 66, 055212 (2002), arXiv: nucl-th/0207069
|
[165] |
G. Penner and U. Mosel, Vector meson production and nucleon resonance analysis in a coupled channel approach for energies mN < s < 2-GeV. I. Pion induced results and hadronic parameters, Phys. Rev. C 66, 055211 (2002), arXiv: nucl-th/0207066
|
[166] |
B. S. Zou and F. Hussain, Covariant L-S scheme for the effective N*NM couplings, Phys. Rev. C 67, 015204 (2003), arXiv: hep-ph/0210164
|
[167] |
B. S. Zou and D. V. Bugg, Covariant tensor formalism for partial wave analyses of ψ decay to mesons, Eur. Phys. J. A 16, 537 (2003), arXiv: hep-ph/0211457
|
[168] |
X. Cao, B. S. Zou, and H. S. Xu, Phenomenological analysis of the double pion production in nucleonnucleon collisions up to 2.2 GeV, Phys. Rev. C 81, 065201 (2010), arXiv: 1004.0140
|
[169] |
M
|
[170] |
D. G. Ireland, E. Pasyuk, and I. Strakovsky, Photoproduction reactions and non-strange baryon spectroscopy, Prog. Part. Nucl. Phys. 111, 103752 (2020), arXiv: 1906.04228
|
[171] |
V. Kubarovsky and M. B. Voloshin, Formation of hidden-charm pentaquarks in photon−nucleon collisions, Phys. Rev. D 92, 031502 (2015), arXiv: 1508.00888
|
[172] |
J. J. Sakurai. Theory of strong interactions. Annals Phys., 1960, 11: 1
CrossRef
ADS
Google scholar
|
[173] |
U. G. Meissner. Low-energy hadron physics from effective chiral Lagrangians with vector mesons. Phys. Rep., 1988, 161: 213
CrossRef
ADS
Google scholar
|
[174] |
S. Leupold and C. Terschlusen, Towards an effective field theory for vector mesons, PoS BORMIO2012, 024 (2012), arXiv: 1206.2253
|
[175] |
J. I. Friedman. Deep inelastic scattering: Comparisons with the quark model. Rev. Mod. Phys., 1991, 63: 615
CrossRef
ADS
Google scholar
|
[176] |
Y. Z. Xu, S. Chen, Z. Q. Yao, D. Binosi, Z. F. Cui, and C. D. Roberts, Vector-meson production and vector meson dominance, Eur. Phys. J. C 81, 895 (2021), arXiv: 2107.03488
|
[177] |
L. Favart, M. Guidal, T. Horn, and P. Kroll, Deeply virtual meson production on the nucleon, Eur. Phys. J. A 52, 158 (2016), arXiv: 1511.04535
|
[178] |
L. L. Frankfurt, M. F. McDermott, and M. Strikman, Diffractive photoproduction of v at HERA, J. High Energy Phys. 02, 002 (1999), arXiv: hep-ph/9812316
|
[179] |
X. Cao, F. K. Guo, Y. T. Liang, J. J. Wu, J. J. Xie, Y. P. Xie, Z. Yang, and B. S. Zou, Photoproduction of hidden-bottom pentaquark and related topics, Phys. Rev. D 101, 074010 (2020), arXiv: 1912.12054
|
[180] |
E. Levin, An introduction to pomerons, arXiv: hep-ph/9808486 (1998)
|
[181] |
A. Donnachie, P. V. Landshoff. Elastic scattering and diffraction dissociation. Nucl. Phys. B, 1984, 244: 322
CrossRef
ADS
Google scholar
|
[182] |
A. Donnachie and P. V. Landshoff, Total crosssections, Phys. Lett. B 296, 227 (1992), arXiv: hep-ph/9209205
|
[183] |
S. J. Brodsky, E. Chudakov, P. Hoyer, and J. M. Laget, Photoproduction of charm near threshold, Phys. Lett. B 498, 23 (2001), arXiv: hep-ph/0010343
