Quantum transport in topological semimetals under magnetic fields (III)
Lei Shi, Hai-Zhou Lu
Quantum transport in topological semimetals under magnetic fields (III)
We review our most recent research on quantum transport, organizing the review according to the intensity of the magnetic field and focus mostly on topological semimetals and topological insulators. We first describe the phenomenon of quantum transport when a magnetic field is not present. We introduce the nonlinear Hall effect and its theoretical descriptions. Then, we discuss Coulomb instabilities in 3D higher-order topological insulators. Next, we pay close attention to the surface states and find a function to identify the axion insulator in the antiferromagnetic topological insulator MnBi2Te4. Under weak magnetic fields, we focus on the decaying Majorana oscillations which has the correlation with spin−orbit coupling. In the section on strong magnetic fields, we study the helical edge states and the one-sided hinge states of the Fermi-arc mechanism, which are relevant to the quantum Hall effect. Under extremely large magnetic fields, we derive a theoretical explanation of the negative magnetoresistance without a chiral anomaly. Then, we show how magnetic responses can be used to detect relativistic quasiparticles. Additionally, we introduce the 3D quantum Hall effect’s charge-density wave mechanism and compare it with the theory of 3D transitions between metal and insulator driven by magnetic fields.
topological semimetal / topological insulator / axion insulator / nonlinear Hall effect (NHE) / quantum oscillation / quantum Hall effect (QHE) / charge density wave (CDW)
[1] |
H. Z. Lu, S. Q. Shen. Quantum transport in topological semimetals under magnetic fields. Front. Phys., 2017, 12(3): 127201
CrossRef
ADS
Google scholar
|
[2] |
H. P. Sun, H. Z. Lu. Quantum transport in topological semimetals under magnetic fields (II). Front. Phys., 2019, 14(3): 33405
CrossRef
ADS
Google scholar
|
[3] |
X. B. Qiang, H. Z. Lu. Quantum transport in topological matters under magnetic fields. Acta Phys. Sin., 2021, 70(2): 027201
CrossRef
ADS
Google scholar
|
[4] |
H. Z. Lu, S. Q. Shen. Weak antilocalization and localization in disordered and interacting Weyl semimetals. Phys. Rev. B, 2015, 92(3): 035203
CrossRef
ADS
Google scholar
|
[5] |
X.DaiH. Z. LuS.Q. ShenH.Yao, Detecting monopole charge in Weyl semimetals via quantum interference transport, Phys. Rev. B 93, 161110(R) (2016)
|
[6] |
H. Li, H. T. He, H. Z. Lu, H. C. Zhang, H. C. Liu, R. Ma, Z. Y. Fan, S. Q. Shen, J. N. Wang. Negative magnetoresistance in Dirac semimetal Cd3As2. Nat. Commun., 2016, 7(1): 10301
CrossRef
ADS
Google scholar
|
[7] |
X. Dai, Z. Z. Du, H. Z. Lu. Negative magnetoresistance without chiral anomaly in topological insulators. Phys. Rev. Lett., 2017, 119(16): 166601
CrossRef
ADS
Google scholar
|
[8] |
C. Li, C. M. Wang, B. Wan, X. Wan, H. Z. Lu, X. C. Xie. Rules for phase shifts of quantum oscillations in topological nodal-line semimetals. Phys. Rev. Lett., 2018, 120(14): 146602
CrossRef
ADS
Google scholar
|
[9] |
C. M. Wang, H. Z. Lu, S. Q. Shen. Anomalous phase shift of quantum oscillations in 3D topological semimetals. Phys. Rev. Lett., 2016, 117(7): 077201
CrossRef
ADS
Google scholar
|
[10] |
H. Z. Lu, S. B. Zhang, S. Q. Shen. High-field magnetoconductivity of topological semimetals with short range potential. Phys. Rev. B, 2015, 92(4): 045203
CrossRef
ADS
Google scholar
|
[11] |
S. B. Zhang, H. Z. Lu, S. Q. Shen. Linear magnetoconductivity in an intrinsic topological Weyl semimetal. New J. Phys., 2016, 18(5): 053039
CrossRef
ADS
Google scholar
|
[12] |
C.M. WangH. P. SunH.Z. LuX.C. Xie, 3D quantum Hall effect of Fermi arcs in topological semimetals, Phys. Rev. Lett. 119(13), 136806 (2017)
|
[13] |
Y. Chen, H. Z. Lu, X. C. Xie. Forbidden backscattering and resistance dip in the quantum limit as a sig nature for topological insulators. Phys. Rev. Lett., 2018, 121(3): 036602
CrossRef
ADS
Google scholar
|
[14] |
C. L. Zhang, S. Y. Xu, C. M. Wang, Z. Lin, Z. Z. Du, C. Guo, C. C. Lee, H. Lu, Y. Feng, S. M. Huang, G. Chang, C. H. Hsu, H. Liu, H. Lin, L. Li, C. Zhang, J. Zhang, X. C. Xie, T. Neupert, M. Z. Hasan, H. Z. Lu, J. Wang, S. Jia. Magnetic tunnelling induced Weyl node annihilation in TaP. Nat. Phys., 2017, 13(10): 979
CrossRef
ADS
Google scholar
|
[15] |
Z. Du, C. Wang, H. P. Sun, H. Z. Lu, X. Xie. Quantum theory of the nonlinear Hall effect. Nat. Commun., 2021, 12(1): 5038
CrossRef
ADS
Google scholar
|
[16] |
Z. Du, H. Z. Lu, X. Xie. Nonlinear Hall effects. Nat. Rev. Phys., 2021, 3(11): 744
CrossRef
ADS
Google scholar
|
[17] |
Z. Du, C. Wang, S. Li, H. Z. Lu, X. Xie. Disorder induced nonlinear Hall effect with time-reversal symmetry. Nat. Commun., 2019, 10(1): 3047
CrossRef
ADS
Google scholar
|
[18] |
Q. Ma, S. Y. Xu, H. Shen, D. MacNeill, V. Fatemi, T. R. Chang, A. M. Mier Valdivia, S. Wu, Z. Du, C. H. Hsu, S. Fang, Q. D. Gibson, K. Watanabe, T. Taniguchi, R. J. Cava, E. Kaxiras, H. Z. Lu, H. Lin, L. Fu, N. Gedik, P. Jarillo-Herrero. Observation of the nonlinear Hall effect under time-reversal symmetric conditions. Nature, 2019, 565(7739): 337
CrossRef
ADS
Google scholar
|
[19] |
Z. Z. Du, C. M. Wang, H. Z. Lu, X. C. Xie. Band signatures for strong nonlinear Hall effect in Bi layer WTe2. Phys. Rev. Lett., 2018, 121(26): 266601
CrossRef
ADS
Google scholar
|
[20] |
P. L. Zhao, X. B. Qiang, H. Z. Lu, X. C. Xie. Coulomb instabilities of a three-dimensional higher-order topological insulator. Phys. Rev. Lett., 2021, 127(17): 176601
CrossRef
ADS
Google scholar
|
[21] |
H. P. Sun, C. M. Wang, S. B. Zhang, R. Chen, Y. Zhao, C. Liu, Q. Liu, C. Chen, H. Z. Lu, X. C. Xie. Analytical solution for the surface states of the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. B, 2020, 102(24): 241406
CrossRef
ADS
Google scholar
|
[22] |
R. Chen, S. Li, H. P. Sun, Q. Liu, Y. Zhao, H. Z. Lu, X. C. Xie. Using nonlocal surface trans port to identify the axion insulator. Phys. Rev. B, 2021, 103(24): L241409
CrossRef
ADS
Google scholar
|
[23] |
Z. Cao, H. Zhang, H. F. Lü, W. X. He, H. Z. Lu, X. C. Xie. Decays of Majorana or Andreev oscillations induced by step-like spin−orbit coupling. Phys. Rev. Lett., 2019, 122(14): 147701
CrossRef
ADS
Google scholar
|
[24] |
R. Chen, T. Liu, C. M. Wang, H. Z. Lu, X. C. Xie. Field tunable one sided higher-order topological hinge states in Dirac semimetals. Phys. Rev. Lett., 2021, 127(6): 066801
CrossRef
ADS
Google scholar
|
[25] |
R. Chen, C. M. Wang, T. Liu, H. Z. Lu, X. C. Xie. Quantum Hall effect originated from helical edge states in Cd3As2. Phys. Rev. Res., 2021, 3(3): 033227
CrossRef
ADS
Google scholar
|
[26] |
B. Wan, F. Schindler, K. Wang, K. Wu, X. Wan, T. Neupert, H. Z. Lu. Theory for the negative longitudinal magnetoresistance in the quantum limit of Kramers Weyl semimetals. J. Phys.: Condens. Matter, 2018, 30(50): 505501
CrossRef
ADS
Google scholar
|
[27] |
C. L. Zhang.
CrossRef
ADS
Google scholar
|
[28] |
F. Qin, S. Li, Z. Z. Du, C. M. Wang, W. Zhang, D. Yu, H. Z. Lu, X. C. Xie. Theory for the charge density wave mechanism of 3D quantum Hall effect. Phys. Rev. Lett., 2020, 125(20): 206601
CrossRef
ADS
Google scholar
|
[29] |
P. L. Zhao, H. Z. Lu, X. C. Xie. Theory for magnetic field driven 3D metal−insulator transitions in the quantum limit. Phys. Rev. Lett., 2021, 127(4): 046602
CrossRef
ADS
Google scholar
|
[30] |
S.Q. Shen, Topological Insulators, 2nd Ed., Springer Verlag, Berlin Heidelberg, 2017
|
[31] |
R. Okugawa, S. Murakami. Dispersion of Fermi arcs in Weyl semimetals and their evolutions to Dirac cones. Phys. Rev. B, 2014, 89(23): 235315
CrossRef
ADS
Google scholar
|
[32] |
H. Z. Lu, S. B. Zhang, S. Q. Shen. High field mag netoconductivity of topological semimetals with short range potential. Phys. Rev. B, 2015, 92(4): 045203
CrossRef
ADS
Google scholar
|
[33] |
H. Zheng, M. Zahid Hasan. Quasiparticle interference on type I and type II Weyl semimetal surfaces: A review. Adv. Phys. X, 2018, 3(1): 1466661
CrossRef
ADS
Google scholar
|
[34] |
H. Z. Lu, W. Y. Shan, W. Yao, Q. Niu, S. Q. Shen. Massive Dirac fermions and spin physics in an ultrathin film of topological insulator. Phys. Rev. B, 2010, 81(11): 115407
CrossRef
ADS
Google scholar
|
[35] |
C. M. Wang, X. L. Lei. Linear magnetoresistance on the topological surface. Phys. Rev. B, 2012, 86(3): 035442
CrossRef
ADS
Google scholar
|
[36] |
Z. Wang, H. Weng, Q. Wu, X. Dai, Z. Fang. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys. Rev. B, 2013, 88(12): 125427
CrossRef
ADS
Google scholar
|
[37] |
S. Jeon, B. B. Zhou, A. Gyenis, B. E. Feldman, I. Kimchi, A. C. Potter, Q. D. Gibson, R. J. Cava, A. Vishwanath, A. Yazdani. Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2. Nat. Mater., 2014, 13(9): 851
CrossRef
ADS
Google scholar
|
[38] |
C. L. Zhang, F. Schindler, H. Liu, T. R. Chang, S. Y. Xu, G. Chang, W. Hua, H. Jiang, Z. Yuan, J. Sun, H. T. Jeng, H. Z. Lu, H. Lin, M. Z. Hasan, X. C. Xie, T. Neupert, S. Jia. Ultraquantum magnetoresistance in the Kramers−Weyl semimetal candidate β-Ag2Se. Phys. Rev. B, 2017, 96(16): 165148
