Transport in electron−photon systems

Jian-Sheng Wang, Jiebin Peng, Zu-Quan Zhang, Yong-Mei Zhang, Tao Zhu

PDF(6659 KB)
PDF(6659 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (4) : 43602. DOI: 10.1007/s11467-023-1260-z
REVIEW ARTICLE
REVIEW ARTICLE

Transport in electron−photon systems

Author information +
History +

Abstract

We review the description and modeling of transport phenomena among the electron systems coupled via scalar or vector photons. It consists of three parts. The first part is about scalar photons, i.e., Coulomb interactions. The second part is with transverse photons described by vector potentials. The third part is on ϕ = 0 or temporal gauge, which is a full theory of the electrodynamics. We use the nonequilibrium Green’s function (NEGF) formalism as a basic tool to study steady-state transport. Although with local equilibrium it is equivalent to the fluctuational electrodynamics (FE), the advantage of NEGF is that it can go beyond FE due to its generality. We have given a few examples in the review, such as transfer of heat between graphene sheets driven by potential bias, emission of light by a double quantum dot, and emission of energy, momentum, and angular momentum from a graphene nanoribbon. All of these calculations are based on a generalization of the Meir−Wingreen formula commonly used in electronic transport in mesoscopic systems, with materials properties represented by photon self-energy, coupled with the Keldysh equation and the solution to the Dyson equation.

Graphical abstract

Keywords

quantum transport / thermal radiation / scalar and vector photons / nonequilibrium Green's function

Cite this article

Download citation ▾
Jian-Sheng Wang, Jiebin Peng, Zu-Quan Zhang, Yong-Mei Zhang, Tao Zhu. Transport in electron−photon systems. Front. Phys., 2023, 18(4): 43602 https://doi.org/10.1007/s11467-023-1260-z