|
[184] |
R. L. Workman, R. A. Arndt, W. J. Briscoe, M. W. Paris, and I. I. Strakovsky, Parameterization dependence of T matrix poles and eigenphases from a fit to πN elastic scattering data, Phys. Rev. C 86, 035202 (2012), arXiv: 1204.2277
|
[185] |
A
|
[186] |
F. Huang, M. Doring, H. Haberzettl, J. Haidenbauer, C. Hanhart, S. Krewald, U. G. Meissner, and K. Nakayama, Pion photoproduction in a dynamical coupled-channels model, Phys. Rev. C 85, 054003 (2012), arXiv: 1110.3833
|
[187] |
D. Rönchen, M. Döring, U. G. Meißner, and C. W. Shen, Light baryon resonances from a coupled-channel study including KΣ photoproduction, Eur. Phys. J. A 58, 229 (2022), arXiv: 2208.00089
|
[188] |
Y. F. Wang, D. Rönchen, U. G. Meißner, Y. Lu, C. W. Shen, and J. J. Wu, The reaction πN → ωN in a dynamical coupled-channel approach, Phys. Rev. D 106(9), 094031 (2022), arXiv: 2208.03061
|
[189] |
H. Kamano, S. X. Nakamura, T. S. H. Lee, and T. Sato, Nucleon resonances within a dynamical coupled-channels model of πN and γN reactions, Phys. Rev. C 88, 035209 (2013), arXiv: 1305.4351
|
[190] |
H. Kamano, S. X. Nakamura, T. S. H. Lee, and T. Sato, Isospin decomposition of γN → N* transitions within a dynamical coupled-channels model, Phys. Rev. C 94, 015201 (2016), arXiv: 1605.00363
|
[191] |
H. Kamano, T. S. H. Lee, S. X. Nakamura, and T. Sato, The ANL−Osaka partial-wave amplitudes of πN and γN reactions, arXiv: 1909.11935 (2019)
|
[192] |
V. Shklyar, H. Lenske, U. Mosel, and G. Penner, Coupled-channel analysis of the ω-meson production in πN and γN reactions for c. m. energies up to 2-GeV, Phys. Rev. C 71, 055206 (2005), Erratum: Phys. Rev. C 72, 019903 (2005) arXiv: nucl-th/0412029
|
[193] |
V. Shklyar, H. Lenske, and U. Mosel, 2π production in the Giessen coupled-channel model, Phys. Rev. C 93, 045206 (2016), arXiv: 1409.7920
|
[194] |
E. Martynov, E. Predazzi, and A. Prokudin, Photoproduction of vector mesons in the soft dipole pomeron model, Phys. Rev. D 67, 074023 (2003), arXiv: hep-ph/0207272
|
[195] |
E. Martynov, E. Predazzi, and A. Prokudin, A universal Regge pole model for all vector meson exclusive photoproduction by real and virtual photons, Eur. Phys. J. C 26, 271 (2002), arXiv: hep-ph/0112242
|
[196] |
J
|
[197] |
S. R. Klein and Y. P. Xie, Photoproduction of charged final states in ultraperipheral collisions and electroproduction at an electron-ion collider, Phys. Rev. C 100, 024620 (2019), arXiv: 1903.02680
|
[198] |
D. Ronchen, M. Doring, F. Huang, H. Haberzettl, J. Haidenbauer, C. Hanhart, S. Krewald, U. G. Meissner, and K. Nakayama, Coupled-channel dynamics in the reactions πN → πN, ηN, KΛ, KΣ, Eur. Phys. J. A 49, 44 (2013), arXiv: 1211.6998
|
[199] |
D. Rönchen, M. Döring, and U. G. Meißner, The impact of K+Λ photoproduction on the resonance spectrum, Eur. Phys. J. A 54, 110 (2018), arXiv: 1801.10458
|
[200] |
M
|