CrossRef
ADS
Google scholar
|
[39] |
E. H. Hall.
CrossRef
ADS
Google scholar
|
[40] |
E. H. Hall. Xviii. on the “rotational coefficient” in nickel and cobalt. Lond. Edinb. Dublin Philos. Mag. J. Sci., 1881, 12(74): 157
CrossRef
ADS
Google scholar
|
[41] |
K. Klitzing, G. Dorda, M. Pepper. New method for high accuracy determination of the fine structure constant based on quantized Hall resistance. Phys. Rev. Lett., 1980, 45(6): 494
CrossRef
ADS
Google scholar
|
[42] |
D. C. Tsui, H. L. Stormer, A. C. Gossard. Two dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett., 1982, 48(22): 1559
CrossRef
ADS
Google scholar
|
[43] |
N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, N. P. Ong. Anomalous Hall effect. Rev. Mod. Phys., 2010, 82(2): 1539
CrossRef
ADS
Google scholar
|
[44] |
M.E. CageK. KlitzingA.ChangF.DuncanM.Haldane R.B. LaughlinA.PruiskenD.Thouless, The Quantum Hall Effect, Springer Science & Business Media, 2012
|
[45] |
I. Sodemann, L. Fu. Quantum nonlinear Hall effect induced by Berry curvature dipole in time reversal in variant materials. Phys. Rev. Lett., 2015, 115(21): 216806
CrossRef
ADS
Google scholar
|
[46] |
T. Low, Y. Jiang, F. Guinea. Topological currents in black phosphorus with broken inversion symmetry. Phys. Rev. B, 2015, 92(23): 235447
CrossRef
ADS
Google scholar
|
[47] |
J. I. Facio, D. Efremov, K. Koepernik, J. S. You, I. Sodemann, J. van den Brink. Strongly enhanced berry dipole at topological phase transitions in BiTeI. Phys. Rev. Lett., 2018, 121(24): 246403
CrossRef
ADS
Google scholar
|
[48] |
J. S. You, S. Fang, S. Y. Xu, E. Kaxiras, T. Low. Berry curvature dipole current in the transition metal dichalcogenides family. Phys. Rev. B, 2018, 98(12): 121109
CrossRef
ADS
Google scholar
|
[49] |
Y. Zhang, J. van den Brink, C. Felser, B. Yan. Electrically tuneable nonlinear anomalous Hall effect in two-dimensional transition metal dichalcogenides WTe2 and MoTe2. 2D Mater., 2018, 5: 044001
CrossRef
ADS
Google scholar
|
[50] |
Y. Zhang, Y. Sun, B. Yan. Berry curvature dipole in Weyl semimetal materials: An ab initio study. Phys. Rev. B, 2018, 97(4): 041101
CrossRef
ADS
Google scholar
|
[51] |
M. Papaj, L. Fu. Magnus Hall effect. Phys. Rev. Lett., 2019, 123(21): 216802
CrossRef
ADS
Google scholar
|
[52] |
D. Mandal, K. Das, A. Agarwal. Magnus Nernst and thermal Hall effect. Phys. Rev. B, 2020, 102(20): 205414
CrossRef
ADS
Google scholar
|
[53] |
K. Hamamoto, M. Ezawa, K. W. Kim, T. Morimoto, N. Nagaosa. Nonlinear spin current generation in noncentrosymmetric spin−orbit coupled systems. Phys. Rev. B, 2017, 95(22): 224430
CrossRef
ADS
Google scholar
|
[54] |
Y. Araki. Strain-induced nonlinear spin Hall effect in topological Dirac semimetal. Sci. Rep., 2018, 8(1): 15236
CrossRef
ADS
Google scholar
|
[55] |
X. Q. Yu, Z. G. Zhu, J. S. You, T. Low, G. Su. Topological nonlinear anomalous nernst effect in strained transition metal dichalcogenides. Phys. Rev. B, 2019, 99(20): 201410
CrossRef
ADS
Google scholar
|
[56] |
C. Zeng, S. Nandy, A. Taraphder, S. Tewari. Nonlinear Nernst effect in bilayer WTe2. Phys. Rev. B, 2019, 100(24): 245102
CrossRef
ADS
Google scholar
|
[57] |
R. Nakai, N. Nagaosa. Nonreciprocal thermal and thermoelectric transport of electrons in noncentrosymmetric crystals. Phys. Rev. B, 2019, 99(11): 115201
CrossRef
ADS
Google scholar
|
[58] |
C. Zeng, S. Nandy, S. Tewari. Fundamental relations for anomalous thermoelectric transport coefficients in the nonlinear regime. Phys. Rev. Res., 2020, 2(3): 032066
CrossRef
ADS
Google scholar
|
[59] |
K. Kang, T. Li, E. Sohn, J. Shan, K. F. Mak. Nonlinear anomalous Hall effect in few layer WTe2. Nat. Mater., 2019, 18(4): 324
CrossRef
ADS
Google scholar
|
[60] |
M. V. Berry. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A, 1984, 392(1802): 45
CrossRef
ADS
Google scholar
|
[61] |
D. Xiao, M. C. Chang, Q. Niu. Berry phase effects on electronic properties. Rev. Mod. Phys., 2010, 82(3): 1959
CrossRef
ADS
Google scholar
|
[62] |
R. Karplus, J. M. Luttinger. Hall effect in ferromagnetics. Phys. Rev., 1954, 95(5): 1154
CrossRef
ADS
Google scholar
|
[63] |
W. A. Benalcazar, B. A. Bernevig, T. L. Hughes. Quantized electric multipole insulators. Science, 2017, 357(6346): 61
CrossRef
ADS
Google scholar
|
[64] |
W. A. Benalcazar, B. A. Bernevig, T. L. Hughes. Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators. Phys. Rev. B, 2017, 96(24): 245115
CrossRef
ADS
Google scholar
|
[65] |
C.M. WangH. P. SunH.Z. LuX.C. Xie, 3D quantum Hall effect of Fermi arcs in topological semimetals, Phys. Rev. Lett. 119(13), 136806 (2017)
|
[66] |
Z.SongZ. FangC.Fang, (d − 2) dimensional edge states of rotation symmetry protected topological states, Phys. Rev. Lett. 119(24), 246402 (2017)
|
[67] |
J. Langbehn, Y. Peng, L. Trifunovic, F. von Oppen, P. W. Brouwer. Reflection symmetric second-order topological insulators and superconductors. Phys. Rev. Lett., 2017, 119(24): 246401
CrossRef
ADS
Google scholar
|
[68] |
R. Chen, C. Z. Chen, J. H. Gao, B. Zhou, D. H. Xu. Higher-order topological insulators in quasicrystals. Phys. Rev. Lett., 2020, 124(3): 036803
CrossRef
ADS
Google scholar
|
[69] |
F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S. P. Parkin, B. A. Bernevig, T. Neupert. Higher-order topological insulators. Sci. Adv., 2018, 4(6): eaat0346
CrossRef
ADS
Google scholar
|
[70] |
F. Schindler, Z. Wang, M. G. Vergniory, A. M. Cook, A. Murani, S. Sengupta, A. Y. Kasumov, R. Deblock, S. Jeon, I. Drozdov, H. Bouchiat, S. Guéron, A. Yazdani, B. A. Bernevig, T. Neupert. Higher-order topology in bismuth. Nat. Phys., 2018, 14(9): 918
CrossRef
ADS
Google scholar
|
[71] |
M. Ezawa. Higher-order topological insulators and semimetals on the breathing Kagome and pyrochlore lattices. Phys. Rev. Lett., 2018, 120(2): 026801
CrossRef
ADS
Google scholar
|
[72] |
Z. Li, Y. Cao, P. Yan, X. Wang. Higher-order topological solitonic insulators. npj Comput. Mater., 2019, 5: 107
CrossRef
ADS
Google scholar
|
[73] |
L. Fu, C. L. Kane, E. J. Mele. Topological insulators in three dimensions. Phys. Rev. Lett., 2007, 98(10): 106803
CrossRef
ADS
Google scholar
|
[74] |
J. E. Moore, L. Balents. Topological invariants of time reversal invariant band structures. Phys. Rev. B, 2007, 75(12): 121306
CrossRef
ADS
Google scholar
|
[75] |
S. Murakami. Phase transition between the quantum spin Hall and insulator phases in 3D: Emergence of a topological gapless phase. New J. Phys., 2007, 9(9): 356
CrossRef
ADS
Google scholar
|
[76] |
R. Roy. Topological phases and the quantum spin Hall effect in three dimensions. Phys. Rev. B, 2009, 79(19): 195322
CrossRef
ADS
Google scholar
|
[77] |
L. Fu, C. L. Kane. Topological insulators within version symmetry. Phys. Rev. B, 2007, 76(4): 045302
CrossRef
ADS
Google scholar
|
[78] |
D.HsiehD. QianL.WrayY.XiaY.S. Hor R.J. CavaM. Z. Hasan, A topological Dirac insulator in a quantum spin Hall phase, Nature 452(7190), 970 (2008)
|
[79] |
H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, S. C. Zhang, Topological insulators in Bi2Se3. Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys., 2009, 5(6): 438
CrossRef
ADS
Google scholar
|
[80] |
Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, M. Z. Hasan. Observation of a large gap topological insulator class with a single Dirac cone on the surface. Nat. Phys., 2009, 5(6): 398
CrossRef
ADS
Google scholar
|
[81] |
M. Z. Hasan, C. L. Kane. Colloquium: Topological insulators. Rev. Mod. Phys., 2010, 82(4): 3045
CrossRef
ADS
Google scholar
|
[82] |
X. L. Qi, S. C. Zhang. Topological insulators and superconductors. Rev. Mod. Phys., 2011, 83(4): 1057
CrossRef
ADS
Google scholar
|
[83] |
M. Z. Hasan, J. E. Moore. Three-dimensional topological insulators. Annu. Rev. Condens. Matter Phys., 2011, 2(1): 55
CrossRef
ADS
Google scholar
|
[84] |
H. Xue, Y. Yang, F. Gao, Y. Chong, B. Zhang. Acoustic higher-order topological insulator on a Kagome lattice. Nat. Mater., 2019, 18(2): 108
CrossRef
ADS
Google scholar
|
[85] |
X. Ni, M. Weiner, A. Alù, A. B. Khanikaev. Observation of higher-order topological acoustic states protected by generalized chiral symmetry. Nat. Mater., 2019, 18(2): 113
CrossRef
ADS
Google scholar
|
[86] |
H. Xue, Y. Ge, H. X. Sun, Q. Wang, D. Jia, Y. J. Guan, S. Q. Yuan, Y. Chong, B. Zhang. Observation of an acoustic octupole topological insulator. Nat. Commun., 2020, 11(1): 2442
CrossRef
ADS
Google scholar
|
[87] |
M. Serra-Garcia, V. Peri, R. Süsstrunk, O. R. Bilal, T. Larsen, L. G. Villanueva, S. D. Huber. Observation of a phononic quadrupole topological insulator. Nature, 2018, 555(7696): 342
CrossRef
ADS
Google scholar
|
[88] |