References

[1]
C.TannoudjiJ. Dupont-RocG.Grynberg, Photons and Atoms: Introduction to Quantum Electrodynamics, Wiley, 1989
[2]
J. Bloch, A. Cavalleri, V. Galitski, M. Hafezi, A. Rubio. Strongly correlated electron–photon systems. Nature, 2022, 606(7912): 41
CrossRef ADS Google scholar
[3]
M.Planck, The Theory of Heat Radiation, 2nd Ed., P. Blakiston’s Son & Co., Philadelphia, 1914
[4]
C. M. Hargreaves. Anomalous radiative transfer between closely-spaced bodies. Phys. Lett. A, 1969, 30(9): 491
CrossRef ADS Google scholar
[5]
G. A. Domoto, R. F. Boehm, C. L. Tien. Experimental investigation of radiative transfer between metallic surfaces at cryogenic temperatures. J. Heat Transfer, 1970, 92(3): 412
CrossRef ADS Google scholar
[6]
D. Polder, M. van Hove. Theory of radiative heat transfer between closely spaced bodies. Phys. Rev. B, 1971, 4(10): 3303
CrossRef ADS Google scholar
[7]
S.M. Rytov, Theory of Electric Fluctuations and Thermal Radiation, Air Force Cambridge Research Center, Bedford, MA, 1953
[8]
S.M. RytovY. A. KravtsovV.I. Tatarskii, Principles of Statistical Radiophysics 3, Springer, Berlin, 1989
[9]
H. B. Callen, T. A. Welton. Irreversibility and generalized noise. Phys. Rev., 1951, 83(1): 34
CrossRef ADS Google scholar
[10]
M. Krüger, T. Emig, M. Kardar. Nonequilibrium Electromagnetic Fluctuations: Heat transfer and interactions. Phys. Rev. Lett., 2011, 106(21): 210404
CrossRef ADS Google scholar
[11]
C. R. Otey, L. Zhu, S. Sandhu, S. Fan. Fluctuational electrodynamics calculations of near-field heat transfer in non-planar geometries: A brief overview. J. Quant. Spectrosc. Radiat. Transf., 2014, 132: 3
CrossRef ADS Google scholar
[12]
G. Tang, L. Zhang, Y. Zhang, J. Chen, C. T. Chan. Near-field energy transfer between graphene and magneto−optic media. Phys. Rev. Lett., 2021, 127(24): 247401
CrossRef ADS Google scholar
[13]
K. Joulain, J. P. Mulet, F. Marquier, R. Carminati, J. J. Greffet. Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field. Surf. Sci. Rep., 2005, 57(3−4): 59
CrossRef ADS Google scholar
[14]
S. Basu, Z. M. Zhang, C. J. Fu. Review of near-field thermal radiation and its application to energy conversion. Int. J. Energy Res., 2009, 33(13): 1203
CrossRef ADS Google scholar
[15]
B. Song, A. Fiorino, E. Meyhofer, P. Reddy. Near-field radiative thermal transport: From theory to experiment. AIP Adv., 2015, 5(5): 053503
CrossRef ADS Google scholar
[16]
A. I. Volokitin, B. N. J. Persson. Near-field radiative heat transfer and noncontact friction. Rev. Mod. Phys., 2007, 79(4): 1291
CrossRef ADS Google scholar
[17]
S. A. Biehs, R. Messina, P. S. Venkataram, A. W. Rodriguez, J. C. Cuevas, P. Ben-Abdallah. Near-field radiative heat transfer in many-body systems. Rev. Mod. Phys., 2021, 93(2): 025009
CrossRef ADS Google scholar
[18]
G. Bimonte, T. Emig, M. Kardar, M. Krüger. Nonequilibrium fluctuational quantum electrodynamics: Heat radiation, heat transfer, and force. Annu. Rev. Condens. Matter Phys., 2017, 8(1): 119
CrossRef ADS Google scholar
[19]
C. Henkel. Nanoscale thermal transfer – An invitation to fluctuation electrodynamics. Zeitschrift für Naturforshchung A, 2017, 72(2): 99
CrossRef ADS Google scholar
[20]
M.PascaleM. GiteauG.T. Papadakis, Perspective on near-field radiative heat transfer, arXiv: 2210.00929 (2022)
[21]
A. Kittel, W. Müller-Hirsch, J. Parisi, S. A. Biehs, D. Reddig, M. Holthaus. Near-field heat transfer in a scanning thermal microscope. Phys. Rev. Lett., 2005, 95(22): 224301
CrossRef ADS Google scholar
[22]
S. Shen, A. Narayanaswamy, G. Chen. Surface phonon polaritons mediated energy transfer between nanoscale gaps. Nano Lett., 2009, 9(8): 2909
CrossRef ADS Google scholar
[23]
R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, B. F. Whiting. Near-field radiative heat transfer between macroscopic planar surfaces. Phys. Rev. Lett., 2011, 107(1): 014301
CrossRef ADS Google scholar
[24]