[201] |
M
|
[202] |
H. Kamano, S. X. Nakamura, T. S. H. Lee, and T. Sato, Dynamical coupled-channels model of K−p reactions: Determination of partial-wave amplitudes, Phys. Rev. C 90, 065204 (2014), arXiv: 1407.6839
|
[203] |
H. Kamano, S. X. Nakamura, T. S. H. Lee, and T. Sato, Dynamical coupled-channels model of K−p reactions. II. Extraction of Λ* and Σ* hyperon resonances, Phys. Rev. C 92, 025205 (2015), Erratum: Phys. Rev. C 95, 049903 (2017), arXiv: 1506.01768
|
[204] |
M. Matveev, A. V. Sarantsev, V. A. Nikonov, A. V. Anisovich, U. Thoma, and E. Klempt, Hyperon I: Partial-wave amplitudes for K−p scattering, Eur. Phys. J. A 55, 179 (2019), arXiv: 1907.03645
|
[205] |
A. V. Sarantsev, M. Matveev, V. A. Nikonov, A. V. Anisovich, U. Thoma, and E. Klempt, Hyperon II: Properties of excited hyperons, Eur. Phys. J. A 55, 180 (2019), arXiv: 1907.13387
|
[206] |
A. V. Anisovich, A. V. Sarantsev, V. A. Nikonov, V. Burkert, R. A. Schumacher, U. Thoma, E. Klempt. Hyperon III: K−p−πΣ coupled-channel dynamics in the Λ(1405) mass region. Eur. Phys. J. A, 2020, 56: 139
CrossRef
ADS
Google scholar
|
[207] |
A
|
[208] |
R. G. Edwards, J. J. Dudek, D. G. Richards, and S. J. Wallace, Excited state baryon spectroscopy from lattice QCD, Phys. Rev. D 84, 074508 (2011), arXiv: 1104.5152
|
[209] |
G. Eichmann, C. S. Fischer, and H. Sanchis-Alepuz, Light baryons and their excitations, Phys. Rev. D 94, 094033 (2016), arXiv: 1607.05748
|
[210] |
C. Chen, B. El-Bennich, C. D. Roberts, S. M. Schmidt, J. Segovia, and S. Wan, Structure of the nucleon’s low-lying excitations, Phys. Rev. D 97, 034016 (2018), arXiv: 1711.03142
|
[211] |
X. Cao, V. Shklyar, and H. Lenske, Coupledchannel analysis of KΣ production on the nucleon up to 2.0 GeV, Phys. Rev. C 88, 055204 (2013), arXiv: 1303.2604
|
[212] |
F. Hagelstein, R. Miskimen, and V. Pascalutsa, Nucleon polarizabilities: From Compton scattering to hydrogen atom, Prog. Part. Nucl. Phys. 88, 29 (2016), arXiv: 1512.03765
|
[213] |
N. Krupina, V. Lensky, and V. Pascalutsa, Partialwave analysis of proton Compton scattering data below the pion-production threshold, Phys. Lett. B 782, 34 (2018), arXiv: 1712.05349
|
[214] |
G. Eichmann and G. Ramalho, Nucleon resonances in Compton scattering, Phys. Rev. D 98, 093007 (2018), arXiv: 1806.04579
|
[215] |
G. Eichmann, H. Sanchis-Alepuz, R. Williams, R. Alkofer, and C. S. Fischer, Baryons as relativistic three-quark bound states, Prog. Part. Nucl. Phys. 91, 1 (2016), arXiv: 1606.09602
|
[216] |
M
|
[217] |
M
|
[218] |
M
|
[219] |
M
|
[220] |
X. Cao and J. J. Xie, Nucleon resonances in πN → η′N and J/ψ → pp ¯η′*, Chin. Phys. C 40, 083103 (2016), arXiv: 1411.1493
|
[221] |
R. F. Lebed, Do the Pc+ pentaquarks have strange siblings? Phys. Rev. D 92, 114030 (2015), arXiv: 1510.06648
|
[222] |
C. S. An, J. J. Xie, and G. Li, Decay patterns of low-lying Ns s ¯ states to the strangeness channels, Phys. Rev. C 98, 045201 (2018), arXiv: 1809.04934