C.W. PetersonW.A. BenalcazarT.L. HughesG.Bahl, A quantized microwave quadrupole insulator with topologically protected corner states, Nature 555(7696), 346 (2018)
|
[89] |
S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W. Molenkamp, T. Kiessling, F. Schindler, C. H. Lee, M. Greiter, T. Neupert, R. Thomale. Topoelectrical circuit realization of topological corner modes. Nat. Phys., 2018, 14(9): 925
CrossRef
ADS
Google scholar
|
[90] |
M.Serra-GarciaR.SüsstrunkS. D. Huber, Observation of quadrupole transitions and edge mode topology in an LC circuit network, Phys. Rev. B 99, 020304(R) (2019)
|
[91] |
S. Mittal, V. V. Orre, G. Zhu, M. A. Gorlach, A. Poddubny, M. Hafezi. Photonic quadrupole topological phases. Nat. Photonics, 2019, 13(10): 692
CrossRef
ADS
Google scholar
|
[92] |
A. El Hassan, F. K. Kunst, A. Moritz, G. Andler, E. J. Bergholtz, M. Bourennane. Corner states of light in photonic waveguides. Nat. Photonics, 2019, 13(10): 697
CrossRef
ADS
Google scholar
|
[93] |
B. Y. Xie, G. X. Su, H. F. Wang, H. Su, X. P. Shen, P. Zhan, M. H. Lu, Z. L. Wang, Y. F. Chen. Visualization of higher-order topological insulating phases in twodimensional dielectric photonic crystals. Phys. Rev. Lett., 2019, 122(23): 233903
CrossRef
ADS
Google scholar
|
[94] |
M. Li, D. Zhirihin, M. Gorlach, X. Ni, D. Filonov, A. Slobozhanyuk, A. Alù, A. B. Khanikaev. Higher-order topological states in photonic Kagome crystals with long range interactions. Nat. Photonics, 2020, 14(2): 89
CrossRef
ADS
Google scholar
|
[95] |
Y. Xu, Z. Song, Z. Wang, H. Weng, X. Dai. Higher-order topology of the axion insula tor EuIn2As2. Phys. Rev. Lett., 2019, 122(25): 256402
CrossRef
ADS
Google scholar
|
[96] |
R.X. ZhangF. WuS.Das Sarma, Möbius insulator and higher-order topology in MnBi2nTe3n+1, Phys. Rev. Lett. 124(13), 136407 (2020)
|
[97] |
J. E. Moore. The birth of topological insulators. Nature, 2010, 464(7286): 194
CrossRef
ADS
Google scholar
|
[98] |
Z. Zhu, M. Papaj, X. A. Nie, H. K. Xu, Y. S. Gu, X. Yang, D. Guan, S. Wang, Y. Li, C. Liu, J. Luo, Z. A. Xu, H. Zheng, L. Fu, J. F. Jia. Discovery of segmented Fermi surface induced by cooper pair momentum. Science, 2021, 374(6573): 1381
CrossRef
ADS
Google scholar
|
[99] |
C. X. Liu, X. L. Qi, X. Dai, Z. Fang, S. C. Zhang. Quantum anomalous Hall effect in Hg1−yMnyTe quantum wells. Phys. Rev. Lett., 2008, 101(14): 146802
CrossRef
ADS
Google scholar
|
[100] |
R. Yu, W. Zhang, H. J. Zhang, S. C. Zhang, X. Dai, Z. Fang. Quantized anomalous Hall effect in magnetic topological insulators. Science, 2010, 329(5987): 61
CrossRef
ADS
Google scholar
|
[101] |
X. A. Nie, S. Li, M. Yang, Z. Zhu, H. K. Xu, X. Yang, F. Zheng, D. Guan, S. Wang, Y. Y. Li, C. Liu, J. Li, P. Zhang, Y. Shi, H. Zheng, J. Jia. Robust hot electron and multiple topological insulator states in PtBi2. ACS Nano, 2020, 14(2): 2366
CrossRef
ADS
Google scholar
|
[102] |
Z. Zhu, T. R. Chang, C. Y. Huang, H. Pan, X. A. Nie, X. Z. Wang, Z. T. Jin, S. Y. Xu, S. M. Huang, D. D. Guan, S. Wang, Y. Y. Li, C. Liu, D. Qian, W. Ku, F. Song, H. Lin, H. Zheng, J. F. Jia. Quasiparticle interference and nonsymmorphic effect on a floating band surface state of zrsise. Nat. Commun., 2018, 9(1): 4153
CrossRef
ADS
Google scholar
|
[103] |
M. Mogi, R. Yoshimi, A. Tsukazaki, K. Yasuda, Y. Kozuka, K. Takahashi, M. Kawasaki, Y. Tokura. Magnetic modulation doping in topological insulators toward higher temperature quantum anomalous Hall effect. Appl. Phys. Lett., 2015, 107(18): 182401
CrossRef
ADS
Google scholar
|
[104] |
Y. Tokura, K. Yasuda, A. Tsukazaki. Magnetic topological insulators. Nat. Rev. Phys., 2019, 1(2): 126
CrossRef
ADS
Google scholar
|
[105] |
M. M. Otrokov, I. I. Klimovskikh, H. Bentmann, D. Estyunin, A. Zeugner, Z. S. Aliev, S. Gaß, A. U. B. Wolter, A. V. Koroleva, A. M. Shikin, M. Blanco-Rey, M. Hoffmann, I. P. Rusinov, A. Y. Vyazovskaya, S. V. Eremeev, Y. M. Koroteev, V. M. Kuznetsov, F. Freyse, J. Sánchez-Barriga, I. R. Amiraslanov, M. B. Babanly, N. T. Mamedov, N. A. Abdullayev, V. N. Zverev, A. Alfonsov, V. Kataev, B. Büchner, E. F. Schwier, S. Kumar, A. Kimura, L. Petaccia, G. Di Santo, R. C. Vidal, S. Schatz, K. Kißner, M. Ünzelmann, C. H. Min, S. Moser, T. R. F. Peixoto, F. Reinert, A. Ernst, P. M. Echenique, A. Isaeva, E. V. Chulkov. Prediction and observation of an antiferromagnetic topological insulator. Nature, 2019, 576(7787): 416
CrossRef
ADS
Google scholar
|
[106] |
D. Zhang, M. Shi, T. Zhu, D. Xing, H. Zhang, J. Wang. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Phys. Rev. Lett., 2019, 122(20): 206401
CrossRef
ADS
Google scholar
|
[107] |
J. Li, Y. Li, S. Du, Z. Wang, B. L. Gu, S. C. Zhang, K. He, W. Duan, Y. Xu. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4 family materials. Sci. Adv., 2019, 5(6): eaaw5685
CrossRef
ADS
Google scholar
|
[108] |
H. K. Xu, M. Gu, F. Fei, Y. S. Gu, D. Liu, Q. Y. Yu, S. S. Xue, X. H. Ning, B. Chen, H. Xie, Z. Zhu, D. Guan, S. Wang, Y. Li, C. Liu, Q. Liu, F. Song, H. Zheng, J. Jia. Observation of magnetism-induced topological edge state in antiferromagnetic topological insulator MnBi4Te7. ACS Nano, 2022, 16(6): 9810
CrossRef
ADS
Google scholar
|
[109] |
Y. J. Hao, P. Liu, Y. Feng, X. M. Ma, E. F. Schwier, M. Arita, S. Kumar, C. Hu, R. Lu, M. Zeng, Y. Wang, Z. Hao, H. Y. Sun, K. Zhang, J. Mei, N. Ni, L. Wu, K. Shimada, C. Chen, Q. Liu, C. Liu. Gapless surface Dirac cone in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. X, 2019, 9(4): 041038
CrossRef
ADS
Google scholar
|
[110] |
Y. J. Chen, L. X. Xu, J. H. Li, Y. W. Li, H. Y. Wang, C. F. Zhang, H. Li, Y. Wu, A. J. Liang, C. Chen, S. W. Jung, C. Cacho, Y. H. Mao, S. Liu, M. X. Wang, Y. F. Guo, Y. Xu, Z. K. Liu, L. X. Yang, Y. L. Chen. Topological electronic structure and its temperature evolution in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. X, 2019, 9(4): 041040
CrossRef
ADS
Google scholar
|
[111] |
P. Swatek, Y. Wu, L. L. Wang, K. Lee, B. Schrunk, J. Yan, A. Kaminski. Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. B, 2020, 101(16): 161109
CrossRef
ADS
Google scholar
|
[112] |
R.D. PecceiH. R. Quinn, CP conservation in the presence of pseudoparticles, Phys. Rev. Lett. 38(25), 1440 (1977)
|
[113] |
J. Wang, B. Lian, X. L. Qi, S. C. Zhang. Quantized topological magnetoelectric effect of the zero plateau quantum anomalous Hall state. Phys. Rev. B, 2015, 92(8): 081107
CrossRef
ADS
Google scholar
|
[114] |
T. Morimoto, A. Furusaki, N. Nagaosa. Topological magnetoelectric effects in thin films of topological insulators. Phys. Rev. B, 2015, 92(8): 085113
CrossRef
ADS
Google scholar
|
[115] |
X. L. Qi, R. Li, J. Zang, S. C. Zhang. Inducing a magnetic monopole with topological surface states. Science, 2009, 323(5918): 1184
CrossRef
ADS
Google scholar
|
[116] |
J. Maciejko, X. L. Qi, H. D. Drew, S. C. Zhang. Topological quantization in units of the fine structure constant. Phys. Rev. Lett., 2010, 105(16): 166803
CrossRef
ADS
Google scholar
|
[117] |
W. K. Tse, A. H. MacDonald. Giant magneto optical Kerr effect and universal faraday effect in thin film topological insulators. Phys. Rev. Lett., 2010, 105(5): 057401
CrossRef
ADS
Google scholar
|
[118] |
J. Yu, J. Zang, C. X. Liu. Magnetic resonance induced pseudoelectric field and giant current response in axion insulators. Phys. Rev. B, 2019, 100(7): 075303
CrossRef
ADS
Google scholar
|
[119] |
R. Chen, H. P. Sun, B. Zhou. Side surface mediated hybridization in axion insulators. Phys. Rev. B, 2023, 107(12): 125304
CrossRef
ADS
Google scholar
|
[120] |
A. M. Essin, J. E. Moore, D. Vanderbilt. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett., 2009, 102(14): 146805
CrossRef
ADS
Google scholar
|
[121] |
R. S. K. Mong, A. M. Essin, J. E. Moore. Anti ferromagnetic topological insulators. Phys. Rev. B, 2010, 81(24): 245209
CrossRef
ADS
Google scholar
|
[122] |
C. Niu, H. Wang, N. Mao, B. Huang, Y. Mokrousov, Y. Dai. Antiferromagnetic topological insulator with nonsymmorphic protection in two dimensions. Phys. Rev. Lett., 2020, 124(6): 066401
CrossRef
ADS
Google scholar
|
[123] |
Y. Xu, I. Miotkowski, C. Liu, J. Tian, H. Nam, N. Alidoust, J. Hu, C. K. Shih, M. Z. Hasan, Y. P. Chen. Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator. Nat. Phys., 2014, 10(12): 956
CrossRef
ADS
Google scholar
|
[124] |
A. MacKinnon. The calculation of transport properties and density of states of disordered solids. Z. Phys. B, 1985, 59(4): 385
CrossRef
ADS
Google scholar
|
[125] |
G. Metalidis, P. Bruno. Green’s function technique for studying electron flow in two-dimensional mesoscopic samples. Phys. Rev. B, 2005, 72(23): 235304
CrossRef
ADS
Google scholar
|
[126] |
R. Landauer. Electrical resistance of disordered one dimensional lattices. Philosophical Magazine, 1970, 21: 863