K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M. T. H. Reid, F. J. García-Vidal, J. C. Cuevas, E. Meyhofer, P. Reddy. Radiative heat transfer in the extreme near field. Nature, 2015, 528(7582): 387
CrossRef ADS Google scholar
[25]
L. Cui, W. Jeong, V. Fernández-Hurtado, J. Feist, F. J. García-Vidal, J. C. Cuevas, E. Meyhofer, P. Reddy. Study of radiative heat transfer in Ångström- and nanometre-sized gaps. Nat. Commun., 2017, 8(1): 14479
CrossRef ADS Google scholar
[26]
K. Kloppstech, N. Könne, S. A. Biehs, A. W. Rodriguez, L. Worbes, D. Hellmann, A. Kittel. Giant heat transfer in the crossover regime between conduction and radiation. Nat. Commun., 2017, 8(1): 14475
CrossRef ADS Google scholar
[27]
T. Tokunaga, A. Jarzembski, T. Shiga, K. Park, M. Francoeur. Extreme near-field heat transfer between gold surfaces. Phys. Rev. B, 2021, 104(12): 125404
CrossRef ADS Google scholar
[28]
V. Fernández-Hurtado, A. I. Fernández-Domínguez, J. Feist, F. J. García-Vidal, J. C. Cuevas. Super-Planckian far-field radiative heat transfer. Phys. Rev. B, 2018, 97(4): 045408
CrossRef ADS Google scholar
[29]
J. C. Cuevas. Thermal radiation from subwavelength objects and the violation of Planck’s law. Nat. Commun., 2019, 10(1): 3342
CrossRef ADS Google scholar
[30]
D. Thompson, L. Zhu, R. Mittapally, S. Sadat, Z. Xing, P. McArdle, M. Qazilbash, P. Reddy, E. Meyhofer. Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit. Nature, 2018, 561(7722): 216
CrossRef ADS Google scholar
[31]
H. B. G. Casimir. On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet., 1948, 51: 793
[32]
E. M. Lifshitz. The theory of molecular attractive forces between solids. Sov. Phys. JETP, 1956, 2: 73
[33]
P.H. G. M. van BloklandJ.T. G. Overbeek, van der Waals forces between objects covered with a chromium layer, J. Chem. Soc. Faraday Trans. I 74(0), 2637 (1978)
[34]
S. K. Lamoreaux. Demonstration of the Casimir force in the 0.6 to 6 μm range. Phys. Rev. Lett., 1997, 78(1): 5
CrossRef ADS Google scholar
[35]
U. Mohideen, A. Roy. Precision measurement of the Casimir force from 0.1 to 0.9 μm. Phys. Rev. Lett., 1998, 81(21): 4549
CrossRef ADS Google scholar
[36]
J. M. Obrecht, R. J. Wild, M. Antezza, L. P. Pitaevskii, S. Stringari, E. A. Cornell. Measurement of the temperature dependence of the Casimir−Polder force. Phys. Rev. Lett., 2007, 98(6): 063201
CrossRef ADS Google scholar
[37]
G. L. Klimchitskaya, U. Mohideen, V. M. Mostepanenko. The Casimir force between real materials: Experiment and theory. Rev. Mod. Phys., 2009, 81(4): 1827
CrossRef ADS Google scholar
[38]
J. L. Garrett, D. A. T. Somers, J. N. Munday. Measurement of the Casimir force between two spheres. Phys. Rev. Lett., 2018, 120(4): 040401
CrossRef ADS Google scholar
[39]
A. Stange, D. K. Campbell, D. J. Bishop. Science and technology of the Casimir effect. Phys. Today, 2021, 74(1): 42
CrossRef ADS Google scholar
[40]
C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori, P. Delsing. Observation of the dynamical Casimir effect in a superconducting circuit. Nature, 2011, 479(7373): 376
CrossRef ADS Google scholar
[41]
S. Vezzoli, A. Mussot, N. Westerberg, A. Kudlinski, H. Dinparasti Saleh, A. Prain, F. Biancalana, E. Lantz, D. Faccio. Optical analogue of the dynamical Casimir effect in a dispersion-oscillating fibre. Commun. Phys., 2019, 2(1): 84
CrossRef ADS Google scholar
[42]
K. Y. Fong, H. K. Li, R. Zhao, S. Yang, Y. Wang, X. Zhang. Phonon heat transfer across a vacuum through quantum fluctuations. Nature, 2019, 576(7786): 243
CrossRef ADS Google scholar
[43]
M. F. Maghrebi, A. V. Gorshkov, J. D. Sau. Fluctuation-induced torque on a topological insulator out of thermal equilibrium. Phys. Rev. Lett., 2019, 123(5): 055901
CrossRef ADS Google scholar
[44]
M. Katoh, M. Fujimoto, H. Kawaguchi, K. Tsuchiya, K. Ohmi, T. Kaneyasu, Y. Taira, M. Hosaka, A. Mochihashi, Y. Takashima. Angular momentum of twisted radiation from an electron in spiral motion. Phys. Rev. Lett., 2017, 118(9): 094801
CrossRef ADS Google scholar
[45]