|
[223] |
H. Gao, H. Huang, T. Liu, J. Ping, F. Wang, and Z. Zhao, Search for a hidden strange baryonmeson bound state from ϕ production in a nuclear medium, Phys. Rev. C 95, 055202 (2017), arXiv: 1701.03210
|
[224] |
A. N. H. Blin, W. Melnitchouk, V. I. Mokeev, V. D. Burkert, V. V. Chesnokov, A. Pilloni, and A. P. Szczepaniak, Resonant contributions to inclusive nucleon structure functions from exclusive meson electroproduction data, Phys. Rev. C 104, 025201 (2021), arXiv: 2105.05834
|
[225] |
M. L. Du, V. Baru, F. K. Guo, C. Hanhart, U. G. Meißner, J. A. Oller, and Q. Wang, Revisiting the nature of the Pc pentaquarks, J. High Energy Phys. 08, 157 (2021), arXiv: 2102.07159
|
[226] |
Y. S. Kalashnikova, Coupled-channel model for charmonium levels and an option for X(3872), Phys. Rev. D 72, 034010 (2005), arXiv: hep-ph/0506270
|
[227] |
P. G. Ortega, J. Segovia, D. R. Entem, and F. Fernandez, Coupled channel approach to the structure of the X(3872), Phys. Rev. D 81, 054023 (2010), arXiv: 0907.3997
|
[228] |
J. Ferretti and E. Santopinto, Threshold corrections of χc(2P) and χb(3P) states and J/ψρ and J/ψω transitions of the X(3872) in a coupled channel model, Phys. Lett. B 789, 550 (2019), arXiv: 1806.02489
|
[229] |
M. L. Du, M. Albaladejo, F. K. Guo, and J. Nieves, Combined analysis of the Zc(3900) and the Zcs(3985) exotic states, Phys. Rev. D 105, 074018 (2022), arXiv: 2201.08253
|
[230] |
M. Albaladejo, Tcc+ coupled channel analysis and predictions, Phys. Lett. B 829, 137052 (2022), arXiv: 2110.02944
|
[231] |
M. L. Du, V. Baru, X. K. Dong, A. Filin, F. K. Guo, C. Hanhart, A. Nefediev, J. Nieves, and Q. Wang, Coupled-channel approach to Tc c+ including three-body effects, Phys. Rev. D 105, 014024 (2022), arXiv: 2110.13765
|
[232] |
Y. Huang, J. He, H. F. Zhang, and X. R. Chen, Discovery potential of hidden charm baryon resonances via photoproduction, J. Phys. G 41, 115004 (2014), arXiv: 1305.4434
|
[233] |
A. N. H Blin, C. Fernández-Ramírez, A. Jackura, V. Mathieu, V. I. Mokeev, A. Pilloni, and A. P. Szczepaniak, Studying the Pc(4450) resonance in J/ψ bhotoproduction o protons, Phys. Rev. D 94, 034002 (2016), arXiv: 1606.08912
|
[234] |
S. Sakai, H. J. Jing, and F. K. Guo, Decays of Pc into J/ψN and ηcN with heavy quark spin symmetry, Phys. Rev. D 100, 074007 (2019), arXiv: 1907.03414
|
[235] |
Y. Huang, J. J. Xie, J. He, X. Chen, and H. F. Zhang, Photoproduction of hidden-charm states in the γp → D ¯*0Λc+ reaction near threshold, Chin. Phys. C 40, 124104 (2016), arXiv: 1604.05969
|
[236] |
D. Skoupil, Y. Yamaguchi. Photoproduction of D ¯0Λc+ within the Regge-plus-resonance model. Phys. Rev. D, 2020, 102: 074009
CrossRef
ADS
Google scholar
|
[237] |
Z. Yang, X. Cao, Y. T. Liang, and J. J. Wu, Identifying hidden charm pentaquark signal from non-resonant background in electron–proton scattering, Chin. Phys. C 44, 084102 (2020), arXiv: 2003.06774