CrossRef
ADS
Google scholar
|
[127] |
M. Büttiker. Absence of backscattering in the quantum Hall effect in multiprobe conductors. Phys. Rev. B, 1988, 38(14): 9375
CrossRef
ADS
Google scholar
|
[128] |
D. S. Fisher, P. A. Lee. Relation between conductivity and transmission matrix. Phys. Rev. B, 1981, 23(12): 6851
CrossRef
ADS
Google scholar
|
[129] |
R. L. Chu, J. Shi, S. Q. Shen. Surface edge state and half quantized Hall conductance in topological insulators. Phys. Rev. B, 2011, 84(8): 085312
CrossRef
ADS
Google scholar
|
[130] |
J. Alicea. New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys., 2012, 75(7): 076501
CrossRef
ADS
Google scholar
|
[131] |
M. Leijnse, K. Flensberg. Introduction to topological superconductivity and Majorana fermions. Semicond. Sci. Technol., 2012, 27(12): 124003
CrossRef
ADS
Google scholar
|
[132] |
C. Beenakker. Search for Majorana fermions in superconductors. Annu. Rev. Condens. Matter Phys., 2013, 4(1): 113
CrossRef
ADS
Google scholar
|
[133] |
T. D. Stanescu, S. Tewari. Majorana fermions in semiconductor nanowires: Fundamentals, modeling, and experiment. J. Phys.: Condens. Matter, 2013, 25(23): 233201
CrossRef
ADS
Google scholar
|
[134] |
R. Aguado. Majorana quasiparticles in condensed matter. Riv. Nuovo Cim., 2017, 40: 523
CrossRef
ADS
Google scholar
|
[135] |
A. Kitaev. Fault-tolerant quantum computation by anyons. Ann. Phys., 2003, 303(1): 2
CrossRef
ADS
Google scholar
|
[136] |
C. Nayak, S. H. Simon, A. Stern, M. Freedman, S. Das Sarma. Nonabelian anyons and topological quantum computation. Rev. Mod. Phys., 2008, 80(3): 1083
CrossRef
ADS
Google scholar
|
[137] |
S. D. Sarma, M. Freedman, C. Nayak. Majorana zero modes and topological quantum computation. npj Quantum Inf., 2015, 1: 15001
CrossRef
ADS
Google scholar
|
[138] |
V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, L. P. Kouwenhoven. Signatures of Majorana fermions in hybrid superconductor semiconductor nanowire devices. Science, 2012, 336(6084): 1003
CrossRef
ADS
Google scholar
|
[139] |
M. Deng, C. Yu, G. Huang, M. Larsson, P. Caroff, H. Xu. Anomalous zerobias conductance peak in a NbInSb nanowire–Nb hybrid device. Nano Lett., 2012, 12(12): 6414
CrossRef
ADS
Google scholar
|
[140] |
A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, H. Shtrikman. Zero bias peaks and splitting in an AlInAs nanowire topological superconductor as a signature of Majorana fermions. Nat. Phys., 2012, 8(12): 887
CrossRef
ADS
Google scholar
|
[141] |
A. D. K. Finck, D. J. Van Harlingen, P. K. Mohseni, K. Jung, X. Li. Anomalous modulation of a zero bias peak in a hybrid nanowire superconductor device. Phys. Rev. Lett., 2013, 110(12): 126406
CrossRef
ADS
Google scholar
|
[142] |
H. O. H. Churchill, V. Fatemi, K. Grove-Rasmussen, M. T. Deng, P. Caroff, H. Q. Xu, C. M. Marcus. Superconductor-nanowire devices from tunneling to the multichannel regime: Zero-bias oscillations and magnetoconductance crossover. Phys. Rev. B, 2013, 87(24): 241401
CrossRef
ADS
Google scholar
|
[143] |
M. T. Deng, S. Vaitieke˙nas, E. B. Hansen, J. Danon, M. Leijnse, K. Flensberg, J. Nygård, P. Krogstrup, C. M. Marcus. Majorana bound state in a coupled quantum dot hybrid nanowire system. Science, 2016, 354(6319): 1557
CrossRef
ADS
Google scholar
|
[144] |
J. Chen, P. Yu, J. Stenger, M. Hocevar, D. Car, S. R. Plissard, E. P. A. M. Bakkers, T. D. Stanescu, S. M. Frolov. Experimental phase diagram of zero bias conductance peaks in superconductor/semiconductor nanowire devices. Sci. Adv., 2017, 3(9): e1701476
CrossRef
ADS
Google scholar
|
[145] |
H. J. Suominen, M. Kjaergaard, A. R. Hamilton, J. Shabani, C. J. Palmstrøm, C. M. Marcus, F. Nichele. Zero energy modes from coalescing Andreev states in a two-dimensional semiconductor−superconductor hybrid platform. Phys. Rev. Lett., 2017, 119(17): 176805
CrossRef
ADS
Google scholar
|
[146] |
F. Nichele, A. C. C. Drachmann, A. M. Whiticar, E. C. T. O’Farrell, H. J. Suominen, A. Fornieri, T. Wang, G. C. Gardner, C. Thomas, A. T. Hatke, P. Krogstrup, M. J. Manfra, K. Flensberg, C. M. Marcus. Scaling of Majorana zero bias conductance peaks. Phys. Rev. Lett., 2017, 119(13): 136803
CrossRef
ADS
Google scholar
|
[147] |
H. Zhang, C. X. Liu, S. Gazibegovic, D. Xu, J. A. Logan, G. Wang, N. van Loo, J. D. S. Bommer, M. W. A. de Moor, D. Car, R. L. M. Op het Veld, P. J. van Veldhoven, S. Koelling, M. A. Verheijen, M. Pendharkar, D. J. Pennachio, B. Shojaei, J. S. Lee, C. J. Palmstrøm, E. P. A. M. Bakkers, S. D. Sarma, L. P. Kouwenhoven. Retracted article: Quantized Majorana conductance. Nature, 2018, 556(7699): 74
CrossRef
ADS
Google scholar
|
[148] |
J. E. Sestoft, T. Kanne, A. N. Gejl, M. von Soosten, J. S. Yodh, D. Sherman, B. Tarasinski, M. Wimmer, E. Johnson, M. Deng, J. Nygård, T. S. Jespersen, C. M. Marcus, P. Krogstrup. Engineering hybrid epitaxial InAsSb/Al nanowires for stronger topological protection. Phys. Rev. Mater., 2018, 2(4): 044202
CrossRef
ADS
Google scholar
|
[149] |
S. Vaitiekėnas, M. T. Deng, J. Nygård, P. Krogstrup, C. M. Marcus. Effective g factor of subgap states in hybrid nanowires. Phys. Rev. Lett., 2018, 121(3): 037703
CrossRef
ADS
Google scholar
|
[150] |
M. T. Deng, S. Vaitieke˙nas, E. Prada, P. SanJose, J. Nygård, P. Krogstrup, R. Aguado, C. M. Marcus. Nonlocality of Majorana modes in hybrid nanowires. Phys. Rev. B, 2018, 98(8): 085125
CrossRef
ADS
Google scholar
|
[151] |
M. W. A. de Moor, J. D. S. Bommer, D. Xu, G. W. Winkler, A. E. Antipov, A. Bargerbos, G. Wang, N. Loo, R. L. M. Op het Veld, S. Gazibegovic, D. Car, J. A. Logan, M. Pendharkar, J. S. Lee, E. P. A. M Bakkers, C. J. Palmstrøm, R. M. Lutchyn, L. P. Kouwenhoven, H. Zhang. Electric field tunable superconductor semiconductor coupling in Majorana nanowires. New J. Phys., 2018, 20(10): 103049
CrossRef
ADS
Google scholar
|
[152] |
Z. Zhu, H. Zheng, J. F. Jia. Majorana zero mode in the vortex of artificial topological superconductor. J. Appl. Phys., 2021, 129(15): 151104
CrossRef
ADS
Google scholar
|
[153] |
R. M. Lutchyn, J. D. Sau, S. Das Sarma. Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. Phys. Rev. Lett., 2010, 105(7): 077001
CrossRef
ADS
Google scholar
|
[154] |
Y. Oreg, G. Refael, F. von Oppen. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett., 2010, 105(17): 177002
CrossRef
ADS
Google scholar
|
[155] |
R. M. Lutchyn, E. P. Bakkers, L. P. Kouwenhoven, P. Krogstrup, C. M. Marcus, Y. Oreg. Majorana zero modes in superconductor–semiconductor heterostructures. Nat. Rev. Mater., 2018, 3(5): 52
CrossRef
ADS
Google scholar
|
[156] |
E. Prada, P. San-Jose, R. Aguado. Transport spectroscopy of NS nanowire junctions with Majorana fermions. Phys. Rev. B, 2012, 86(18): 180503
CrossRef
ADS
Google scholar
|
[157] |
S. Das Sarma, J. D. Sau, T. D. Stanescu. Splitting of the zero bias conductance peak as smoking gun evidence for the existence of the Majorana mode in a superconductor−semiconductor nanowire. Phys. Rev. B, 2012, 86(22): 220506
CrossRef
ADS
Google scholar
|
[158] |
D. Rainis, L. Trifunovic, J. Klinovaja, D. Loss. Towards a realistic transport modeling in a superconducting nanowire with majorana fermions. Phys. Rev. B, 2013, 87(2): 024515
CrossRef
ADS
Google scholar
|
[159] |
S. M. Albrecht, A. P. Higginbotham, M. Madsen, F. Kuemmeth, T. S. Jespersen, J. Nygård, P. Krogstrup, C. Marcus. Exponential protection of zero modes in Majorana islands. Nature, 2016, 531(7593): 206
CrossRef
ADS
Google scholar
|
[160] |
D. Sherman, J. Yodh, S. Albrecht, J. Nygård, P. Krogstrup, C. Marcus. Normal, superconducting and topological regimes of hybrid double quantum dots. Nat. Nanotechnol., 2017, 12(3): 212
CrossRef
ADS
Google scholar
|
[161] |
S. M. Albrecht, E. B. Hansen, A. P. Higginbotham, F. Kuemmeth, T. S. Jespersen, J. Nygård, P. Krogstrup, J. Danon, K. Flensberg, C. M. Marcus. Transport signatures of quasiparticle poisoning in a Majorana island. Phys. Rev. Lett., 2017, 118(13): 137701
CrossRef
ADS
Google scholar
|
[162] |
E. C. T. O’Farrell, A. C. C. Drachmann, M. Hell, A. Fornieri, A. M. Whiticar, E. B. Hansen, S. Gronin, G. C. Gardner, C. Thomas, M. J. Manfra, K. Flensberg, C. M. Marcus, F. Nichele. Hybridization of subgap states in one-dimensional superconductor semiconductor Coulomb islands. Phys. Rev. Lett., 2018, 121(25): 256803
CrossRef
ADS
Google scholar
|
[163] |
G. Kells, D. Meidan, P. W. Brouwer. Nearzero energy end states in topologically trivial spin−orbit coupled superconducting nanowires with a smooth confinement. Phys. Rev. B, 2012, 86(10): 100503
CrossRef
ADS
Google scholar
|
[164] |
T. D. Stanescu, S. Tewari. Disentangling Majorana fermions from topologically trivial low energy states in semiconductor Majorana wires. Phys. Rev. B, 2013, 87(14): 140504