X. Gao, C. Khandekar, Z. Jacob, T. Li. Thermal equilibrium spin torque: Near-field radiative angular momentum transfer in magneto−optical media. Phys. Rev. B, 2021, 103(12): 125424
CrossRef ADS Google scholar
[46]
M. L. N. Chen, L. J. Jiang, W. E. I. Sha. Orbital angular momentum generation and detection by geometric-phase based metasurfaces. Appl. Sci. (Basel), 2018, 8(3): 362
CrossRef ADS Google scholar
[47]
E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, E. Santamato. Quantum information transfer from spin to orbital angular momentum of photons. Phys. Rev. Lett., 2009, 103(1): 013601
CrossRef ADS Google scholar
[48]
V. S. Asadchy, M. S. Mirmoosa, A. Dìaz-Rubio, S. Fan, S. A. Tretyakov. Tutorial on electromagnetic nonreciprocity and its origins. Proc. IEEE, 2020, 108(10): 1684
CrossRef ADS Google scholar
[49]
C. Khandekar, S. Buddhiraju, P. R. Wilkinson, J. K. Gimzewski, A. W. Rodriguez, C. Chase, S. Fan. Nonequilibrium lateral force and torque by thermally excited nonreciprocal surface electromagnetic waves. Phys. Rev. B, 2021, 104(24): 245433
CrossRef ADS Google scholar
[50]
R. Messina, M. Antezza. Casimir−Lifshitz force out of thermal equilibrium and heat transfer between arbitrary bodies. Europhys. Lett., 2011, 95(6): 61002
CrossRef ADS Google scholar
[51]
R. Messina, M. Antezza. Scattering-matrix approach to Casimir−Lifshitz force and heat transfer out of thermal equilibrium between arbitrary bodies. Phys. Rev. A, 2011, 84(4): 042102
CrossRef ADS Google scholar
[52]
M. Krüger, G. Bimonte, T. Emig, M. Kardar. Trace formulas for nonequilibrium Casimir interactions, heat radiation, and heat transfer for arbitrary objects. Phys. Rev. B, 2012, 86(11): 115423
CrossRef ADS Google scholar
[53]
B. A. Lippmann, J. Schwinger. Variational principles for scattering processes I. Phys. Rev., 1950, 79(3): 469
CrossRef ADS Google scholar
[54]
P. Ben-Abdallah, S. A. Biehs, K. Joulain. Many-body radiative heat transfer theory. Phys. Rev. Lett., 2011, 107(11): 114301
CrossRef ADS Google scholar
[55]
A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, S. G. Johnson. Frequency-selective near-field radiative heat transfer between photonic crystal slabs: A computational approach for arbitrary geometries and materials. Phys. Rev. Lett., 2011, 107(11): 114302
CrossRef ADS Google scholar
[56]
A.W. RodriguezM.T. H. ReidS.G. Johnson, Fluctuating-surface-current formulation of radiative heat transfer for arbitrary geometries, Phys. Rev. B 86, 220302(R) (2012)
[57]
S.Datta, Electronic Transport in Mesoscopic Systems, Cambridge Univ. Press, 1995
[58]
M.D. Ventra, Electrical Transport in Nanoscale Systems, Cambridge Univ. Press, 2008
[59]
J. S. Wang, J. Wang, J. T. Lü. Quantum thermal transport in nanostructures. Eur. Phys. J. B, 2008, 62(4): 381
CrossRef ADS Google scholar
[60]
Z.Z. YuG. H. XiongL.F. Zhang, A brief review of thermal transport in mesoscopic systems from nonequilibrium Green’s function approach, Front. Phys. 16(4), 43201 (2021)
[61]
M. Janowicz, D. Reddig, M. Holthaus. Quantum approach to electromagnetic energy transfer between two dielectric bodies. Phys. Rev. A, 2003, 68(4): 043823
CrossRef ADS Google scholar
[62]
U. Aeberhard. Theory and simulation of quantum photovoltaic devices based on the non-equilibrium Green’s function formalism. J. Comput. Electron., 2011, 10(4): 394
CrossRef ADS Google scholar
[63]
H.HaugA. P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, 2nd Ed., Springer-Verlag, 2008
[64]
W. Eckhardt. Macroscopic theory of electromagnetic fluctuations and stationary radiative heat transfer. Phys. Rev. A, 1984, 29(4): 1991
CrossRef ADS Google scholar
[65]
L. V. Keldysh. Diagram technique for nonequilibrium processes. Sov. Phys. JETP, 1965, 20: 1018
[66]
J. S. Wang, B. K. Agarwalla, H. Li, J. Thingna. Nonequilibrium Green’s function method for quantum thermal transport. Front. Phys., 2014, 9(6): 673
CrossRef ADS Google scholar
[67]
G. D. Mahan. Tunneling of heat between metals. Phys. Rev. B, 2017, 95(11): 115427
CrossRef ADS Google scholar
[68]
J.D. Jackson, Classical Electrodynamics, 3rd Ed., John Wiley & Sons, 1999
[69]
I. Smolić, B. Klajn. Capacitance matrix revisited. Prog. Electromagn. Res. B Pier B, 2021, 92: 1
CrossRef ADS Google scholar
[70]
J. S. Wang, Z. Q. Zhang, J. T. Lü. Coulomb-force-mediated heat transfer in the near field: Geometric effect. Phys. Rev. E, 2018, 98(1): 012118
CrossRef ADS Google scholar
[71]
R.KuboM. TodaN.Hashitsume, Statistical Physics II — Nonequilibrium Statistical Mechanics, 2nd Ed., Springer, 1991
[72]
G.F. GiulianiG.Vignale, Quantum Theory of the Electron Liquid, Cambridge Univ. Press, 2005
[73]
R. Yu, A. Manjavacas, F. J. García de Abajo. Ultrafast radiative heat transfer. Nat. Commun., 2017, 8(1): 2
CrossRef ADS Google scholar
[74]
R. Landauer. Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction. IBM J. Res. Develop., 1957, 1(3): 223
CrossRef ADS Google scholar
[75]
C. Caroli, R. Combescot, P. Nozieres, D. Saint-James. Direct calculation of the tunneling current. J. Phys. C, 1971, 4(8): 916
CrossRef ADS Google scholar
[76]
J. S. Wang, J. Peng. Capacitor physics in ultra-near-field heat transfer. Europhys. Lett., 2017, 118(2): 24001
CrossRef ADS Google scholar
[77]
J. H. Jiang, J. S. Wang. Caroli formalism in near-field heat transfer between parallel graphene sheets. Phys. Rev. B, 2017, 96(15): 155437
CrossRef ADS Google scholar
[78]
T. Zhu, J. S. Wang. Generalized first-principles method to study near-field heat transfer mediated by Coulomb interaction. Phys. Rev. B, 2021, 104(12): L121409
CrossRef ADS Google scholar
[79]
Y. Meir, N. S. Wingreen. Landauer formula for the current through an interacting electron region. Phys. Rev. Lett., 1992, 68(16): 2512
CrossRef ADS Google scholar
[80]
A. P. Jauho, N. S. Wingreen, Y. Meir. Time-dependent transport in interacting and noninteracting resonant-tunneling systems. Phys. Rev. B, 1994, 50(8): 5528
CrossRef ADS Google scholar
[81]
G.StefanucciR.van Leeuwen, Nonequilibrium Many-Body Theory of Quantum Systems, Cambridge Univ. Press, 2013
[82]
D.C. Langreth, in: Linear and Nonlinear Electron Transport in Solids, NATO Advanced Study Institute Series, Vol. 17, edited by J. T. Devreese and V. E. van Doren, Springer, Boston, MA, 1976, p. 3
[83]
J. T. Lü, J. S. Wang. Coupled electron and phonon transport in one-dimensional atomic junctions. Phys. Rev. B, 2007, 76(16): 165418
CrossRef ADS Google scholar
[84]
D.BohmD. Pines, A collective description of electron interactions (III): Coulomb interactions in a degenerate electron gas, Phys. Rev. 92(3), 609 (1953)
[85]
M.PaulssonT. FrederiksenM.Brandbyge, Modeling inelastic phonon scattering in atomic- and molecular-wire junctions, Phys. Rev. B 72, 201101(R) (2005)
[86]
L. K. Dash, H. Ness, R. W. Godby. Nonequilibrium electronic structure of interacting single-molecule nanojunctions: Vertex corrections and polarization effects for the electron−vibron coupling. J. Chem. Phys., 2010, 132(10): 104113
CrossRef ADS Google scholar
[87]
A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill, 1971
[88]
G. W. Ford, M. Kac, P. Mazur. Statistical mechanics of assemblies of coupled oscillators. J. Math. Phys., 1965, 6(4): 504
CrossRef ADS Google scholar
[89]
J. Peng and J. S. Wang, Current-induced heat transfer in double-layer graphene, arXiv: 1805.09493 (2019)
[90]
Z. Q. Zhang, J. T. Lü, J. S. Wang. Energy transfer between two vacuum-gapped metal plates: Coulomb fluctuations and electron tunneling. Phys. Rev. B, 2018, 97(19): 195450
CrossRef ADS Google scholar
[91]
M. Büttiker. Symmetry of electrical conduction. IBM J. Res. Develop., 1988, 32(3): 317
CrossRef ADS Google scholar
[92]
L. Hedin. New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys. Rev., 1965, 139(3A): A796
CrossRef ADS Google scholar
[93]
R. M. Martin, L. Reining, and D. M. Ceperley, Interacting Electrons, Cambridge Univ. Press, 2016
[94]
G. D. Mahan, Many-Particle Physics, 3rd Ed., Kluwer Academic, 2000
[95]
J. Peng, H. H. Yap, G. Zhang, and J. S. Wang, A scalar photon theory for near-field radiative heat transfer, arXiv: 1703.07113 (2017)
[96]
S. Weinberg, The Quantum Theory of Fields, Volume 1: Foundations, Cambridge Univ. Press, 2005
[97]
R. J. Glauber. Attenuators, and Schrödinger’s Cat. Ann. N. Y. Acad. Sci., 1986, 480(1): 336
CrossRef ADS Google scholar
[98]
R. A. Jishi, Feynman Diagram Techniques in Condensed Matter Physics, Cambridge Univ. Press, 2013
[99]
J. Rammer, Quantum Field Theory of Non-equilibrium States, Cambridge Univ. Press, 2007
[100]
H. Bruus and K. Flensberg, Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, Oxford Univ. Press, 2004
[101]
S. Datta. Nanoscale device modeling: The Green’s function method. Superlattices Microstruct., 2000, 28(4): 253
CrossRef ADS Google scholar
[102]
L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics, W. A. Benjamin, Inc, 1962
[103]
J. M. Ziman, Electrons and Phonons, Clarendon Press, Oxford, 1960
[104]
B. van Duppen, A. Tomadin, A. N. Grigorenko, M. Polini. Current-induced birefringent absorption and non-reciprocal plasmons in grapheme. 2D Mater., 2016, 3: 015011
CrossRef ADS Google scholar
[105]
D. Svintsov, V. Ryzhii. Comment on “Negative Landau damping in bilayer graphene”. Phys. Rev. Lett., 2019, 123(21): 219401
CrossRef ADS Google scholar
[106]
T. A. Morgado, M. G. Silveirinha. Negative Landau damping in bilayer graphene. Phys. Rev. Lett., 2017, 119(13): 133901
CrossRef ADS Google scholar
[107]
B. Shapiro. Fluctuation-induced forces in the presence of mobile carrier drift. Phys. Rev. B, 2017, 96(7): 075407
CrossRef ADS Google scholar
[108]
O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, M. Soljačić. Near-field thermal radiation transfer controlled by plasmons in graphene. Phys. Rev. B, 2012, 85(15): 155422
CrossRef ADS Google scholar
[109]
J. B. Pendry. Radiative exchange of heat between nanostructures. J. Phys.: Condens. Matter, 1999, 11(35): 6621
CrossRef ADS Google scholar
[110]
F. Herz, C. Kathmann, S. A. Biehs. General trace formula for heat flux fluctuations. Europhys. Lett., 2020, 130(4): 44003
CrossRef ADS Google scholar
[111]
J. L. Wise, N. Roubinowitz, W. Belzig, D. M. Basko. Signature of resonant modes in radiative heat current noise spectrum. Phys. Rev. B, 2022, 106(16): 165407
CrossRef ADS Google scholar
[112]
J. S. Wang, B. K. Agarwalla, H. Li. Transient behavior of full counting statistics in thermal transport. Phys. Rev. B, 2011, 84(15): 153412
CrossRef ADS Google scholar
[113]
G. Tang, J. S. Wang. Heat transfer statistics in extreme-near-field radiation. Phys. Rev. B, 2018, 98(12): 125401
CrossRef ADS Google scholar
[114]
M. Campisi, P. Hänggi, P. Talkner. Colloquium: Quantum fluctuation relations: Foundations and applications. Rev. Mod. Phys., 2011, 83(3): 771
CrossRef ADS Google scholar
[115]
B. K. Agarwalla, B. Li, J. S. Wang. Full-counting statistics of heat transport in harmonic junctions: Transient, steady states, and fluctuation theorems. Phys. Rev. E, 2012, 85(5): 051142
CrossRef ADS Google scholar
[116]
L. S. Levitov, G. B. Lesovik. Charge distribution in quantum shot noise. JETP Lett., 1993, 58(3): 230
[117]
G. Tang, H. H. Yap, J. Ren, J. S. Wang. Anomalous near-field heat transfer in carbon-based nanostructures with edge states. Phys. Rev. Appl., 2019, 11(3): 031004
CrossRef ADS Google scholar
[118]
R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford Univ. Press, 1989
[119]
N. W. Ashcroft and N. D. Mermin, Solid State Physics, Saunders College Publishing, 1976
[120]
S. L. Adler. Quantum theory of the dielectric constant in real solids. Phys. Rev., 1962, 126(2): 413
CrossRef ADS Google scholar
[121]
N. Wiser. Dielectric constant with local field effects included. Phys. Rev., 1963, 129(1): 62
CrossRef ADS Google scholar
[122]
M. S. Hybertsen, S. G. Louie. Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Phys. Rev. B, 1986, 34(8): 5390
CrossRef ADS Google scholar
[123]
J. Deslippe, G. Samsonidze, D. A. Strubbe, M. Jain, M. L. Cohen, S. G. Louie. BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures. Comput. Phys. Commun., 2012, 183(6): 1269
CrossRef ADS Google scholar
[124]
F. Xuan, Y. Chen, S. Y. Quek. Quasiparticle levels at large interface systems from many-body perturbation theory: The XAF-GW method. J. Chem. Theory Comput., 2019, 15(6): 3824
CrossRef ADS Google scholar
[125]
F. A. Rasmussen, First Principles Calculations of Electronic Excitations in 2D Materials, Ph. D. thesis, Technical University of Denmark, 2016
[126]
E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’ Guide, 3rd Ed., Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999
[127]
T. Zhu, Z. Q. Zhang, Z. Gao, J. S. Wang. First-principles method to study near-field radiative heat transfer. Phys. Rev. Appl., 2020, 14(2): 024080
CrossRef ADS Google scholar
[128]
T. Zhu, M. Antezza, J. S. Wang. Dynamical polarizability of graphene with spatial dispersion. Phys. Rev. B, 2021, 103(12): 125421
CrossRef ADS Google scholar
[129]
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car. . Quantum ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter, 2009, 21(39): 395502
CrossRef ADS Google scholar
[130]
P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli. . Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys.: Condens. Matter, 2017, 29(46): 465901
CrossRef ADS Google scholar
[131]
N. Troullier, J. L. Martins. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B, 1991, 43(3): 1993
CrossRef ADS Google scholar
[132]
J. P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
CrossRef ADS Google scholar
[133]
H. J. Monkhorst, J. D. Pack. Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13(12): 5188
CrossRef ADS Google scholar
[134]
T. Zhu, P. E. Trevisanutto, T. C. Asmara, L. Xu, Y. P. Feng, A. Rusydi. Generation of multiple plasmons in strontium niobates mediated by local field effects. Phys. Rev. B, 2018, 98(23): 235115
CrossRef ADS Google scholar
[135]
P. O. Chapuis, S. Volz, C. Henkel, K. Joulain, J. J. Greffet. Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces. Phys. Rev. B, 2008, 77(3): 035431
CrossRef ADS Google scholar
[136]
P. Rodriguez-López, W.-K. Tse, D. A. R. Dalvit. Radiative heat transfer in 2D dirac materials. J. Phys. :Condens. Matter, 2015, 27: 214019
CrossRef ADS Google scholar
[137]
R. Peierls. Zur Theorie des Diamagnetismus von Leitungselektronen. Eur. Phys. J. A, 1933, 80(11−12): 763
CrossRef ADS Google scholar
[138]
M. Graf, P. Vogl. Electromagnetic fields and dielectric response in empirical tight-binding theory. Phys. Rev. B, 1995, 51(8): 4940
CrossRef ADS Google scholar
[139]
J. Li, D. Golez, G. Mazza, A. J. Millis, A. Georges, M. Eckstein. Electromagnetic coupling in tight-binding models for strongly correlated light and matter. Phys. Rev. B, 2020, 101(20): 205140
CrossRef ADS Google scholar
[140]
P. G. de Gennes, Superconductivity of Metals and Alloys, CRC Press, 1999
[141]
R. Loudon, The Quantum Theory of Light, 3rd Ed., Oxford Univ. Press, 2000
[142]
G. B. Arfken, H. J. Weber, and F. E. Harris, Mathematical Methods for Physicists, 7th Ed., Academic Press, 2013
[143]
O. Keller, Quantum Theory of Near-Field Electrodynamics, Springer, Berlin, 2011
[144]
J. S. Wang and J. Peng, A microscopic theory for ultra-near-field radiation, arXiv: 1607.02840 (2016)
[145]
D. J. Griffiths, Introduction to Electrodynamics, 4th Ed., Cambridge Univ. Press, 2017
[146]
N. N. Bogoliubov and D. V. Shirkov, Quantum Fields, Addison-Wesley, 1982
[147]
G. S. Agarwal. Quantum electrodynamics in the presence of dielectrics and conductors. I. Electromagnetic-field response functions and black-body fluctuations in finite geometries. Phys. Rev. A Gen. Phys., 1975, 11(1): 230
CrossRef ADS Google scholar
[148]
Z.-Q.ZhangJ.-T. LüJ.-S.Wang, Angular momentum radiation from current-carrying molecular junctions, Phys. Rev. B 101, 161406(R) (2020)
[149]
K. Kuhnke, C. Große, P. Merino, K. Kern. Atomic-scale imaging and spectroscopy of electroluminescence at molecular interfaces. Chem. Rev., 2017, 117(7): 5174
CrossRef ADS Google scholar
[150]
Z. Q. Zhang, J. S. Wang. Electroluminescence and thermal radiation from metallic armchair carbon nanotubes with defects. Phys. Rev. B, 2021, 104(8): 085422
CrossRef ADS Google scholar
[151]
V. Weisskopf, E. Wigner. Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheorie. Eur. Phys. J. A, 1930, 63(1−2): 54
CrossRef ADS Google scholar
[152]
W. Heisenberg, W. Pauli. Zur Quantentheorie der Wellenfelder II. Eur. Phys. J. A, 1930, 59(3−4): 168
CrossRef ADS Google scholar
[153]
M. Creutz. Quantum electrodynamics in the temporal gauge. Ann. Phys., 1979, 117(2): 471
CrossRef ADS Google scholar
[154]
E. Fradkin, Quantum Field Theory: An Integrated Approach, Princeton Univ. Press, 2021
[155]
L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd Ed., Cambridge Univ. Press, 2012
[156]
S. M. Barnett. Optical angular-momentum flux. J. Opt. B, 2002, 4(2): S7
CrossRef ADS Google scholar
[157]
S. M. Barnett, L. Allen, R. P. Cameron, C. R. Gilson, M. J. Padgett, F. C. Speirits, A. M. Yao. On the natures of the spin and orbital parts of optical angular momentum. J. Opt., 2016, 18(6): 064004
CrossRef ADS Google scholar
[158]
Y. M. Zhang, T. Zhu, Z. Q. Zhang, J. S. Wang. Microscopic theory of photon-induced energy, momentum, and angular momentum transport in the nonequilibrium regime. Phys. Rev. B, 2022, 105(20): 205421
CrossRef ADS Google scholar
[159]
R. M. Abraham Ekeroth, A. García-Martín, J. C. Cuevas. Thermal discrete dipole approximation for the description of thermal emission and radiative heat transfer of magneto-optical systems. Phys. Rev. B, 2017, 95(23): 235428
CrossRef ADS Google scholar
[160]
L. Zhu, S. Fan. Persistent directional current at equilibrium in nonreciprocal many-body near field electromagnetic heat transfer. Phys. Rev. Lett., 2016, 117(13): 134303
CrossRef ADS Google scholar
[161]
I. Latella, P. Ben-Abdallah. Giant thermal magnetoresistance in plasmonic structures. Phys. Rev. Lett., 2017, 118(17): 173902
CrossRef ADS Google scholar
[162]
L. G. Aslamazov, A. I. Larkin. Effect of fluctuations on the properties of a superconductor above the critical temperature. Sov. Phys. Solid State., 1968, 10: 875
CrossRef ADS Google scholar
[163]
H. A. Lorentz, Het theorema van Poynting over de energie in het electromagnetisch veld en een paar algemeene stellingen over de voortplanting van het licht, Verslagen der Afdeeling Natuurkunde van de Koninklijke Akademie van Wetenschappen 4, 176 (1895)
[164]
B. Strekha, S. Molesky, P. Chao, M. Krüger, A. W. Rodriguez. Trace expressions and associated limits for nonequilibrium Casimir torque. Phys. Rev. A, 2022, 106(4): 042222
CrossRef ADS Google scholar
[165]
R. Khrapko. Unknown spin radiation. J. Phys. Conf. Ser., 2019, 1172(1): 012055
CrossRef ADS Google scholar
[166]
Y. M. Zhang, J. S. Wang. Far-field heat and angular momentum radiation of the Haldane model. J. Phys.: Condens. Matter, 2021, 33(5): 055301
CrossRef ADS Google scholar
[167]
O. V. Kibis, M. R. da Costa, M. E. Portnoi. Generation of terahertz radiation by hot electrons in carbon nanotubes. Nano Lett., 2007, 7(11): 3414
CrossRef ADS Google scholar
[168]
O. V. Dolgov, E. G. Maksimov. The dielectric function of crystalline systems. Modern Problems in Condensed Matter Sciences, 1989, 24: 221
CrossRef ADS Google scholar

Acknowledgements

We thank Gaomin Tang, Jingtao Lü, and Mauro Antezza for collaborations. J.-S. W. thanks Mehran Kardar for hosting a visit at MIT. He also thanks Shanhui Fan, Philippe Ben Abdallah, Matthias Krüger, and Zhuomin Zhang for discussion. This work is supported by NSFC under grant No. 12204346, MOE tier 2 grant R-144-000-411-112, and MOE Academic Research Tier 1 Fund A-8000990-00-00. Parts of the manuscript were written while visiting Kavli Institute for Theoretical Physics, University of California Santa Barbara, supported in part by the National Science Foundation under Grant No. NSF PHY-1748958.

RIGHTS & PERMISSIONS

2023 The Authors
AI Summary AI Mindmap
PDF(6659 KB)

Accesses

Citations

Detail

Sections
Recommended

/