|
[238] |
Y. P. Xie, X. Cao, Y. T. Liang, and X. Chen, Production of hidden-charm and hidden-bottom pentaquark states in electron−proton collisions, Chin. Phys. C 45, 043105 (2021), arXiv: 2003.11729
|
[239] |
T. J. Burns and E. S. Swanson, Experimental constraints on the properties of Pc states, Eur. Phys. J. A 58, 68 (2022), arXiv: 2112.11527
|
[240] |
T. Amano, D. Jido, and S. Leupold, Sum rule for the partial decay rates of bottom hadrons based on the dynamical supersymmetry of the s ¯ quark and the ud diquark, Phys. Rev. D 105, L051504 (2022), arXiv: 2112.03409
|
[241] |
C. Cheng, F. Yang, and Y. Huang, Searching for strange hidden-charm pentaquark state Pcs(4459) in γp → K+Pcs(4459) reaction, Phys. Rev. D 104, 116007 (2021), arXiv: 2110.04746
|
[242] |
X
|
[243] |
A.BylinkinC. T. DeanS.FeganD.GangadharanK.Gates,
|
[244] |
J.K. AdkinsY. AkibaA.AlbatainehM.AmaryanI.C. Arsene,
|
[245] |
D
|
[246] |
Z. Yang and F. K. Guo, Semi-inclusive leptoproduction of hidden-charm exotic hadrons, Chin. Phys. C 45, 123101 (2021), arXiv: 2107.12247
|
[247] |
D
|
[248] |
P. P. Shi, F. K. Guo, and Z. Yang, Semi-inclusive electroproduction of hidden-charm and double-charm hadronic molecules, Phys. Rev. D 106(11), 114026 (2022), arXiv: 2208.02639
|
[249] |
M
|
[250] |
R
|
[251] |
Belle Collaboration, Search for X(3872) → π+π−π0 at Belle, arXiv: 2206.08592 (2022)
|
[252] |
R
|
[253] |
G. Galata, Photoproduction of Z(4430) through mesonic Regge trajectories exchange, Phys. Rev. C 83, 065203 (2011), arXiv: 1102.2070
|
[254] |
Q. Y. Lin, X. Liu, and H. S. Xu, Charged charmoniumlike state Zc(3900)± via meson photoproduction, Phys. Rev. D 88, 114009 (2013), arXiv: 1308.6345
|
[255] |
X. H. Liu, Q. Zhao, and F. E. Close, Search for tetraquark candidate Z(4430) in meson photoproduction, Phys. Rev. D 77, 094005 (2008), arXiv: 0802.2648
|
[256] |
Y. Huang, H. Q. Zhu, L. S. Geng, and R. Wang, Production of Tcc+ exotic state in the γp → D+T ¯c c ¯Λc+ reaction, Phys. Rev. D 104, 116008 (2021), arXiv: 2108.13028
|
[257] |
C. W. Xiao and U. G. Meißner, J/ψ(ηc)N and Υ(ηb)N cross sections, Phys. Rev. D 92, 114002 (2015), arXiv: 1508.00924
|
[258] |
M. L. Du, V. Baru, F. K. Guo, C. Hanhart, U. G. Meißner, A. Nefediev, and I. Strakovsky, Deciphering the mechanism of near-threshold J/ψ photoproduction, Eur. Phys. J. C 80, 11, 1053 (2020), arXiv: 2009.08345
|
[259] |
J. J. Wu and T. S. H. Lee, Photo-production of bound states with hidden charms, Phys. Rev. C 86, 065203 (2012), arXiv: 1210.6009
|
[260] |
J. J. Wu, T. S. H. Lee, and B. S. Zou, Nucleon resonances with hidden charm in γp reactions, Phys. Rev. C 100, 035206 (2019), arXiv: 1906.05375
|
[261] |
R
|
[262] |
J
|
[263] |
S
|
[264] |
C
|
[265] |
CMS Collaboration, Measurement of exclusive Υ photoproduction in pPb collisions at sNN = 5.02 TeV, CMSPAS-FSQ-13-009