CrossRef
ADS
Google scholar
|
[165] |
C. X. Liu, J. D. Sau, T. D. Stanescu, S. Das Sarma. Andreev bound states versus Majorana bound states in quantum dot nanowire superconductor hybrid structures: Trivial versus topological zero bias conductance peaks. Phys. Rev. B, 2017, 96(7): 075161
CrossRef
ADS
Google scholar
|
[166] |
C. Moore, T. D. Stanescu, S. Tewari. Two terminal charge tunneling: Disentangling Majorana zero modes from partially separated Andreev bound states in semiconductor−superconductor heterostructures. Phys. Rev. B, 2018, 97(16): 165302
CrossRef
ADS
Google scholar
|
[167] |
B. I. Halperin. Possible states for a three-dimensional electron gas in a strong magnetic field. Jpn. J. Appl. Phys., 1987, 26(S3-3): 1913
CrossRef
ADS
Google scholar
|
[168] |
O. Zilberberg, S. Huang, J. Guglielmon, M. Wang, K. P. Chen, Y. E. Kraus, M. C. Rechtsman. Photonic topological boundary pumping as a probe of 4D quantum Hall physics. Nature, 2018, 553(7686): 59
CrossRef
ADS
Google scholar
|
[169] |
G. Montambaux, M. Kohmoto. Quantized Hall effect in three dimensions. Phys. Rev. B, 1990, 41(16): 11417
CrossRef
ADS
Google scholar
|
[170] |
M. Kohmoto, B. I. Halperin, Y. S. Wu. Diophan tine equation for the three-dimensional quantum Hall effect. Phys. Rev. B, 1992, 45(23): 13488
CrossRef
ADS
Google scholar
|
[171] |
M. Koshino, H. Aoki, K. Kuroki, S. Kagoshima, T. Osada. Hofstadter butterfly and integer quantum Hall effect in three dimensions. Phys. Rev. Lett., 2001, 86(6): 1062
CrossRef
ADS
Google scholar
|
[172] |
B. A. Bernevig, T. L. Hughes, S. Raghu, D. P. Arovas. Theory of the three-dimensional quantum Hall effect in graphite. Phys. Rev. Lett., 2007, 99(14): 146804
CrossRef
ADS
Google scholar
|
[173] |
H. L. Störmer, J. P. Eisenstein, A. C. Gossard, W. Wiegmann, K. Baldwin. Quantization of the Hall effect in an anisotropic three-dimensional electronic system. Phys. Rev. Lett., 1986, 56(1): 85
CrossRef
ADS
Google scholar
|
[174] |
J. R. Cooper, W. Kang, P. Auban, G. Montambaux, D. Jérome, K. Bechgaard. Quantized Hall effect and a new field-induced phase transition in the organic superconductor (TMTSF)2PF6. Phys. Rev. Lett., 1989, 63(18): 1984
CrossRef
ADS
Google scholar
|
[175] |
S. T. Hannahs, J. S. Brooks, W. Kang, L. Y. Chiang, P. M. Chaikin. Quantum Hall effect in a bulk crystal. Phys. Rev. Lett., 1989, 63(18): 1988
CrossRef
ADS
Google scholar
|
[176] |
S. Hill, S. Uji, M. Takashita, C. Terakura, T. Terashima, H. Aoki, J. S. Brooks, Z. Fisk, J. Sarrao. Bulk quantum Hall effect in η-Mo4O11. Phys. Rev. B, 1998, 58(16): 10778
CrossRef
ADS
Google scholar
|
[177] |
H. Cao, J. Tian, I. Miotkowski, T. Shen, J. Hu, S. Qiao, Y. P. Chen. Quantized Hall effect and Shubnikov–de Haas oscillations in highly doped Bi2Se3: Evidence for layered transport of bulk carriers. Phys. Rev. Lett., 2012, 108(21): 216803
CrossRef
ADS
Google scholar
|
[178] |
H. Masuda, H. Sakai, M. Tokunaga, Y. Yamasaki, A. Miyake, J. Shiogai, S. Nakamura, S. Awaji, A. Tsukazaki, H. Nakao, Y. Murakami, T. Arima, Y. Tokura, S. Ishiwata. Quantum Hall effect in a bulk antiferromagnet EuMnBi2 with magnetically confined two-dimensional Dirac fermions. Sci. Adv., 2016, 2(1): e1501117
CrossRef
ADS
Google scholar
|
[179] |
Y. Liu, X. Yuan, C. Zhang, Z. Jin, A. Narayan, C. Luo, Z. Chen, L. Yang, J. Zou, X. Wu, S. Sanvito, Z. Xia, L. Li, Z. Wang, F. Xiu. Zeeman splitting and dynamical mass generation in Dirac semimetal ZrTe5. Nat. Commun., 2016, 7(1): 12516
CrossRef
ADS
Google scholar
|
[180] |
J. Liu, J. Yu, J. L. Ning, H. M. Yi, L. Miao, L. J. Min, Y. F. Zhao, W. Ning, K. A. Lopez, Y. L. Zhu, T. Pillsbury, Y. B. Zhang, Y. Wang, J. Hu, H. B. Cao, B. C. Chakoumakos, F. Balakirev, F. Weickert, M. Jaime, Y. Lai, K. Yang, J. W. Sun, N. Alem, V. Gopalan, C. Z. Chang, N. Samarth, C. X. Liu, R. D. McDonald, Z. Q. Mao. Spin-valley locking and bulk quantum Hall effect in a noncentrosymmetric Dirac semimetal BaMnSb2. Nat. Commun., 2021, 12(1): 4062
CrossRef
ADS
Google scholar
|
[181] |
F. Tang, Y. Ren, P. Wang, R. Zhong, J. Schneeloch, S. A. Yang, K. Yang, P. A. Lee, G. Gu, Z. Qiao, L. Zhang. Three-dimensional quantum Hall effect and metal–insulator transition in ZrTe5. Nature, 2019, 569(7757): 537
CrossRef
ADS
Google scholar
|
[182] |
H.LiH.Liu H.JiangX. C. Xie, 3D quantum Hall effect and a global picture of edge states in Weyl semimetals, Phys. Rev. Lett. 125(3), 036602 (2020)
|
[183] |
S. G. Cheng, H. Jiang, Q. F. Sun, X. C. Xie. Quantum Hall effect in wedge-shaped samples. Phys. Rev. B, 2020, 102(7): 075304
CrossRef
ADS
Google scholar
|
[184] |
P. Wang, Y. Ren, F. Tang, P. Wang, T. Hou, H. Zeng, L. Zhang, Z. Qiao. Approaching three-dimensional quantum Hall effect in bulk HfTe5. Phys. Rev. B, 2020, 101(16): 161201
CrossRef
ADS
Google scholar
|
[185] |
R. Ma, D. N. Sheng, L. Sheng. Three-dimensional quantum Hall effect and magnetothermoelectric properties in Weyl semimetals. Phys. Rev. B, 2021, 104(7): 075425
CrossRef
ADS
Google scholar
|
[186] |
S.C. ZhangJ. Hu, A four-dimensional generalization of the quantum Hall effect, Science 294(5543), 823 (2001)
|
[187] |
M. Lohse, C. Schweizer, H. M. Price, O. Zilberberg, I. Bloch. Exploring 4D quantum Hall physics with a 2D topological charge pump. Nature, 2018, 553(7686): 55
CrossRef
ADS
Google scholar
|
[188] |
H. M. Price, O. Zilberberg, T. Ozawa, I. Carusotto, N. Goldman. Four-dimensional quantum Hall effect with ultracold atoms. Phys. Rev. Lett., 2015, 115(19): 195303
CrossRef
ADS
Google scholar
|
[189] |
Y. J. Jin, R. Wang, B. W. Xia, B. B. Zheng, H. Xu. Three-dimensional quantum anomalous Hall effect in ferromagnetic insulators. Phys. Rev. B, 2018, 98(8): 081101
CrossRef
ADS
Google scholar
|
[190] |
R. A. Molina, J. González. Surface and 3D quantum Hall effects from engineering of exceptional points in nodal line semimetals. Phys. Rev. Lett., 2018, 120(14): 146601
CrossRef
ADS
Google scholar
|
[191] |
E. Benito-Matías, R. A. Molina, J. González. Surface and bulk Landau levels in thin films of Weyl semimetals. Phys. Rev. B, 2020, 101(8): 085420
CrossRef
ADS
Google scholar
|
[192] |
M. Chang, L. Sheng. Three-dimensional quantum Hall effect in the excitonic phase of a Weyl semimetal. Phys. Rev. B, 2021, 103(24): 245409
CrossRef
ADS
Google scholar
|
[193] |
M. Chang, H. Geng, L. Sheng, D. Y. Xing. Three-dimensional quantum Hall effect in Weyl semimetals. Phys. Rev. B, 2021, 103(24): 245434
CrossRef
ADS
Google scholar
|
[194] |
K. Klitzing, G. Dorda, M. Pepper. New method for high accuracy determination of the fine structure constant based on quantized Hall resistance. Phys. Rev. Lett., 1980, 45(6): 494
CrossRef
ADS
Google scholar
|
[195] |
D. J. Thouless, M. Kohmoto, M. P. Nightingale, M. den Nijs. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett., 1982, 49(6): 405
CrossRef
ADS
Google scholar
|
[196] |
H.Z. Lu, 3D quantum Hall effect, Natl. Sci. Rev. 6(2), 208 (2019)
|
[197] |
F. Liu, H. Y. Deng, K. Wakabayashi. Helical topological edge states in a quadrupole phase. Phys. Rev. Lett., 2019, 122(8): 086804
CrossRef
ADS
Google scholar
|
[198] |
B. Roy. Antiunitary symmetry protected higher-order topological phases. Phys. Rev. Res., 2019, 1(3): 032048
CrossRef
ADS
Google scholar
|
[199] |
C. B. Hua, R. Chen, B. Zhou, D. H. Xu. Higher-order topological insulator in a dodecagonal quasicrystal. Phys. Rev. B, 2020, 102(24): 241102
CrossRef
ADS
Google scholar
|
[200] |
Z. R. Liu, L. H. Hu, C. Z. Chen, B. Zhou, D. H. Xu. Topological excitonic corner states and nodal phase in bilayer quantum spin Hall insulators. Phys. Rev. B, 2021, 103(20): L201115
CrossRef
ADS
Google scholar
|
[201] |
R. Queiroz, A. Stern. Splitting the hinge mode of higher-order topological insulators. Phys. Rev. Lett., 2019, 123(3): 036802
CrossRef
ADS
Google scholar
|
[202] |
M. Sitte, A. Rosch, E. Altman, L. Fritz. Topological insulators in magnetic fields: Quantum Hall effect and edge channels with a nonquantized θ term. Phys. Rev. Lett., 2012, 108(12): 126807
CrossRef
ADS
Google scholar
|
[203] |
F. Zhang, C. L. Kane, E. J. Mele. Surface state magnetization and chiral edge states on topological insulators. Phys. Rev. Lett., 2013, 110(4): 046404
CrossRef
ADS
Google scholar
|
[204] |
Y. Otaki, T. Fukui. Higher-order topological insulators in a magnetic field. Phys. Rev. B, 2019, 100: 245108
CrossRef
ADS
Google scholar
|
[205] |
Z. Yan, F. Song, Z. Wang. Majorana corner modes in a high temperature platform. Phys. Rev. Lett., 2018, 121(9): 096803
CrossRef
ADS
Google scholar
|
[206] |
Z. Yan. Higher-order topological odd parity superconductors. Phys. Rev. Lett., 2019, 123(17): 177001
CrossRef
ADS
Google scholar
|
[207] |
D. Varjas, A. Lau, K. Pöyhönen, A. R. Akhmerov, D. I. Pikulin, I. C. Fulga. Topological phases without crystalline counterparts. Phys. Rev. Lett., 2019, 123(19): 196401
CrossRef
ADS
Google scholar
|
[208] |
S. A. A. Ghorashi, T. Li, T. L. Hughes. Higher-order Weyl semimetals. Phys. Rev. Lett., 2020, 125(26): 266804
CrossRef
ADS
Google scholar
|
[209] |
H. X. Wang, Z. K. Lin, B. Jiang, G. Y. Guo, J. H. Jiang. Higher-order weyl semimetals. Phys. Rev. Lett., 2020, 125(14): 146401
CrossRef
ADS
Google scholar
|
[210] |
K. Wang, J. X. Dai, L. B. Shao, S. A. Yang, Y. X. Zhao. Boundary criticality of PT invariant topology and secondorder nodalline semimetals. Phys. Rev. Lett., 2020, 125(12): 126403
CrossRef
ADS
Google scholar
|
[211] |
S. A. Hassani Gangaraj, C. Valagiannopoulos, F. Monticone. Topological scattering resonances at ultralow frequencies. Phys. Rev. Res., 2020, 2(2): 023180
CrossRef
ADS
Google scholar
|
[212] |
C. Z. Li, A. Q. Wang, C. Li, W. Z. Zheng, A. Brinkman, D. P. Yu, Z. M. Liao. Reducing electronic trans port dimension to topological hinge states by increasing geometry size of Dirac semimetal Josephson junctions. Phys. Rev. Lett., 2020, 124(15): 156601
CrossRef
ADS
Google scholar
|
[213] |
D. Călugăru, V. Juričič, B. Roy. Higher-order topological phases: A general principle of construction. Phys. Rev. B, 2019, 99(4): 041301
CrossRef
ADS
Google scholar
|
[214] |
H. Hu, B. Huang, E. Zhao, W. V. Liu. Dynamical singularities of floquet higher-order topological insulators. Phys. Rev. Lett., 2020, 124(5): 057001
CrossRef
ADS
Google scholar
|
[215] |
B. Huang, W. V. Liu. Floquet higher-order topological insulators with anomalous dynamical polarization. Phys. Rev. Lett., 2020, 124(21): 216601
CrossRef
ADS
Google scholar
|
[216] |
M. Kheirkhah, Z. Yan, Y. Nagai, F. Marsiglio. First and second order topological superconductivity and temperature driven topological phase transitions in the extended Hubbard model with spin−orbit coupling. Phys. Rev. Lett., 2020, 125(1): 017001
CrossRef
ADS
Google scholar
|
[217] |
M. Kheirkhah, Y. Nagai, C. Chen, F. Marsiglio. Majorana corner flatbands in two-dimensional second order topological superconductors. Phys. Rev. B, 2020, 101(10): 104502
CrossRef
ADS
Google scholar
|
[218] |
A. Sarsen, C. Valagiannopoulos. Robust polarization twist by pairs of multilayers with tilted optical axes. Phys. Rev. B, 2019, 99(11): 115304
CrossRef
ADS
Google scholar
|
[219] |
J. Noh, W. A. Benalcazar, S. Huang, M. J. Collins, K. P. Chen, T. L. Hughes, M. C. Rechtsman. Topological protection of photonic midgap defect modes. Nat. Photonics, 2018, 12(7): 408
CrossRef
ADS
Google scholar
|
[220] |
Y. B. Choi, Y. Xie, C. Z. Chen, J. Park, S. B. Song, J. Yoon, B. J. Kim, T. Taniguchi, K. Watanabe, J. Kim, K. C. Fong, M. N. Ali, K. T. Law, G. H. Lee. Evidence of higher-order topology in multilayer WTe2 from Josephson coupling through anisotropic hinge states. Nat. Mater., 2020, 19(9): 974
CrossRef
ADS
Google scholar
|
[221] |
B. J. Wieder, Z. Wang, J. Cano, X. Dai, L. M. Schoop, B. Bradlyn, B. A. Bernevig. Strong and fragile topological Dirac semimetals with higher-order Fermi arcs. Nat. Commun., 2020, 11(1): 627
CrossRef
ADS
Google scholar
|
[222] |
B. Xie, H. X. Wang, X. Zhang, P. Zhan, J. H. Jiang, M. Lu, Y. Chen. Higher-order band topology. Nat. Rev. Phys., 2021, 3(7): 520
CrossRef
ADS
Google scholar
|
[223] |
D. A. Kealhofer, L. Galletti, T. Schumann, A. Suslov, S. Stemmer. Topological insulator state and collapse of the quantum Hall effect in a three-dimensional Dirac semimetal heterojunction. Phys. Rev. X, 2020, 10(1): 011050
CrossRef
ADS
Google scholar
|
[224] |
B. C. Lin, S. Wang, S. Wiedmann, J. M. Lu, W. Z. Zheng, D. Yu, Z. M. Liao. Observation of an odd integer quantum Hall effect from topological surface states in Cd3As2. Phys. Rev. Lett., 2019, 122(3): 036602
CrossRef
ADS
Google scholar
|
[225] |
S. Wang, B. C. Lin, W. Z. Zheng, D. Yu, Z. M. Liao. Fano interference between bulk and surface states of a Dirac semimetal Cd3As2 nanowire. Phys. Rev. Lett., 2018, 120(25): 257701
CrossRef
ADS
Google scholar
|
[226] |
S. Nishihaya, M. Uchida, Y. Nakazawa, M. Kriener, Y. Kozuka, Y. Taguchi, M. Kawasaki. Gate-tuned quantum Hall states in Dirac semimetal. Sci. Adv., 2018, 4(5): eaar5668
CrossRef
ADS
Google scholar
|
[227] |
L. Galletti, T. Schumann, O. F. Shoron, M. Goyal, D. A. Kealhofer, H. Kim, S. Stemmer. Two-dimensional Dirac fermions in thin films of Cd3As2. Phys. Rev. B, 2018, 97(11): 115132
CrossRef
ADS
Google scholar
|
[228] |
T. Schumann, L. Galletti, D. A. Kealhofer, H. Kim, M. Goyal, S. Stemmer. Observation of the quantum Hall effect in confined films of the three-dimensional Dirac semimetal Cd3As2. Phys. Rev. Lett., 2018, 120(1): 016801
CrossRef
ADS
Google scholar
|
[229] |
C. Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Wang, L. Lu, X. C. Ma, Q. K. Xue. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science, 2013, 340(6129): 167
CrossRef
ADS
Google scholar
|
[230] |
C. Zhang, A. Narayan, S. Lu, J. Zhang, H. Zhang, Z. Ni, X. Yuan, Y. Liu, J. H. Park, E. Zhang, W. Wang, S. Liu, L. Cheng, L. Pi, Z. Sheng, S. Sanvito, F. Xiu. Evolution of Weyl orbit and quantum Hall effect in Dirac semimetal Cd3As2. Nat. Commun., 2017, 8(1): 1272
CrossRef
ADS
Google scholar
|
[231] |
M. Uchida, Y. Nakazawa, S. Nishihaya, K. Akiba, M. Kriener, Y. Kozuka, A. Miyake, Y. Taguchi, M. Tokunaga, N. Nagaosa, Y. Tokura, M. Kawasaki. Quantum Hall states observed in thin films of Dirac semimetal Cd3As2. Nat. Commun., 2017, 8(1): 2274
CrossRef
ADS
Google scholar
|
[232] |
C. Zhang, Y. Zhang, X. Yuan, S. Lu, J. Zhang, A. Narayan, Y. Liu, H. Zhang, Z. Ni, R. Liu, E. S. Choi, A. Suslov, S. Sanvito, L. Pi, H. Z. Lu, A. C. Potter, F. Xiu. Quantum Hall effect based on Weyl orbits in Cd3As2. Nature, 2019, 565(7739): 331
CrossRef
ADS
Google scholar
|
[233] |
S. Nishihaya, M. Uchida, Y. Nakazawa, R. Kurihara, K. Akiba, M. Kriener, A. Miyake, Y. Taguchi, M. Tokunaga, M. Kawasaki. Quantized surface transport in topological Dirac semimetal films. Nat. Commun., 2019, 10(1): 2564
CrossRef
ADS
Google scholar
|
[234] |
T. Schumann, L. Galletti, D. A. Kealhofer, H. Kim, S. Goyal, S. Stemmer. Observation of the quantum Hall effect in confined films of the three-dimensional Dirac semimetal Cd3As2. Phys. Rev. Lett., 2018, 120(1): 016801
CrossRef
ADS
Google scholar
|
[235] |
P. J. W. Moll, N. L. Nair, T. Helm, A. C. Potter, I. Kimchi, A. Vishwanath, J. G. Analytis. Transport evidence for Fermi arc mediated chirality transfer in the Dirac semimetal Cd3As2. Nature, 2016, 535(7611): 266
CrossRef
ADS
Google scholar
|
[236] |
P. N. Argyres, E. N. Adams. Longitudinal magnetoresistance in the quantum limit. Phys. Rev., 1956, 104(4): 900
CrossRef
ADS
Google scholar
|
[237] |
P. A. Lee, T. V. Ramakrishnan. Disordered electronic systems. Rev. Mod. Phys., 1985, 57(2): 287
CrossRef
ADS
Google scholar
|
[238] |
J. Wang, H. Li, C. Chang, K. He, J. S. Lee, H. Lu, Y. Sun, X. Ma, N. Samarth, S. Shen, Q. Xue, M. Xie, M. H. W. Chan. Anomalous anisotropic magnetoresistance in topological insulator films. Nano Res., 2012, 5(10): 739
CrossRef
ADS
Google scholar
|
[239] |
H. T. He, H. C. Liu, B. K. Li, X. Guo, Z. J. Xu, M. H. Xie, J. N. Wang. Disorderinduced linear magnetoresistance in (221) topological insulator Bi2Se3 films. Appl. Phys. Lett., 2013, 103(3): 031606
CrossRef
ADS
Google scholar
|
[240] |
S. Wiedmann, A. Jost, B. Fauqué, J. van Dijk, M. J. Meijer, T. Khouri, S. Pezzini, S. Grauer, S. Schreyeck, C. Brüne, H. Buhmann, L. W. Molenkamp, N. E. Hussey. Anisotropic and strong negative magnetoresistance in the three-dimensional topological insulator Bi2Se3. Phys. Rev. B, 2016, 94(8): 081302
CrossRef
ADS
Google scholar
|
[241] |
L. X. Wang, Y. Yan, L. Zhang, Z. M. Liao, H. C. Wu, D. P. Yu. Zeeman effect on surface electron transport in topological insulator Bi2Se3 nanoribbons. Nanoscale, 2015, 7(40): 16687
CrossRef
ADS
Google scholar
|
[242] |
O. Breunig, Z. Wang, A. A. Taskin, J. Lux, A. Rosch, Y. Ando. Gigantic negative magnetoresistance in the bulk of a disordered topological insulator. Nat. Commun., 2017, 8(1): 15545
CrossRef
ADS
Google scholar
|
[243] |
B. A. Assaf, T. Phuphachong, E. Kampert, V. V. Volobuev, P. S. Mandal, J. Sánchez-Barriga, O. Rader, G. Bauer, G. Springholz, L. A. de Vaulchier, Y. Guldner. Negative longitudinal magnetoresistance from the anomalous N = 0 Landau level in topo logical materials. Phys. Rev. Lett., 2017, 119(10): 106602
CrossRef
ADS
Google scholar
|
[244] |