|
[266] |
J. J. Aubert, . [European Muon].
CrossRef
ADS
Google scholar
|
[267] |
S. Lüders, A measurement of the beauty production cross section via B → J/ψX at HERA, Diss., Naturwissenschaften ETH Zürich, Nr. 14480, 2002
|
[268] |
C
|
[269] |
X. Y. Wang, J. He, and X. Chen, Systematic study of the production of hidden-bottom pentaquarks via γp and π−p scatterings, Phys. Rev. D 101, 034032 (2020), arXiv: 1912.07156
|
[270] |
V.D. BurkertL.ElouadrhiriA.Afanasev J.ArringtonM. Contalbrigo,
|
[271] |
Y. Huang and H. Q. Zhu, Photoproduction of possible pentaquark states Λ b0(5912) and Λb 0(5920) in the γp → Λ b0(∗)B+ reactions, Phys. Rev. D 104, 056027 (2021), arXiv: 2107.03773
|
[272] |
R. Molina, C. W. Xiao, and E. Oset, J/ψ reaction mechanisms and suppression in the nuclear medium, Phys. Rev. C 86, 014604 (2012), arXiv: 1203.0979
|
[273] |
E. Y. Paryev, Study of a possibility of observation of hidden-bottom pentaquark resonances in bottomonium photoproduction on protons and nuclei near threshold, arXiv: 2007.01172 (2020)
|
[274] |
E. Y. Paryev, The possibility to study inmedium modification of J/ψ mesons from their photoproduction on nuclei near threshold in the case of presence of the LHCb pentaquark states P c+ in this photoproduction, Nucl. Phys. A 996, 121711 (2020), arXiv: 2003.00788
|
[275] |
E. Y. Paryev and Y. T. Kiselev, The role of hidden-charm pentaquark resonance Pc+(4450), in J/ψ photoproduction on nuclei near threshold, Nucl. Phys. A 978, 201 (2018), arXiv: 1810.01715
|
[276] |
A. C. Serri, Y. Feng, C. Flore, J. P. Lansberg, M. A. Ozcelik, H. S. Shao, and Y. Yedelkina, Revisiting NLO QCD corrections to total inclusive J/ψ and Υ photoproduction cross sections in lepton−proton collisions, Phys. Lett. B 835, 137556 (2022), arXiv: 2112.05060
|
[277] |
R. K. Ellis and P. Nason, QCD radiative corrections to the photoproduction of heavy quarks, Nucl. Phys. B 312, 551 (1989)
|
[278] |
S. Frixione, M. L. Mangano, P. Nason, and G. Ridolfi, Total cross-sections for heavy flavor production at HERA, Phys. Lett. B 348, 633 (1995), arXiv: hep-ph/9412348
|
[279] |
O. Gryniuk and M. Vanderhaeghen, Accessing the real part of the forward J/ψ−p scattering amplitude from J/ψ photoproduction on protons around threshold, Phys. Rev. D 94, 074001 (2016), arXiv: 1608.08205
|
[280] |
H. Huang, C. Deng, J. Ping, and F. Wang, Possible pentaquarks with heavy quarks, Eur. Phys. J. C 76, 624 (2016), arXiv: 1510.04648
|
[281] |
H. Huang and J. Ping, Investigating the hiddencharm and hidden-bottom pentaquark resonances in scattering process, Phys. Rev. D 99, 014010 (2019), arXiv: 1811.04260
|
[282] |
V
|
[283] |
Y. Jia, Z. Mo, J. Pan, and J. Y. Zhang, Photoproduction of C-even quarkonia at EIC and EicC, arXiv: 2207.14171 (2022)
|
[284] |
S. J. Brodsky, L. Frankfurt, J. F. Gunion, A. H. Mueller, and M. Strikman, Diffractive leptoproduction of vector mesons in QCD, Phys. Rev. D 50, 3134 (1994), arXiv: hep-ph/9402283
|
[285] |
J. C. Collins, L. Frankfurt, and M. Strikman, Factorization for hard exclusive electroproduction of mesons in QCD, Phys. Rev. D 56, 2982 (1997), arXiv: hep-ph/9611433
|
[286] |
J. Koempel, P. Kroll, A. Metz, and J. Zhou, Exclusive production of quarkonia as a probe of the GPD E for gluons, Phys. Rev. D 85, 051502 (2012), arXiv: 1112.1334
|
[287] |
D. Kharzeev, Quarkonium interactions in QCD, Proc. Int. Sch. Phys. Fermi 130, 105 (1996), arXiv: nucl-th/9601029
|
[288] |
D. Kharzeev, H. Satz, A. Syamtomov, and G. Zinovjev, J/ψ photoproduction and the gluon structure of the nucleon, Eur. Phys. J. C 9, 459 (1999), arXiv: hep-ph/9901375
|
[289] |
Y. Guo, X. Ji, and Y. Liu, QCD analysis of near-threshold photon−proton production of heavy quarkonium, Phys. Rev. D 103, 096010 (2021), arXiv: 2103.11506
|
[290] |
R. Boussarie and Y. Hatta, QCD analysis of near-threshold quarkonium leptoproduction at large photon virtualities, Phys. Rev. D 101, 114004 (2020), arXiv: 2004.12715
|
[291] |
Y. Hatta and D. L. Yang, Holographic J/ψ production near threshold and the proton mass problem, Phys. Rev. D 98, 074003 (2018), arXiv: 1808.02163
|
[292] |
Y. Hatta, A. Rajan, and D. L. Yang, Near threshold J/ψ and Υ photoproduction at JLab and RHIC, Phys. Rev. D 100, 014032 (2019), arXiv: 1906.00894
|
[293] |
P. Sun, X. B. Tong, and F. Yuan, Near threshold heavy quarkonium photoproduction at large momentum transfer, Phys. Rev. D 105, 054032 (2022), arXiv: 2111.07034
|
[294] |
P. Sun, X. B. Tong, and F. Yuan, Perturbative QCD analysis of near threshold heavy quarkonium photoproduction at large momentum transfer, Phys. Lett. B 822, 136655 (2021), arXiv: 2103.12047
|
[295] |
T. S. H. Lee, Pomeron-LQCD model of J/Ψ photo-production on the nucleon, arXiv: 2004.13934
|
[296] |
V. D. Barger, R. J. N. Phillips. Properties of ψN scattering. Phys. Lett. B, 1975, 58: 433
CrossRef
ADS
Google scholar
|
[297] |
I. Strakovsky, D. Epifanov, and L. Pentchev, J/ψp scattering length from GlueX threshold measurements, Phys. Rev. C 101, 042201 (2020), arXiv: 1911.12686
|
[298] |
I. I. Strakovsky, L. Pentchev, and A. Titov, Comparative analysis of ωp, ϕp, and J/ψp scattering lengths from A2, CLAS, and GlueX threshold measurements, Phys. Rev. C 101, 045201 (2020), arXiv: 2001.08851
|
[299] |
L. Pentchev and I. I. Strakovsky, J/ψ−p scattering length from the total and differential photoproduction cross sections, Eur. Phys. J. A 57, 56 (2021), arXiv: 2009.04502
|
[300] |
I. I. Strakovsky, W. J. Briscoe, L. Pentchev, and A. Schmidt, Threshold Υ-meson photoproduction at the EIC and EicC, Phys. Rev. D 104, 074028 (2021), arXiv: 2108.02871
|
[301] |
O. Gryniuk, S. Joosten, Z. E. Meziani, and M. Vanderhaeghen, Υ photoproduction on the proton at the Electron-Ion Collider, Phys. Rev. D 102, 014016 (2020), arXiv: 2005.09293
|
[302] |
T. Kawanai and S. Sasaki, Charmonium-nucleon potential from lattice QCD, Phys. Rev. D 82, 091501 (2010), arXiv: 1009.3332
|
[303] |
H. Lenske, M. Dhar, T. Gaitanos, X. Cao. Baryons and baryon resonances in nuclear matter. Prog. Part. Nucl. Phys., 2018, 98: 119
CrossRef
ADS
Google scholar
|
[304] |
V. Biloshytskyi, V. Pascalutsa, L. Harland-Lang, B. Malaescu, K. Schmieden, and M. Schott, The two-photon decay of X(6900) from light-by-light scattering at the LHC, Phys. Rev. D 106(11), L111902 (2022), arXiv: 2207.13623
|
[305] |
R.Aaij,
|
[306] |
A.M. Sirunyan,
|
[307] |
C. Li and C. Z. Yuan, Determination of the absolute branching fractions of X(3872) decays, Phys. Rev. D 100, 094003 (2019), arXiv: 1907.09149
|
[308] |
J
|
/
〈 | 〉 |