H. J. Kim, K. S. Kim, J. F. Wang, M. Sasaki, T. Satoh, A. Ohnishi, M. Kitaura, M. Yang, L. Li. Dirac versus Weyl fermions in topological insulators: Adler−Bell−Jackiw anomaly in transport phenomena. Phys. Rev. Lett., 2013, 111(24): 246603
CrossRef
ADS
Google scholar
|
[245] |
K. S. Kim, H. J. Kim, M. Sasaki. Boltzmann equation approach to anomalous transport in a Weyl metal. Phys. Rev. B, 2014, 89(19): 195137
CrossRef
ADS
Google scholar
|
[246] |
Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosic, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, T. Valla. Chiral magnetic effect in ZrTe5. Nat. Phys., 2016, 12(6): 550
CrossRef
ADS
Google scholar
|
[247] |
C. L. Zhang, S. Y. Xu, I. Belopolski, Z. Yuan, Z. Lin, B. Tong, G. Bian, N. Alidoust, C. C. Lee, S. M. Huang, T. R. Chang, G. Chang, C. H. Hsu, H. T. Jeng, M. Neupane, D. S. Sanchez, H. Zheng, J. Wang, H. Lin, C. Zhang, H. Z. Lu, S. Q. Shen, T. Neupert, M. Zahid Hasan, S. Jia. Signatures of the Adler−Bell−Jackiw chiral anomaly in a Weyl Fermion semimetal. Nat. Commun., 2016, 7(1): 10735
CrossRef
ADS
Google scholar
|
[248] |
X. C. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang, H. Liang, M. Xue, H. Weng, Z. Fang, X. Dai, G. Chen. Observation of the chiral anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X, 2015, 5(3): 031023
CrossRef
ADS
Google scholar
|
[249] |
J. Xiong, S. K. Kushwaha, T. Liang, J. W. Krizan, M. Hirschberger, W. Wang, R. J. Cava, N. P. Ong. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science, 2015, 350(6259): 413
CrossRef
ADS
Google scholar
|
[250] |
C. Z. Li, L. X. Wang, H. W. Liu, J. Wang, Z. M. Liao, D. P. Yu. Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires. Nat. Commun., 2015, 6(1): 10137
CrossRef
ADS
Google scholar
|
[251] |
C. Zhang, E. Zhang, W. Wang, Y. Liu, Z. G. Chen, S. Lu, S. Liang, J. Cao, X. Yuan, L. Tang, Q. Li, C. Zhou, T. Gu, Y. Wu, J. Zou, F. Xiu. Room temperature chiral charge pumping in Dirac semimetals. Nat. Commun., 2017, 8(1): 13741
CrossRef
ADS
Google scholar
|
[252] |
F. Arnold, C. Shekhar, S.-C. Wu, Yan Sun, R. D. Reis, N. Kumar, M. Naumann, M. O. Ajeesh, M. Schmidt, A. G. Grushin, J. H. Bardarson, M. Baenitz, D. Sokolov, H. Borrmann, M. Nicklas, C. Felser, E. Hassinger, B. Yan. Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP. Nat. Commun., 2016, 7: 11615
CrossRef
ADS
Google scholar
|
[253] |
X.J. YangY. P. LiuZ.WangY.ZhengZ.A. Xu, Chiral anomaly induced negative magnetoresistance in topological Weyl semimetal NbAs, arXiv: 1506.03190 (2015)
|
[254] |
X.YangY. LiZ.WangY.ZhenZ.A. Xu, Observation of negative magnetoresistance and nontrivial π Berry’s phase in 3D Weyl semimetal NbAs, arXiv: 1506.02283 (2015)
|
[255] |
H. Wang, C. K. Li, H. Liu, J. Yan, J. Wang, J. Liu, Z. Lin, Y. Li, Y. Wang, L. Li, D. Mandrus, X. C. Xie, J. Feng, J. Wang. Chiral anomaly and ultrahigh mobility in crystalline HfTe5. Phys. Rev. B, 2016, 93(16): 165127
CrossRef
ADS
Google scholar
|
[256] |
S. L. Adler. Axial vector vertex in spinor electrodynamics. Phys. Rev., 1969, 177(5): 2426
CrossRef
ADS
Google scholar
|
[257] |
J.S. BellR. Jackiw, A PCAC puzzle: π0 → γγ in the σmodel, Nuovo Cim., A 60(1), 47 (1969)
|
[258] |
H. B. Nielsen, M. Ninomiya. Absence of neutrinos on a lattice (i): Proof by homotopy theory. Nucl. Phys. B, 1981, 185(1): 20
CrossRef
ADS
Google scholar
|
[259] |
B. Bradlyn, J. Cano, Z. Wang, M. G. Vergniory, C. Felser, R. J. Cava, B. A. Bernevig. Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals. Science, 2016, 353(6299): aaf5037
CrossRef
ADS
Google scholar
|
[260] |
G. Chang, B. J. Wieder, F. Schindler, D. S. Sanchez, I. Belopolski, S. M. Huang, B. Singh, D. Wu, T. R. Chang, T. Neupert, S. Y. Xu, H. Lin, M. Z. Hasan. Topological quantum properties of chiral crystals. Nat. Mater., 2018, 17(11): 978
CrossRef
ADS
Google scholar
|
[261] |
P. Goswami, J. H. Pixley, S. Das Sarma. Axial anomaly and longitudinal magnetoresistance of a generic three-dimensional metal. Phys. Rev. B, 2015, 92(7): 075205
CrossRef
ADS
Google scholar
|
[262] |
D. N. Basov, M. M. Fogler, A. Lanzara, F. Wang, Y. Zhang. Colloquium: Graphene spectroscopy. Rev. Mod. Phys., 2014, 86(3): 959
CrossRef
ADS
Google scholar
|
[263] |
M. Z. Hasan, C. L. Kane. Colloquium: Topological insulators. Rev. Mod. Phys., 2010, 82(4): 3045
CrossRef
ADS
Google scholar
|
[264] |
J. C. Charlier, X. Blase, S. Roche. Electronic and transport properties of nanotubes. Rev. Mod. Phys., 2007, 79(2): 677
CrossRef
ADS
Google scholar
|
[265] |
K.S. NovoselovV.I. Fal′koL. ColomboP.R. GellertM.G. SchwabK.Kim, A roadmap for graphene, Nature 490(7419), 192 (2012)
|
[266] |
T. Liang, Q. Gibson, M. N. Ali, M. H. Liu, R. J. Cava, N. P. Ong. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nat. Mater., 2015, 14(3): 280
CrossRef
ADS
Google scholar
|
[267] |
Z. Wang, Y. Sun, X. Q. Chen, C. Franchini, G. Xu, S. Weng, X. Dai, Z. Fang, Dirac semimetal, topological phase transitions in A3Bi (A = Na. Rb). Phys. Rev. B, 2012, 85(19): 195320
CrossRef
ADS
Google scholar
|
[268] |
Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, Y. L. Chen, Discovery of a three-dimensional topological Dirac semimetal. Na3Bi. Science, 2014, 343(6173): 864
CrossRef
ADS
Google scholar
|
[269] |
Z.K. LiuJ. JiangB.ZhouZ.J. WangY.Zhang H.M. WengD. PrabhakaranS.K. MoH.PengP.Dudin T.KimM. HoeschZ.FangX.DaiZ.X. Shen D.L. FengZ. HussainY.L. Chen, A stable three-dimensional topological Dirac semimetal Cd3As2, Nat. Mater. 13(7), 677 (2014)
|
[270] |
S.M. HuangS. Y. XuI.BelopolskiC.C. LeeG.Chang B.K. WangN. AlidoustG.BianM.NeupaneC.Zhang S.JiaA. BansilH.LinM.Z. Hasan, A Weyl fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class, Nat. Commun. 6(1), 7373 (2015)
|
[271] |
H. M. Weng, C. Fang, Z. Fang, B. A. Bernevig, T. Dai. Weyl semimetal phase in noncentrosymmetric transition metal monophosphides. Phys. Rev. X, 2015, 5(1): 011029
CrossRef
ADS
Google scholar
|
[272] |
S. Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C. C. Lee, S. M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. K. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, M. Z. Hasan. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science, 2015, 349(6248): 613
CrossRef
ADS
Google scholar
|
[273] |
B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, H. Ding. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X, 2015, 5(3): 031013
CrossRef
ADS
Google scholar
|
[274] |
X. Wan, A. M. Turner, A. Vishwanath, S. Y. Savrasov. Topological semimetal and Fermi arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B, 2011, 83(20): 205101
CrossRef
ADS
Google scholar
|
[275] |
K. Y. Yang, Y. M. Lu, Y. Ran. Quantum Hall effects in a Weyl semimetal: Possible application in pyrochlore iridates. Phys. Rev. B, 2011, 84(7): 075129
CrossRef
ADS
Google scholar
|
[276] |
A. A. Burkov, L. Balents. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett., 2011, 107(12): 127205
CrossRef
ADS
Google scholar
|
[277] |
H. B. Nielsen, M. Ninomiya. The Adler−Bell− Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B, 1983, 130: 389
CrossRef
ADS
Google scholar
|
[278] |
D. T. Son, B. Z. Spivak. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B, 2013, 88(10): 104412
CrossRef
ADS
Google scholar
|
[279] |
D.Shoenberg, Magnetic Oscillations in Metals, Cambridge University Press, 1984
|
[280] |
S.E. SebastianN.HarrisonE.Palm T.P. MurphyC. H. MielkeR.LiangD.A. BonnW.N. Hardy G.G. Lonzarich, A multi-component Fermi surface in the vortex state of an underdoped high-Tc superconductor, Nature 454(7201), 200 (2008)
|
[281] |
L. Li, J. G. Checkelsky, Y. S. Hor, C. Uher, A. F. Hebard, R. J. Cava, N. P. Ong. Phase transitions of Dirac electrons in bismuth. Science, 2008, 321(5888): 547
CrossRef
ADS
Google scholar
|
[282] |
Z. Zhang, W. Wei, F. Yang, Z. Zhu, M. Guo, Y. Feng, D. Yu, M. Yao, N. Harrison, R. McDonald, Y. Zhang, D. Guan, D. Qian, J. Jia, Y. Wang. Zeeman effect of the topological surface states revealed by quantum oscillations up to 91 Tesla. Phys. Rev. B, 2015, 92(23): 235402
CrossRef
ADS
Google scholar
|
[283] |
N. L. Brignall. The de Haasvan−Alphen effect in n-InSb and n-InAs. J. Phys. C, 1974, 7(23): 4266
CrossRef
ADS
Google scholar
|
[284] |
Y. Zhang, Y. W. Tan, H. L. Stormer, P. Kim. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 2005, 438(7065): 201
CrossRef
ADS
Google scholar
|
[285] |
M. Imada, A. Fujimori, Y. Tokura. Metal−insulator transitions. Rev. Mod. Phys., 1998, 70(4): 1039
CrossRef
ADS
Google scholar
|
[286] |
S. L. Sondhi, S. M. Girvin, J. P. Carini, D. Shahar. Continuous quantum phase transitions. Rev. Mod. Phys., 1997, 69(1): 315
CrossRef
ADS
Google scholar
|
[287] |
S. V. Kravchenko, M. P. Sarachik. Metal–insulator transition in two-dimensional electron systems. Rep. Prog. Phys., 2004, 67(1): 1
CrossRef
ADS
Google scholar
|
[288] |
D. J. Newson, M. Pepper. Critical conductivity at the magnetic field-induced metal−insulator transition in n-GaAs and n-InSb. J. Phys. C, 1986, 19(21): 3983
CrossRef
ADS
Google scholar
|
[289] |
V. J. Goldman, M. Shayegan, H. D. Drew. Anomalous Hall effect below the magnetic field induced metal−insulator transition in narrow gap semiconductors. Phys. Rev. Lett., 1986, 57(8): 1056
CrossRef
ADS
Google scholar
|
[290] |
M. C. Maliepaard, M. Pepper, R. Newbury, J. E. F. Frost, D. C. Peacock, D. A. Ritchie, G. A. C. Jones, G. Hill. Evidence of a magneticfield-induced insulator metal−insulator transition. Phys. Rev. B, 1989, 39(2): 1430
CrossRef
ADS
Google scholar
|
[291] |
P. Dai, Y. Zhang, M. P. Sarachik. Effect of a magnetic field on the critical conductivity exponent at the metal−insulator transition. Phys. Rev. Lett., 1991, 67(1): 136
CrossRef
ADS
Google scholar
|
[292] |
S. Kivelson, D. H. Lee, S. C. Zhang. Global phase diagram in the quantum Hall effect. Phys. Rev. B, 1992, 46(4): 2223
CrossRef
ADS
Google scholar
|
[293] |
T. Wang, K. P. Clark, G. F. Spencer, A. M. Mack, W. P. Kirk. Magnetic field-induced metal−insulator transition in two dimensions. Phys. Rev. Lett., 1994, 72(5): 709
CrossRef
ADS
Google scholar
|
[294] |
Y. Tomioka, A. Asamitsu, H. Kuwahara, Y. Moritomo, Y. Tokura. Magnetic field-induced metal-insulator phenomena in Pr1−xCaxMno3 with controlled charge ordering instability. Phys. Rev. B, 1996, 53(4): R1689
CrossRef
ADS
Google scholar
|
[295] |
D. Popović, A. B. Fowler, S. Washburn. Metal−insulator transition in two dimensions: Effects of dis order and magnetic field. Phys. Rev. Lett., 1997, 79(8): 1543
CrossRef
ADS
Google scholar
|
[296] |
X. C. Xie, X. R. Wang, D. Z. Liu. Kosterlitz−Thouless type metal−insulator transition of a 2D electron gas in a random magnetic field. Phys. Rev. Lett., 1998, 80(16): 3563
CrossRef
ADS
Google scholar
|
[297] |
J. An, C. D. Gong, H. Q. Lin. Theory of the magnetic field-induced metal−insulator transition. Phys. Rev. B, 2001, 63(17): 174434
CrossRef
ADS
Google scholar
|
[298] |
H. Kempa, P. Esquinazi, Y. Kopelevich. Field induced metal−insulator transition in the c axis resistivity of graphite. Phys. Rev. B, 2002, 65(24): 241101
CrossRef
ADS
Google scholar
|
[299] |
E. V. Gorbar, V. P. Gusynin, V. A. Miransky, I. A. Shovkovy. Magnetic field driven metal−insulator phase transition in planar systems. Phys. Rev. B, 2002, 66(4): 045108
CrossRef
ADS
Google scholar
|
[300] |
Y. Kopelevich, J. C. M. Pantoja, R. R. da Silva, S. Moehlecke. Universal magnetic field driven metal insulator−metal transformations in graphite and bismuth. Phys. Rev. B, 2006, 73(16): 165128
CrossRef
ADS
Google scholar
|
[301] |
D. J. W. Geldart, D. Neilson. Quantum critical behavior in the insulating region of the two-dimensional metalinsulator transition. Phys. Rev. B, 2007, 76(19): 193304
CrossRef
ADS
Google scholar
|
[302] |
S. Calder, V. O. Garlea, D. F. McMorrow, M. D. Lumsden, M. B. Stone, J. C. Lang, J. W. Kim, J. A. Schlueter, Y. G. Shi, K. Yamaura, Y. S. Sun, Y. Tsujimoto, A. D. Christianson. Magnetically driven metal−insulator transition in NaOsO3. Phys. Rev. Lett., 2012, 108(25): 257209
CrossRef
ADS
Google scholar
|
[303] |
K. Ueda, J. Fujioka, B. J. Yang, J. Shiogai, A. Tsukazaki, S. Nakamura, S. Awaji, N. Nagaosa, Y. Tokura. Magnetic field-induced insulator−semimetal transition in a pyrochlore Nd2Ir2O7. Phys. Rev. Lett., 2015, 115(5): 056402
CrossRef
ADS
Google scholar
|
[304] |
Z. Tian, Y. Kohama, T. Tomita, H. Ishizuka, T. H. Hsieh, J. J. Ishikawa, K. Kindo, L. Balents, S. Nakatsuji. Field-induced quantum metal–insulator transition in the pyrochlore iridate Nd2Ir2O7. Nat. Phys., 2016, 12(2): 134
CrossRef
ADS
Google scholar
|
[305] |
P. Wang, Y. Ren, F. Tang, P. Wang, T. Hou, H. Zeng, L. Zhang, Z. Qiao. Approaching three-dimensional quantum Hall effect in bulk HfTe5. Phys. Rev. B, 2020, 101(16): 161201
CrossRef
ADS
Google scholar
|
[306] |
M. Vojta. Quantum phase transitions. Rep. Prog. Phys., 2003, 66(12): 2069
CrossRef
ADS
Google scholar
|
[307] |
H. Löhneysen, A. Rosch, M. Vojta, P. Wölfle. Fermi-liquid instabilities at magnetic quantum phase transitions. Rev. Mod. Phys., 2007, 79(3): 1015
CrossRef
ADS
Google scholar
|
[308] |
E. Abrahams, P. W. Anderson, D. C. Licciardello, T. V. Ramakrishnan. Scaling theory of localization: Absence of quantum diffusion in two dimensions. Phys. Rev. Lett., 1979, 42(10): 673
CrossRef
ADS
Google scholar
|
[309] |
F. J. Wegner. Electrons in disordered systems: scaling near the mobility edge. Z. Phys. B, 1976, 25: 327
|
[310] |
W. L. McMillan. Scaling theory of the metal-insulator transition in amorphous materials. Phys. Rev. B, 1981, 24(5): 2739
CrossRef
ADS
Google scholar
|
[311] |
C. A. Stafford, A. J. Millis. Scaling theory of the Mott−Hubbard metal−insulator transition in one dimension. Phys. Rev. B, 1993, 48(3): 1409
CrossRef
ADS
Google scholar
|
[312] |
B. Huckestein. Scaling theory of the integer quantum Hall effect. Rev. Mod. Phys., 1995, 67(2): 357
CrossRef
ADS
Google scholar
|
[313] |
V. Dobrosavljević, E. Abrahams, E. Miranda, S. Chakravarty. Scaling theory of two-dimensional metal−insulator transitions. Phys. Rev. Lett., 1997, 79(3): 455
CrossRef
ADS
Google scholar
|
[314] |
A. Pelissetto, E. Vicari. Critical phenomena and renormalization group theory. Phys. Rep., 2002, 368(6): 549
CrossRef
ADS
Google scholar
|
[315] |
G.Grüner, Density Waves in Solids, CRC Press, 2018
|
[316] |
T.Giamarchi, Quantum Physics in One Dimension, Vol. 121, Clarendon Press, 2003
|
[317] |
H. Watanabe, Y. Yanase. Nonlinear electric transport in odd parity magnetic multipole systems: Application to Mn-based compounds. Phys. Rev. Res., 2020, 2(4): 043081
CrossRef
ADS
Google scholar
|
[318] |
S. Y. Xu, Y. Xia, L. A. Wray, S. Jia, F. Meier, J. H. Dil, J. Osterwalder, B. Slomski, A. Bansil, H. Lin, R. J. Cava, M. Z. Hasan. Topological phase transition and texture inversion in a tunable topological insulator. Science, 2011, 332(6029): 560
CrossRef
ADS
Google scholar
|
[319] |
Y. Gong, J. Guo, J. Li, K. Zhu, M. Liao, X. Liu, Q. Zhang, L. Gu, L. Tang, X. Feng, D. Zhang, W. Li, C. Song, L. Wang, P. Yu, X. Chen, Y. Wang, H. Yao, W. Duan, Y. Xu, S. C. Zhang, X. Ma, Q. K. Xue, K. He. Experimental realization of an intrinsic magnetic topological insulator. Chin. Phys. Lett., 2019, 36(7): 076801
CrossRef
ADS
Google scholar
|
[320] |
M. M. Otrokov, I. P. Rusinov, M. Blanco-Rey, M. Hoffmann, A. Y. Vyazovskaya, S. V. Eremeev, A. Ernst, P. M. Echenique, A. Arnau, E. V. Chulkov. Unique thickness dependent properties of the van Der Waals interlayer antiferromagnet MnBi2Te4 films. Phys. Rev. Lett., 2019, 122(10): 107202
CrossRef
ADS
Google scholar
|
[321] |
C. Reeg, O. Dmytruk, D. Chevallier, D. Loss, J. Klinovaja. Zero energy Andreev bound states from quantum dots in proximitized Rashba nanowires. Phys. Rev. B, 2018, 98(24): 245407
CrossRef
ADS
Google scholar
|
[322] |
C. A. Li, S. B. Zhang, J. Li, B. Trauzettel. Higher-order Fabry−Pérot interferometer from topological hinge states. Phys. Rev. Lett., 2021, 127(2): 026803
CrossRef
ADS
Google scholar
|
[323] |
L. D. Landau. Paramagnetism of metals. Eur. Phys. J. A, 1930, 64(9−10): 629
CrossRef
ADS
Google scholar
|
[324] |
Z. Zhu, R. McDonald, A. Shekhter, B. Ramshaw, K. A. Modic, F. Balakirev, N. Harrison. Magnetic field tuning of an excitonic insulator between the weak and strong coupling regimes in quantum limit graphite. Sci. Rep., 2017, 7(1): 1733
CrossRef
ADS
Google scholar
|
[325] |
S. Galeski, X. Zhao, R. Wawrzyńczak, T. Meng, T. Förster, P. M. Lozano, S. Honnali, N. Lamba, T. Ehmcke, A. Markou, Q. Li, G. Gu, W. Zhu, J. Wosnitza, C. Felser, G. F. Chen, J. Gooth. Unconventional Hall response in the quantum limit of HfTe5. Nat. Commun., 2020, 11(1): 5926
CrossRef
ADS
Google scholar
|
[326] |
S.WangA. E. KovalevA.V. SuslovT.Siegrist, A facility for X-ray diffraction in magnetic fields up to 25 t and temperatures between 15 and 295 K, Rev. Sci. Instrum. 86(12), 123902 (2015)
|
[327] |
Y.NarumiK. KindoK.KatsumataM.KawauchiC.BroennimannU.StaubH.ToyokawaY.Tanaka K.KikkawaT. YamamotoM.HagiwaraT.IshikawaH.Kitamura, X-ray diffraction studies in pulsed high magnetic fields, J. Phys. Conf. Ser. 51, 494 (2006)
|
[328] |
P.PototschingE.GratzH.KirchmayrA.Lindbaum, X-ray diffraction in magnetic fields, J. Alloys Compd. 247(1–2), 234 (1997)
|
[329] |
P. Wang, F. Tang, P. Wang, H. Zhu, C. W. Cho, J. Wang, X. Du, Y. Shao, L. Zhang. Quantum transport properties of β-Bi4I4 near and well beyond the extreme quantum limit. Phys. Rev. B, 2021, 103(15): 155201
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |