Quantum transport in topological semimetals under magnetic fields (III)

Lei Shi, Hai-Zhou Lu

PDF(5566 KB)
PDF(5566 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (2) : 21307. DOI: 10.1007/s11467-023-1259-5
TOPICAL REVIEW
TOPICAL REVIEW

Quantum transport in topological semimetals under magnetic fields (III)

Author information +
History +

Abstract

We review our most recent research on quantum transport, organizing the review according to the intensity of the magnetic field and focus mostly on topological semimetals and topological insulators. We first describe the phenomenon of quantum transport when a magnetic field is not present. We introduce the nonlinear Hall effect and its theoretical descriptions. Then, we discuss Coulomb instabilities in 3D higher-order topological insulators. Next, we pay close attention to the surface states and find a function to identify the axion insulator in the antiferromagnetic topological insulator MnBi2Te4. Under weak magnetic fields, we focus on the decaying Majorana oscillations which has the correlation with spin−orbit coupling. In the section on strong magnetic fields, we study the helical edge states and the one-sided hinge states of the Fermi-arc mechanism, which are relevant to the quantum Hall effect. Under extremely large magnetic fields, we derive a theoretical explanation of the negative magnetoresistance without a chiral anomaly. Then, we show how magnetic responses can be used to detect relativistic quasiparticles. Additionally, we introduce the 3D quantum Hall effect’s charge-density wave mechanism and compare it with the theory of 3D transitions between metal and insulator driven by magnetic fields.

Graphical abstract

Keywords

topological semimetal / topological insulator / axion insulator / nonlinear Hall effect (NHE) / quantum oscillation / quantum Hall effect (QHE) / charge density wave (CDW)

Cite this article

Download citation ▾
Lei Shi, Hai-Zhou Lu. Quantum transport in topological semimetals under magnetic fields (III). Front. Phys., 2023, 18(2): 21307 https://doi.org/10.1007/s11467-023-1259-5

References

[1]
H. Z. Lu, S. Q. Shen. Quantum transport in topological semimetals under magnetic fields. Front. Phys., 2017, 12(3): 127201
CrossRef ADS Google scholar
[2]
H. P. Sun, H. Z. Lu. Quantum transport in topological semimetals under magnetic fields (II). Front. Phys., 2019, 14(3): 33405
CrossRef ADS Google scholar
[3]
X. B. Qiang, H. Z. Lu. Quantum transport in topological matters under magnetic fields. Acta Phys. Sin., 2021, 70(2): 027201
CrossRef ADS Google scholar
[4]
H. Z. Lu, S. Q. Shen. Weak antilocalization and localization in disordered and interacting Weyl semimetals. Phys. Rev. B, 2015, 92(3): 035203
CrossRef ADS Google scholar
[5]
X.DaiH. Z. LuS.Q. ShenH.Yao, Detecting monopole charge in Weyl semimetals via quantum interference transport, Phys. Rev. B 93, 161110(R) (2016)
[6]
H. Li, H. T. He, H. Z. Lu, H. C. Zhang, H. C. Liu, R. Ma, Z. Y. Fan, S. Q. Shen, J. N. Wang. Negative magnetoresistance in Dirac semimetal Cd3As2. Nat. Commun., 2016, 7(1): 10301
CrossRef ADS Google scholar
[7]
X. Dai, Z. Z. Du, H. Z. Lu. Negative magnetoresistance without chiral anomaly in topological insulators. Phys. Rev. Lett., 2017, 119(16): 166601
CrossRef ADS Google scholar
[8]
C. Li, C. M. Wang, B. Wan, X. Wan, H. Z. Lu, X. C. Xie. Rules for phase shifts of quantum oscillations in topological nodal-line semimetals. Phys. Rev. Lett., 2018, 120(14): 146602
CrossRef ADS Google scholar
[9]
C. M. Wang, H. Z. Lu, S. Q. Shen. Anomalous phase shift of quantum oscillations in 3D topological semimetals. Phys. Rev. Lett., 2016, 117(7): 077201
CrossRef ADS Google scholar
[10]
H. Z. Lu, S. B. Zhang, S. Q. Shen. High-field magnetoconductivity of topological semimetals with short range potential. Phys. Rev. B, 2015, 92(4): 045203
CrossRef ADS Google scholar
[11]
S. B. Zhang, H. Z. Lu, S. Q. Shen. Linear magnetoconductivity in an intrinsic topological Weyl semimetal. New J. Phys., 2016, 18(5): 053039
CrossRef ADS Google scholar
[12]
C.M. WangH. P. SunH.Z. LuX.C. Xie, 3D quantum Hall effect of Fermi arcs in topological semimetals, Phys. Rev. Lett. 119(13), 136806 (2017)
[13]
Y. Chen, H. Z. Lu, X. C. Xie. Forbidden backscattering and resistance dip in the quantum limit as a sig nature for topological insulators. Phys. Rev. Lett., 2018, 121(3): 036602
CrossRef ADS Google scholar
[14]
C. L. Zhang, S. Y. Xu, C. M. Wang, Z. Lin, Z. Z. Du, C. Guo, C. C. Lee, H. Lu, Y. Feng, S. M. Huang, G. Chang, C. H. Hsu, H. Liu, H. Lin, L. Li, C. Zhang, J. Zhang, X. C. Xie, T. Neupert, M. Z. Hasan, H. Z. Lu, J. Wang, S. Jia. Magnetic tunnelling induced Weyl node annihilation in TaP. Nat. Phys., 2017, 13(10): 979
CrossRef ADS Google scholar
[15]
Z. Du, C. Wang, H. P. Sun, H. Z. Lu, X. Xie. Quantum theory of the nonlinear Hall effect. Nat. Commun., 2021, 12(1): 5038
CrossRef ADS Google scholar
[16]
Z. Du, H. Z. Lu, X. Xie. Nonlinear Hall effects. Nat. Rev. Phys., 2021, 3(11): 744
CrossRef ADS Google scholar
[17]
Z. Du, C. Wang, S. Li, H. Z. Lu, X. Xie. Disorder induced nonlinear Hall effect with time-reversal symmetry. Nat. Commun., 2019, 10(1): 3047
CrossRef ADS Google scholar
[18]
Q. Ma, S. Y. Xu, H. Shen, D. MacNeill, V. Fatemi, T. R. Chang, A. M. Mier Valdivia, S. Wu, Z. Du, C. H. Hsu, S. Fang, Q. D. Gibson, K. Watanabe, T. Taniguchi, R. J. Cava, E. Kaxiras, H. Z. Lu, H. Lin, L. Fu, N. Gedik, P. Jarillo-Herrero. Observation of the nonlinear Hall effect under time-reversal symmetric conditions. Nature, 2019, 565(7739): 337
CrossRef ADS Google scholar
[19]
Z. Z. Du, C. M. Wang, H. Z. Lu, X. C. Xie. Band signatures for strong nonlinear Hall effect in Bi layer WTe2. Phys. Rev. Lett., 2018, 121(26): 266601
CrossRef ADS Google scholar
[20]
P. L. Zhao, X. B. Qiang, H. Z. Lu, X. C. Xie. Coulomb instabilities of a three-dimensional higher-order topological insulator. Phys. Rev. Lett., 2021, 127(17): 176601
CrossRef ADS Google scholar
[21]
H. P. Sun, C. M. Wang, S. B. Zhang, R. Chen, Y. Zhao, C. Liu, Q. Liu, C. Chen, H. Z. Lu, X. C. Xie. Analytical solution for the surface states of the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. B, 2020, 102(24): 241406
CrossRef ADS Google scholar
[22]
R. Chen, S. Li, H. P. Sun, Q. Liu, Y. Zhao, H. Z. Lu, X. C. Xie. Using nonlocal surface trans port to identify the axion insulator. Phys. Rev. B, 2021, 103(24): L241409
CrossRef ADS Google scholar
[23]
Z. Cao, H. Zhang, H. F. Lü, W. X. He, H. Z. Lu, X. C. Xie. Decays of Majorana or Andreev oscillations induced by step-like spin−orbit coupling. Phys. Rev. Lett., 2019, 122(14): 147701
CrossRef ADS Google scholar
[24]
R. Chen, T. Liu, C. M. Wang, H. Z. Lu, X. C. Xie. Field tunable one sided higher-order topological hinge states in Dirac semimetals. Phys. Rev. Lett., 2021, 127(6): 066801
CrossRef ADS Google scholar
[25]
R. Chen, C. M. Wang, T. Liu, H. Z. Lu, X. C. Xie. Quantum Hall effect originated from helical edge states in Cd3As2. Phys. Rev. Res., 2021, 3(3): 033227
CrossRef ADS Google scholar
[26]
B. Wan, F. Schindler, K. Wang, K. Wu, X. Wan, T. Neupert, H. Z. Lu. Theory for the negative longitudinal magnetoresistance in the quantum limit of Kramers Weyl semimetals. J. Phys.: Condens. Matter, 2018, 30(50): 505501
CrossRef ADS Google scholar
[27]
C. L. Zhang. . Nonsaturating quantum magnetization in Weyl semimetal TaAs. Nat. Commun., 2019, 10: 1028
CrossRef ADS Google scholar
[28]
F. Qin, S. Li, Z. Z. Du, C. M. Wang, W. Zhang, D. Yu, H. Z. Lu, X. C. Xie. Theory for the charge density wave mechanism of 3D quantum Hall effect. Phys. Rev. Lett., 2020, 125(20): 206601
CrossRef ADS Google scholar
[29]
P. L. Zhao, H. Z. Lu, X. C. Xie. Theory for magnetic field driven 3D metal−insulator transitions in the quantum limit. Phys. Rev. Lett., 2021, 127(4): 046602
CrossRef ADS Google scholar
[30]
S.Q. Shen, Topological Insulators, 2nd Ed., Springer Verlag, Berlin Heidelberg, 2017
[31]
R. Okugawa, S. Murakami. Dispersion of Fermi arcs in Weyl semimetals and their evolutions to Dirac cones. Phys. Rev. B, 2014, 89(23): 235315
CrossRef ADS Google scholar
[32]
H. Z. Lu, S. B. Zhang, S. Q. Shen. High field mag netoconductivity of topological semimetals with short range potential. Phys. Rev. B, 2015, 92(4): 045203
CrossRef ADS Google scholar
[33]
H. Zheng, M. Zahid Hasan. Quasiparticle interference on type I and type II Weyl semimetal surfaces: A review. Adv. Phys. X, 2018, 3(1): 1466661
CrossRef ADS Google scholar
[34]
H. Z. Lu, W. Y. Shan, W. Yao, Q. Niu, S. Q. Shen. Massive Dirac fermions and spin physics in an ultrathin film of topological insulator. Phys. Rev. B, 2010, 81(11): 115407
CrossRef ADS Google scholar
[35]
C. M. Wang, X. L. Lei. Linear magnetoresistance on the topological surface. Phys. Rev. B, 2012, 86(3): 035442
CrossRef ADS Google scholar
[36]
Z. Wang, H. Weng, Q. Wu, X. Dai, Z. Fang. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys. Rev. B, 2013, 88(12): 125427
CrossRef ADS Google scholar
[37]
S. Jeon, B. B. Zhou, A. Gyenis, B. E. Feldman, I. Kimchi, A. C. Potter, Q. D. Gibson, R. J. Cava, A. Vishwanath, A. Yazdani. Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2. Nat. Mater., 2014, 13(9): 851
CrossRef ADS Google scholar
[38]
C. L. Zhang, F. Schindler, H. Liu, T. R. Chang, S. Y. Xu, G. Chang, W. Hua, H. Jiang, Z. Yuan, J. Sun, H. T. Jeng, H. Z. Lu, H. Lin, M. Z. Hasan, X. C. Xie, T. Neupert, S. Jia. Ultraquantum magnetoresistance in the Kramers−Weyl semimetal candidate β-Ag2Se. Phys. Rev. B, 2017, 96(16): 165148
CrossRef ADS Google scholar
[39]
E. H. Hall. . On a new action of the magnet on electric currents. Am. J. Math., 1879, 2(3): 287
CrossRef ADS Google scholar
[40]
E. H. Hall. Xviii. on the “rotational coefficient” in nickel and cobalt. Lond. Edinb. Dublin Philos. Mag. J. Sci., 1881, 12(74): 157
CrossRef ADS Google scholar
[41]
K. Klitzing, G. Dorda, M. Pepper. New method for high accuracy determination of the fine structure constant based on quantized Hall resistance. Phys. Rev. Lett., 1980, 45(6): 494
CrossRef ADS Google scholar
[42]
D. C. Tsui, H. L. Stormer, A. C. Gossard. Two dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett., 1982, 48(22): 1559
CrossRef ADS Google scholar
[43]
N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, N. P. Ong. Anomalous Hall effect. Rev. Mod. Phys., 2010, 82(2): 1539
CrossRef ADS Google scholar
[44]
M.E. CageK. KlitzingA.ChangF.DuncanM.Haldane R.B. LaughlinA.PruiskenD.Thouless, The Quantum Hall Effect, Springer Science & Business Media, 2012
[45]
I. Sodemann, L. Fu. Quantum nonlinear Hall effect induced by Berry curvature dipole in time reversal in variant materials. Phys. Rev. Lett., 2015, 115(21): 216806
CrossRef ADS Google scholar
[46]
T. Low, Y. Jiang, F. Guinea. Topological currents in black phosphorus with broken inversion symmetry. Phys. Rev. B, 2015, 92(23): 235447
CrossRef ADS Google scholar
[47]
J. I. Facio, D. Efremov, K. Koepernik, J. S. You, I. Sodemann, J. van den Brink. Strongly enhanced berry dipole at topological phase transitions in BiTeI. Phys. Rev. Lett., 2018, 121(24): 246403
CrossRef ADS Google scholar
[48]
J. S. You, S. Fang, S. Y. Xu, E. Kaxiras, T. Low. Berry curvature dipole current in the transition metal dichalcogenides family. Phys. Rev. B, 2018, 98(12): 121109
CrossRef ADS Google scholar
[49]
Y. Zhang, J. van den Brink, C. Felser, B. Yan. Electrically tuneable nonlinear anomalous Hall effect in two-dimensional transition metal dichalcogenides WTe2 and MoTe2. 2D Mater., 2018, 5: 044001
CrossRef ADS Google scholar
[50]
Y. Zhang, Y. Sun, B. Yan. Berry curvature dipole in Weyl semimetal materials: An ab initio study. Phys. Rev. B, 2018, 97(4): 041101
CrossRef ADS Google scholar
[51]
M. Papaj, L. Fu. Magnus Hall effect. Phys. Rev. Lett., 2019, 123(21): 216802
CrossRef ADS Google scholar
[52]
D. Mandal, K. Das, A. Agarwal. Magnus Nernst and thermal Hall effect. Phys. Rev. B, 2020, 102(20): 205414
CrossRef ADS Google scholar
[53]
K. Hamamoto, M. Ezawa, K. W. Kim, T. Morimoto, N. Nagaosa. Nonlinear spin current generation in noncentrosymmetric spin−orbit coupled systems. Phys. Rev. B, 2017, 95(22): 224430
CrossRef ADS Google scholar
[54]
Y. Araki. Strain-induced nonlinear spin Hall effect in topological Dirac semimetal. Sci. Rep., 2018, 8(1): 15236
CrossRef ADS Google scholar
[55]
X. Q. Yu, Z. G. Zhu, J. S. You, T. Low, G. Su. Topological nonlinear anomalous nernst effect in strained transition metal dichalcogenides. Phys. Rev. B, 2019, 99(20): 201410
CrossRef ADS Google scholar
[56]
C. Zeng, S. Nandy, A. Taraphder, S. Tewari. Nonlinear Nernst effect in bilayer WTe2. Phys. Rev. B, 2019, 100(24): 245102
CrossRef ADS Google scholar
[57]
R. Nakai, N. Nagaosa. Nonreciprocal thermal and thermoelectric transport of electrons in noncentrosymmetric crystals. Phys. Rev. B, 2019, 99(11): 115201
CrossRef ADS Google scholar
[58]
C. Zeng, S. Nandy, S. Tewari. Fundamental relations for anomalous thermoelectric transport coefficients in the nonlinear regime. Phys. Rev. Res., 2020, 2(3): 032066
CrossRef ADS Google scholar
[59]
K. Kang, T. Li, E. Sohn, J. Shan, K. F. Mak. Nonlinear anomalous Hall effect in few layer WTe2. Nat. Mater., 2019, 18(4): 324
CrossRef ADS Google scholar
[60]
M. V. Berry. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A, 1984, 392(1802): 45
CrossRef ADS Google scholar
[61]
D. Xiao, M. C. Chang, Q. Niu. Berry phase effects on electronic properties. Rev. Mod. Phys., 2010, 82(3): 1959
CrossRef ADS Google scholar
[62]
R. Karplus, J. M. Luttinger. Hall effect in ferromagnetics. Phys. Rev., 1954, 95(5): 1154
CrossRef ADS Google scholar
[63]
W. A. Benalcazar, B. A. Bernevig, T. L. Hughes. Quantized electric multipole insulators. Science, 2017, 357(6346): 61
CrossRef ADS Google scholar
[64]
W. A. Benalcazar, B. A. Bernevig, T. L. Hughes. Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators. Phys. Rev. B, 2017, 96(24): 245115
CrossRef ADS Google scholar
[65]
C.M. WangH. P. SunH.Z. LuX.C. Xie, 3D quantum Hall effect of Fermi arcs in topological semimetals, Phys. Rev. Lett. 119(13), 136806 (2017)
[66]
Z.SongZ. FangC.Fang, (d − 2) dimensional edge states of rotation symmetry protected topological states, Phys. Rev. Lett. 119(24), 246402 (2017)
[67]
J. Langbehn, Y. Peng, L. Trifunovic, F. von Oppen, P. W. Brouwer. Reflection symmetric second-order topological insulators and superconductors. Phys. Rev. Lett., 2017, 119(24): 246401
CrossRef ADS Google scholar
[68]
R. Chen, C. Z. Chen, J. H. Gao, B. Zhou, D. H. Xu. Higher-order topological insulators in quasicrystals. Phys. Rev. Lett., 2020, 124(3): 036803
CrossRef ADS Google scholar
[69]
F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S. P. Parkin, B. A. Bernevig, T. Neupert. Higher-order topological insulators. Sci. Adv., 2018, 4(6): eaat0346
CrossRef ADS Google scholar
[70]
F. Schindler, Z. Wang, M. G. Vergniory, A. M. Cook, A. Murani, S. Sengupta, A. Y. Kasumov, R. Deblock, S. Jeon, I. Drozdov, H. Bouchiat, S. Guéron, A. Yazdani, B. A. Bernevig, T. Neupert. Higher-order topology in bismuth. Nat. Phys., 2018, 14(9): 918
CrossRef ADS Google scholar
[71]
M. Ezawa. Higher-order topological insulators and semimetals on the breathing Kagome and pyrochlore lattices. Phys. Rev. Lett., 2018, 120(2): 026801
CrossRef ADS Google scholar
[72]
Z. Li, Y. Cao, P. Yan, X. Wang. Higher-order topological solitonic insulators. npj Comput. Mater., 2019, 5: 107
CrossRef ADS Google scholar
[73]
L. Fu, C. L. Kane, E. J. Mele. Topological insulators in three dimensions. Phys. Rev. Lett., 2007, 98(10): 106803
CrossRef ADS Google scholar
[74]
J. E. Moore, L. Balents. Topological invariants of time reversal invariant band structures. Phys. Rev. B, 2007, 75(12): 121306
CrossRef ADS Google scholar
[75]
S. Murakami. Phase transition between the quantum spin Hall and insulator phases in 3D: Emergence of a topological gapless phase. New J. Phys., 2007, 9(9): 356
CrossRef ADS Google scholar
[76]
R. Roy. Topological phases and the quantum spin Hall effect in three dimensions. Phys. Rev. B, 2009, 79(19): 195322
CrossRef ADS Google scholar
[77]
L. Fu, C. L. Kane. Topological insulators within version symmetry. Phys. Rev. B, 2007, 76(4): 045302
CrossRef ADS Google scholar
[78]
D.HsiehD. QianL.WrayY.XiaY.S. Hor R.J. CavaM. Z. Hasan, A topological Dirac insulator in a quantum spin Hall phase, Nature 452(7190), 970 (2008)
[79]
H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, S. C. Zhang, Topological insulators in Bi2Se3. Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys., 2009, 5(6): 438
CrossRef ADS Google scholar
[80]
Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, M. Z. Hasan. Observation of a large gap topological insulator class with a single Dirac cone on the surface. Nat. Phys., 2009, 5(6): 398
CrossRef ADS Google scholar
[81]
M. Z. Hasan, C. L. Kane. Colloquium: Topological insulators. Rev. Mod. Phys., 2010, 82(4): 3045
CrossRef ADS Google scholar
[82]
X. L. Qi, S. C. Zhang. Topological insulators and superconductors. Rev. Mod. Phys., 2011, 83(4): 1057
CrossRef ADS Google scholar
[83]
M. Z. Hasan, J. E. Moore. Three-dimensional topological insulators. Annu. Rev. Condens. Matter Phys., 2011, 2(1): 55
CrossRef ADS Google scholar
[84]
H. Xue, Y. Yang, F. Gao, Y. Chong, B. Zhang. Acoustic higher-order topological insulator on a Kagome lattice. Nat. Mater., 2019, 18(2): 108
CrossRef ADS Google scholar
[85]
X. Ni, M. Weiner, A. Alù, A. B. Khanikaev. Observation of higher-order topological acoustic states protected by generalized chiral symmetry. Nat. Mater., 2019, 18(2): 113
CrossRef ADS Google scholar
[86]
H. Xue, Y. Ge, H. X. Sun, Q. Wang, D. Jia, Y. J. Guan, S. Q. Yuan, Y. Chong, B. Zhang. Observation of an acoustic octupole topological insulator. Nat. Commun., 2020, 11(1): 2442
CrossRef ADS Google scholar
[87]
M. Serra-Garcia, V. Peri, R. Süsstrunk, O. R. Bilal, T. Larsen, L. G. Villanueva, S. D. Huber. Observation of a phononic quadrupole topological insulator. Nature, 2018, 555(7696): 342
CrossRef ADS Google scholar
[88]
C.W. PetersonW.A. BenalcazarT.L. HughesG.Bahl, A quantized microwave quadrupole insulator with topologically protected corner states, Nature 555(7696), 346 (2018)
[89]
S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W. Molenkamp, T. Kiessling, F. Schindler, C. H. Lee, M. Greiter, T. Neupert, R. Thomale. Topoelectrical circuit realization of topological corner modes. Nat. Phys., 2018, 14(9): 925
CrossRef ADS Google scholar
[90]
M.Serra-GarciaR.SüsstrunkS. D. Huber, Observation of quadrupole transitions and edge mode topology in an LC circuit network, Phys. Rev. B 99, 020304(R) (2019)
[91]
S. Mittal, V. V. Orre, G. Zhu, M. A. Gorlach, A. Poddubny, M. Hafezi. Photonic quadrupole topological phases. Nat. Photonics, 2019, 13(10): 692
CrossRef ADS Google scholar
[92]
A. El Hassan, F. K. Kunst, A. Moritz, G. Andler, E. J. Bergholtz, M. Bourennane. Corner states of light in photonic waveguides. Nat. Photonics, 2019, 13(10): 697
CrossRef ADS Google scholar
[93]
B. Y. Xie, G. X. Su, H. F. Wang, H. Su, X. P. Shen, P. Zhan, M. H. Lu, Z. L. Wang, Y. F. Chen. Visualization of higher-order topological insulating phases in twodimensional dielectric photonic crystals. Phys. Rev. Lett., 2019, 122(23): 233903
CrossRef ADS Google scholar
[94]
M. Li, D. Zhirihin, M. Gorlach, X. Ni, D. Filonov, A. Slobozhanyuk, A. Alù, A. B. Khanikaev. Higher-order topological states in photonic Kagome crystals with long range interactions. Nat. Photonics, 2020, 14(2): 89
CrossRef ADS Google scholar
[95]
Y. Xu, Z. Song, Z. Wang, H. Weng, X. Dai. Higher-order topology of the axion insula tor EuIn2As2. Phys. Rev. Lett., 2019, 122(25): 256402
CrossRef ADS Google scholar
[96]
R.X. ZhangF. WuS.Das Sarma, Möbius insulator and higher-order topology in MnBi2nTe3n+1, Phys. Rev. Lett. 124(13), 136407 (2020)
[97]
J. E. Moore. The birth of topological insulators. Nature, 2010, 464(7286): 194
CrossRef ADS Google scholar
[98]
Z. Zhu, M. Papaj, X. A. Nie, H. K. Xu, Y. S. Gu, X. Yang, D. Guan, S. Wang, Y. Li, C. Liu, J. Luo, Z. A. Xu, H. Zheng, L. Fu, J. F. Jia. Discovery of segmented Fermi surface induced by cooper pair momentum. Science, 2021, 374(6573): 1381
CrossRef ADS Google scholar
[99]
C. X. Liu, X. L. Qi, X. Dai, Z. Fang, S. C. Zhang. Quantum anomalous Hall effect in Hg1−yMnyTe quantum wells. Phys. Rev. Lett., 2008, 101(14): 146802
CrossRef ADS Google scholar
[100]
R. Yu, W. Zhang, H. J. Zhang, S. C. Zhang, X. Dai, Z. Fang. Quantized anomalous Hall effect in magnetic topological insulators. Science, 2010, 329(5987): 61
CrossRef ADS Google scholar
[101]
X. A. Nie, S. Li, M. Yang, Z. Zhu, H. K. Xu, X. Yang, F. Zheng, D. Guan, S. Wang, Y. Y. Li, C. Liu, J. Li, P. Zhang, Y. Shi, H. Zheng, J. Jia. Robust hot electron and multiple topological insulator states in PtBi2. ACS Nano, 2020, 14(2): 2366
CrossRef ADS Google scholar
[102]
Z. Zhu, T. R. Chang, C. Y. Huang, H. Pan, X. A. Nie, X. Z. Wang, Z. T. Jin, S. Y. Xu, S. M. Huang, D. D. Guan, S. Wang, Y. Y. Li, C. Liu, D. Qian, W. Ku, F. Song, H. Lin, H. Zheng, J. F. Jia. Quasiparticle interference and nonsymmorphic effect on a floating band surface state of zrsise. Nat. Commun., 2018, 9(1): 4153
CrossRef ADS Google scholar
[103]
M. Mogi, R. Yoshimi, A. Tsukazaki, K. Yasuda, Y. Kozuka, K. Takahashi, M. Kawasaki, Y. Tokura. Magnetic modulation doping in topological insulators toward higher temperature quantum anomalous Hall effect. Appl. Phys. Lett., 2015, 107(18): 182401
CrossRef ADS Google scholar
[104]
Y. Tokura, K. Yasuda, A. Tsukazaki. Magnetic topological insulators. Nat. Rev. Phys., 2019, 1(2): 126
CrossRef ADS Google scholar
[105]
M. M. Otrokov, I. I. Klimovskikh, H. Bentmann, D. Estyunin, A. Zeugner, Z. S. Aliev, S. Gaß, A. U. B. Wolter, A. V. Koroleva, A. M. Shikin, M. Blanco-Rey, M. Hoffmann, I. P. Rusinov, A. Y. Vyazovskaya, S. V. Eremeev, Y. M. Koroteev, V. M. Kuznetsov, F. Freyse, J. Sánchez-Barriga, I. R. Amiraslanov, M. B. Babanly, N. T. Mamedov, N. A. Abdullayev, V. N. Zverev, A. Alfonsov, V. Kataev, B. Büchner, E. F. Schwier, S. Kumar, A. Kimura, L. Petaccia, G. Di Santo, R. C. Vidal, S. Schatz, K. Kißner, M. Ünzelmann, C. H. Min, S. Moser, T. R. F. Peixoto, F. Reinert, A. Ernst, P. M. Echenique, A. Isaeva, E. V. Chulkov. Prediction and observation of an antiferromagnetic topological insulator. Nature, 2019, 576(7787): 416
CrossRef ADS Google scholar
[106]
D. Zhang, M. Shi, T. Zhu, D. Xing, H. Zhang, J. Wang. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Phys. Rev. Lett., 2019, 122(20): 206401
CrossRef ADS Google scholar
[107]
J. Li, Y. Li, S. Du, Z. Wang, B. L. Gu, S. C. Zhang, K. He, W. Duan, Y. Xu. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4 family materials. Sci. Adv., 2019, 5(6): eaaw5685
CrossRef ADS Google scholar
[108]
H. K. Xu, M. Gu, F. Fei, Y. S. Gu, D. Liu, Q. Y. Yu, S. S. Xue, X. H. Ning, B. Chen, H. Xie, Z. Zhu, D. Guan, S. Wang, Y. Li, C. Liu, Q. Liu, F. Song, H. Zheng, J. Jia. Observation of magnetism-induced topological edge state in antiferromagnetic topological insulator MnBi4Te7. ACS Nano, 2022, 16(6): 9810
CrossRef ADS Google scholar
[109]
Y. J. Hao, P. Liu, Y. Feng, X. M. Ma, E. F. Schwier, M. Arita, S. Kumar, C. Hu, R. Lu, M. Zeng, Y. Wang, Z. Hao, H. Y. Sun, K. Zhang, J. Mei, N. Ni, L. Wu, K. Shimada, C. Chen, Q. Liu, C. Liu. Gapless surface Dirac cone in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. X, 2019, 9(4): 041038
CrossRef ADS Google scholar
[110]
Y. J. Chen, L. X. Xu, J. H. Li, Y. W. Li, H. Y. Wang, C. F. Zhang, H. Li, Y. Wu, A. J. Liang, C. Chen, S. W. Jung, C. Cacho, Y. H. Mao, S. Liu, M. X. Wang, Y. F. Guo, Y. Xu, Z. K. Liu, L. X. Yang, Y. L. Chen. Topological electronic structure and its temperature evolution in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. X, 2019, 9(4): 041040
CrossRef ADS Google scholar
[111]
P. Swatek, Y. Wu, L. L. Wang, K. Lee, B. Schrunk, J. Yan, A. Kaminski. Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. B, 2020, 101(16): 161109
CrossRef ADS Google scholar
[112]
R.D. PecceiH. R. Quinn, CP conservation in the presence of pseudoparticles, Phys. Rev. Lett. 38(25), 1440 (1977)
[113]
J. Wang, B. Lian, X. L. Qi, S. C. Zhang. Quantized topological magnetoelectric effect of the zero plateau quantum anomalous Hall state. Phys. Rev. B, 2015, 92(8): 081107
CrossRef ADS Google scholar
[114]
T. Morimoto, A. Furusaki, N. Nagaosa. Topological magnetoelectric effects in thin films of topological insulators. Phys. Rev. B, 2015, 92(8): 085113
CrossRef ADS Google scholar
[115]
X. L. Qi, R. Li, J. Zang, S. C. Zhang. Inducing a magnetic monopole with topological surface states. Science, 2009, 323(5918): 1184
CrossRef ADS Google scholar
[116]
J. Maciejko, X. L. Qi, H. D. Drew, S. C. Zhang. Topological quantization in units of the fine structure constant. Phys. Rev. Lett., 2010, 105(16): 166803
CrossRef ADS Google scholar
[117]
W. K. Tse, A. H. MacDonald. Giant magneto optical Kerr effect and universal faraday effect in thin film topological insulators. Phys. Rev. Lett., 2010, 105(5): 057401
CrossRef ADS Google scholar
[118]
J. Yu, J. Zang, C. X. Liu. Magnetic resonance induced pseudoelectric field and giant current response in axion insulators. Phys. Rev. B, 2019, 100(7): 075303
CrossRef ADS Google scholar
[119]
R. Chen, H. P. Sun, B. Zhou. Side surface mediated hybridization in axion insulators. Phys. Rev. B, 2023, 107(12): 125304
CrossRef ADS Google scholar
[120]
A. M. Essin, J. E. Moore, D. Vanderbilt. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett., 2009, 102(14): 146805
CrossRef ADS Google scholar
[121]
R. S. K. Mong, A. M. Essin, J. E. Moore. Anti ferromagnetic topological insulators. Phys. Rev. B, 2010, 81(24): 245209
CrossRef ADS Google scholar
[122]
C. Niu, H. Wang, N. Mao, B. Huang, Y. Mokrousov, Y. Dai. Antiferromagnetic topological insulator with nonsymmorphic protection in two dimensions. Phys. Rev. Lett., 2020, 124(6): 066401
CrossRef ADS Google scholar
[123]
Y. Xu, I. Miotkowski, C. Liu, J. Tian, H. Nam, N. Alidoust, J. Hu, C. K. Shih, M. Z. Hasan, Y. P. Chen. Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator. Nat. Phys., 2014, 10(12): 956
CrossRef ADS Google scholar
[124]
A. MacKinnon. The calculation of transport properties and density of states of disordered solids. Z. Phys. B, 1985, 59(4): 385
CrossRef ADS Google scholar
[125]
G. Metalidis, P. Bruno. Green’s function technique for studying electron flow in two-dimensional mesoscopic samples. Phys. Rev. B, 2005, 72(23): 235304
CrossRef ADS Google scholar
[126]
R. Landauer. Electrical resistance of disordered one dimensional lattices. Philosophical Magazine, 1970, 21: 863
CrossRef ADS Google scholar
[127]
M. Büttiker. Absence of backscattering in the quantum Hall effect in multiprobe conductors. Phys. Rev. B, 1988, 38(14): 9375
CrossRef ADS Google scholar
[128]
D. S. Fisher, P. A. Lee. Relation between conductivity and transmission matrix. Phys. Rev. B, 1981, 23(12): 6851
CrossRef ADS Google scholar
[129]
R. L. Chu, J. Shi, S. Q. Shen. Surface edge state and half quantized Hall conductance in topological insulators. Phys. Rev. B, 2011, 84(8): 085312
CrossRef ADS Google scholar
[130]
J. Alicea. New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys., 2012, 75(7): 076501
CrossRef ADS Google scholar
[131]
M. Leijnse, K. Flensberg. Introduction to topological superconductivity and Majorana fermions. Semicond. Sci. Technol., 2012, 27(12): 124003
CrossRef ADS Google scholar
[132]
C. Beenakker. Search for Majorana fermions in superconductors. Annu. Rev. Condens. Matter Phys., 2013, 4(1): 113
CrossRef ADS Google scholar
[133]
T. D. Stanescu, S. Tewari. Majorana fermions in semiconductor nanowires: Fundamentals, modeling, and experiment. J. Phys.: Condens. Matter, 2013, 25(23): 233201
CrossRef ADS Google scholar
[134]
R. Aguado. Majorana quasiparticles in condensed matter. Riv. Nuovo Cim., 2017, 40: 523
CrossRef ADS Google scholar
[135]
A. Kitaev. Fault-tolerant quantum computation by anyons. Ann. Phys., 2003, 303(1): 2
CrossRef ADS Google scholar
[136]
C. Nayak, S. H. Simon, A. Stern, M. Freedman, S. Das Sarma. Nonabelian anyons and topological quantum computation. Rev. Mod. Phys., 2008, 80(3): 1083
CrossRef ADS Google scholar
[137]
S. D. Sarma, M. Freedman, C. Nayak. Majorana zero modes and topological quantum computation. npj Quantum Inf., 2015, 1: 15001
CrossRef ADS Google scholar
[138]
V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, L. P. Kouwenhoven. Signatures of Majorana fermions in hybrid superconductor semiconductor nanowire devices. Science, 2012, 336(6084): 1003
CrossRef ADS Google scholar
[139]
M. Deng, C. Yu, G. Huang, M. Larsson, P. Caroff, H. Xu. Anomalous zerobias conductance peak in a NbInSb nanowire–Nb hybrid device. Nano Lett., 2012, 12(12): 6414
CrossRef ADS Google scholar
[140]
A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, H. Shtrikman. Zero bias peaks and splitting in an AlInAs nanowire topological superconductor as a signature of Majorana fermions. Nat. Phys., 2012, 8(12): 887
CrossRef ADS Google scholar
[141]
A. D. K. Finck, D. J. Van Harlingen, P. K. Mohseni, K. Jung, X. Li. Anomalous modulation of a zero bias peak in a hybrid nanowire superconductor device. Phys. Rev. Lett., 2013, 110(12): 126406
CrossRef ADS Google scholar
[142]
H. O. H. Churchill, V. Fatemi, K. Grove-Rasmussen, M. T. Deng, P. Caroff, H. Q. Xu, C. M. Marcus. Superconductor-nanowire devices from tunneling to the multichannel regime: Zero-bias oscillations and magnetoconductance crossover. Phys. Rev. B, 2013, 87(24): 241401
CrossRef ADS Google scholar
[143]
M. T. Deng, S. Vaitieke˙nas, E. B. Hansen, J. Danon, M. Leijnse, K. Flensberg, J. Nygård, P. Krogstrup, C. M. Marcus. Majorana bound state in a coupled quantum dot hybrid nanowire system. Science, 2016, 354(6319): 1557
CrossRef ADS Google scholar
[144]
J. Chen, P. Yu, J. Stenger, M. Hocevar, D. Car, S. R. Plissard, E. P. A. M. Bakkers, T. D. Stanescu, S. M. Frolov. Experimental phase diagram of zero bias conductance peaks in superconductor/semiconductor nanowire devices. Sci. Adv., 2017, 3(9): e1701476
CrossRef ADS Google scholar
[145]
H. J. Suominen, M. Kjaergaard, A. R. Hamilton, J. Shabani, C. J. Palmstrøm, C. M. Marcus, F. Nichele. Zero energy modes from coalescing Andreev states in a two-dimensional semiconductor−superconductor hybrid platform. Phys. Rev. Lett., 2017, 119(17): 176805
CrossRef ADS Google scholar
[146]
F. Nichele, A. C. C. Drachmann, A. M. Whiticar, E. C. T. O’Farrell, H. J. Suominen, A. Fornieri, T. Wang, G. C. Gardner, C. Thomas, A. T. Hatke, P. Krogstrup, M. J. Manfra, K. Flensberg, C. M. Marcus. Scaling of Majorana zero bias conductance peaks. Phys. Rev. Lett., 2017, 119(13): 136803
CrossRef ADS Google scholar
[147]
H. Zhang, C. X. Liu, S. Gazibegovic, D. Xu, J. A. Logan, G. Wang, N. van Loo, J. D. S. Bommer, M. W. A. de Moor, D. Car, R. L. M. Op het Veld, P. J. van Veldhoven, S. Koelling, M. A. Verheijen, M. Pendharkar, D. J. Pennachio, B. Shojaei, J. S. Lee, C. J. Palmstrøm, E. P. A. M. Bakkers, S. D. Sarma, L. P. Kouwenhoven. Retracted article: Quantized Majorana conductance. Nature, 2018, 556(7699): 74
CrossRef ADS Google scholar
[148]
J. E. Sestoft, T. Kanne, A. N. Gejl, M. von Soosten, J. S. Yodh, D. Sherman, B. Tarasinski, M. Wimmer, E. Johnson, M. Deng, J. Nygård, T. S. Jespersen, C. M. Marcus, P. Krogstrup. Engineering hybrid epitaxial InAsSb/Al nanowires for stronger topological protection. Phys. Rev. Mater., 2018, 2(4): 044202
CrossRef ADS Google scholar
[149]
S. Vaitiekėnas, M. T. Deng, J. Nygård, P. Krogstrup, C. M. Marcus. Effective g factor of subgap states in hybrid nanowires. Phys. Rev. Lett., 2018, 121(3): 037703
CrossRef ADS Google scholar
[150]
M. T. Deng, S. Vaitieke˙nas, E. Prada, P. SanJose, J. Nygård, P. Krogstrup, R. Aguado, C. M. Marcus. Nonlocality of Majorana modes in hybrid nanowires. Phys. Rev. B, 2018, 98(8): 085125
CrossRef ADS Google scholar
[151]
M. W. A. de Moor, J. D. S. Bommer, D. Xu, G. W. Winkler, A. E. Antipov, A. Bargerbos, G. Wang, N. Loo, R. L. M. Op het Veld, S. Gazibegovic, D. Car, J. A. Logan, M. Pendharkar, J. S. Lee, E. P. A. M Bakkers, C. J. Palmstrøm, R. M. Lutchyn, L. P. Kouwenhoven, H. Zhang. Electric field tunable superconductor semiconductor coupling in Majorana nanowires. New J. Phys., 2018, 20(10): 103049
CrossRef ADS Google scholar
[152]
Z. Zhu, H. Zheng, J. F. Jia. Majorana zero mode in the vortex of artificial topological superconductor. J. Appl. Phys., 2021, 129(15): 151104
CrossRef ADS Google scholar
[153]
R. M. Lutchyn, J. D. Sau, S. Das Sarma. Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. Phys. Rev. Lett., 2010, 105(7): 077001
CrossRef ADS Google scholar
[154]
Y. Oreg, G. Refael, F. von Oppen. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett., 2010, 105(17): 177002
CrossRef ADS Google scholar
[155]
R. M. Lutchyn, E. P. Bakkers, L. P. Kouwenhoven, P. Krogstrup, C. M. Marcus, Y. Oreg. Majorana zero modes in superconductor–semiconductor heterostructures. Nat. Rev. Mater., 2018, 3(5): 52
CrossRef ADS Google scholar
[156]
E. Prada, P. San-Jose, R. Aguado. Transport spectroscopy of NS nanowire junctions with Majorana fermions. Phys. Rev. B, 2012, 86(18): 180503
CrossRef ADS Google scholar
[157]
S. Das Sarma, J. D. Sau, T. D. Stanescu. Splitting of the zero bias conductance peak as smoking gun evidence for the existence of the Majorana mode in a superconductor−semiconductor nanowire. Phys. Rev. B, 2012, 86(22): 220506
CrossRef ADS Google scholar
[158]
D. Rainis, L. Trifunovic, J. Klinovaja, D. Loss. Towards a realistic transport modeling in a superconducting nanowire with majorana fermions. Phys. Rev. B, 2013, 87(2): 024515
CrossRef ADS Google scholar
[159]
S. M. Albrecht, A. P. Higginbotham, M. Madsen, F. Kuemmeth, T. S. Jespersen, J. Nygård, P. Krogstrup, C. Marcus. Exponential protection of zero modes in Majorana islands. Nature, 2016, 531(7593): 206
CrossRef ADS Google scholar
[160]
D. Sherman, J. Yodh, S. Albrecht, J. Nygård, P. Krogstrup, C. Marcus. Normal, superconducting and topological regimes of hybrid double quantum dots. Nat. Nanotechnol., 2017, 12(3): 212
CrossRef ADS Google scholar
[161]
S. M. Albrecht, E. B. Hansen, A. P. Higginbotham, F. Kuemmeth, T. S. Jespersen, J. Nygård, P. Krogstrup, J. Danon, K. Flensberg, C. M. Marcus. Transport signatures of quasiparticle poisoning in a Majorana island. Phys. Rev. Lett., 2017, 118(13): 137701
CrossRef ADS Google scholar
[162]
E. C. T. O’Farrell, A. C. C. Drachmann, M. Hell, A. Fornieri, A. M. Whiticar, E. B. Hansen, S. Gronin, G. C. Gardner, C. Thomas, M. J. Manfra, K. Flensberg, C. M. Marcus, F. Nichele. Hybridization of subgap states in one-dimensional superconductor semiconductor Coulomb islands. Phys. Rev. Lett., 2018, 121(25): 256803
CrossRef ADS Google scholar
[163]
G. Kells, D. Meidan, P. W. Brouwer. Nearzero energy end states in topologically trivial spin−orbit coupled superconducting nanowires with a smooth confinement. Phys. Rev. B, 2012, 86(10): 100503
CrossRef ADS Google scholar
[164]
T. D. Stanescu, S. Tewari. Disentangling Majorana fermions from topologically trivial low energy states in semiconductor Majorana wires. Phys. Rev. B, 2013, 87(14): 140504
CrossRef ADS Google scholar
[165]
C. X. Liu, J. D. Sau, T. D. Stanescu, S. Das Sarma. Andreev bound states versus Majorana bound states in quantum dot nanowire superconductor hybrid structures: Trivial versus topological zero bias conductance peaks. Phys. Rev. B, 2017, 96(7): 075161
CrossRef ADS Google scholar
[166]
C. Moore, T. D. Stanescu, S. Tewari. Two terminal charge tunneling: Disentangling Majorana zero modes from partially separated Andreev bound states in semiconductor−superconductor heterostructures. Phys. Rev. B, 2018, 97(16): 165302
CrossRef ADS Google scholar
[167]
B. I. Halperin. Possible states for a three-dimensional electron gas in a strong magnetic field. Jpn. J. Appl. Phys., 1987, 26(S3-3): 1913
CrossRef ADS Google scholar
[168]
O. Zilberberg, S. Huang, J. Guglielmon, M. Wang, K. P. Chen, Y. E. Kraus, M. C. Rechtsman. Photonic topological boundary pumping as a probe of 4D quantum Hall physics. Nature, 2018, 553(7686): 59
CrossRef ADS Google scholar
[169]
G. Montambaux, M. Kohmoto. Quantized Hall effect in three dimensions. Phys. Rev. B, 1990, 41(16): 11417
CrossRef ADS Google scholar
[170]
M. Kohmoto, B. I. Halperin, Y. S. Wu. Diophan tine equation for the three-dimensional quantum Hall effect. Phys. Rev. B, 1992, 45(23): 13488
CrossRef ADS Google scholar
[171]
M. Koshino, H. Aoki, K. Kuroki, S. Kagoshima, T. Osada. Hofstadter butterfly and integer quantum Hall effect in three dimensions. Phys. Rev. Lett., 2001, 86(6): 1062
CrossRef ADS Google scholar
[172]
B. A. Bernevig, T. L. Hughes, S. Raghu, D. P. Arovas. Theory of the three-dimensional quantum Hall effect in graphite. Phys. Rev. Lett., 2007, 99(14): 146804
CrossRef ADS Google scholar
[173]
H. L. Störmer, J. P. Eisenstein, A. C. Gossard, W. Wiegmann, K. Baldwin. Quantization of the Hall effect in an anisotropic three-dimensional electronic system. Phys. Rev. Lett., 1986, 56(1): 85
CrossRef ADS Google scholar
[174]
J. R. Cooper, W. Kang, P. Auban, G. Montambaux, D. Jérome, K. Bechgaard. Quantized Hall effect and a new field-induced phase transition in the organic superconductor (TMTSF)2PF6. Phys. Rev. Lett., 1989, 63(18): 1984
CrossRef ADS Google scholar
[175]
S. T. Hannahs, J. S. Brooks, W. Kang, L. Y. Chiang, P. M. Chaikin. Quantum Hall effect in a bulk crystal. Phys. Rev. Lett., 1989, 63(18): 1988
CrossRef ADS Google scholar
[176]
S. Hill, S. Uji, M. Takashita, C. Terakura, T. Terashima, H. Aoki, J. S. Brooks, Z. Fisk, J. Sarrao. Bulk quantum Hall effect in η-Mo4O11. Phys. Rev. B, 1998, 58(16): 10778
CrossRef ADS Google scholar
[177]
H. Cao, J. Tian, I. Miotkowski, T. Shen, J. Hu, S. Qiao, Y. P. Chen. Quantized Hall effect and Shubnikov–de Haas oscillations in highly doped Bi2Se3: Evidence for layered transport of bulk carriers. Phys. Rev. Lett., 2012, 108(21): 216803
CrossRef ADS Google scholar
[178]
H. Masuda, H. Sakai, M. Tokunaga, Y. Yamasaki, A. Miyake, J. Shiogai, S. Nakamura, S. Awaji, A. Tsukazaki, H. Nakao, Y. Murakami, T. Arima, Y. Tokura, S. Ishiwata. Quantum Hall effect in a bulk antiferromagnet EuMnBi2 with magnetically confined two-dimensional Dirac fermions. Sci. Adv., 2016, 2(1): e1501117
CrossRef ADS Google scholar
[179]
Y. Liu, X. Yuan, C. Zhang, Z. Jin, A. Narayan, C. Luo, Z. Chen, L. Yang, J. Zou, X. Wu, S. Sanvito, Z. Xia, L. Li, Z. Wang, F. Xiu. Zeeman splitting and dynamical mass generation in Dirac semimetal ZrTe5. Nat. Commun., 2016, 7(1): 12516
CrossRef ADS Google scholar
[180]
J. Liu, J. Yu, J. L. Ning, H. M. Yi, L. Miao, L. J. Min, Y. F. Zhao, W. Ning, K. A. Lopez, Y. L. Zhu, T. Pillsbury, Y. B. Zhang, Y. Wang, J. Hu, H. B. Cao, B. C. Chakoumakos, F. Balakirev, F. Weickert, M. Jaime, Y. Lai, K. Yang, J. W. Sun, N. Alem, V. Gopalan, C. Z. Chang, N. Samarth, C. X. Liu, R. D. McDonald, Z. Q. Mao. Spin-valley locking and bulk quantum Hall effect in a noncentrosymmetric Dirac semimetal BaMnSb2. Nat. Commun., 2021, 12(1): 4062
CrossRef ADS Google scholar
[181]
F. Tang, Y. Ren, P. Wang, R. Zhong, J. Schneeloch, S. A. Yang, K. Yang, P. A. Lee, G. Gu, Z. Qiao, L. Zhang. Three-dimensional quantum Hall effect and metal–insulator transition in ZrTe5. Nature, 2019, 569(7757): 537
CrossRef ADS Google scholar
[182]
H.LiH.Liu H.JiangX. C. Xie, 3D quantum Hall effect and a global picture of edge states in Weyl semimetals, Phys. Rev. Lett. 125(3), 036602 (2020)
[183]
S. G. Cheng, H. Jiang, Q. F. Sun, X. C. Xie. Quantum Hall effect in wedge-shaped samples. Phys. Rev. B, 2020, 102(7): 075304
CrossRef ADS Google scholar
[184]
P. Wang, Y. Ren, F. Tang, P. Wang, T. Hou, H. Zeng, L. Zhang, Z. Qiao. Approaching three-dimensional quantum Hall effect in bulk HfTe5. Phys. Rev. B, 2020, 101(16): 161201
CrossRef ADS Google scholar
[185]
R. Ma, D. N. Sheng, L. Sheng. Three-dimensional quantum Hall effect and magnetothermoelectric properties in Weyl semimetals. Phys. Rev. B, 2021, 104(7): 075425
CrossRef ADS Google scholar
[186]
S.C. ZhangJ. Hu, A four-dimensional generalization of the quantum Hall effect, Science 294(5543), 823 (2001)
[187]
M. Lohse, C. Schweizer, H. M. Price, O. Zilberberg, I. Bloch. Exploring 4D quantum Hall physics with a 2D topological charge pump. Nature, 2018, 553(7686): 55
CrossRef ADS Google scholar
[188]
H. M. Price, O. Zilberberg, T. Ozawa, I. Carusotto, N. Goldman. Four-dimensional quantum Hall effect with ultracold atoms. Phys. Rev. Lett., 2015, 115(19): 195303
CrossRef ADS Google scholar
[189]
Y. J. Jin, R. Wang, B. W. Xia, B. B. Zheng, H. Xu. Three-dimensional quantum anomalous Hall effect in ferromagnetic insulators. Phys. Rev. B, 2018, 98(8): 081101
CrossRef ADS Google scholar
[190]
R. A. Molina, J. González. Surface and 3D quantum Hall effects from engineering of exceptional points in nodal line semimetals. Phys. Rev. Lett., 2018, 120(14): 146601
CrossRef ADS Google scholar
[191]
E. Benito-Matías, R. A. Molina, J. González. Surface and bulk Landau levels in thin films of Weyl semimetals. Phys. Rev. B, 2020, 101(8): 085420
CrossRef ADS Google scholar
[192]
M. Chang, L. Sheng. Three-dimensional quantum Hall effect in the excitonic phase of a Weyl semimetal. Phys. Rev. B, 2021, 103(24): 245409
CrossRef ADS Google scholar
[193]
M. Chang, H. Geng, L. Sheng, D. Y. Xing. Three-dimensional quantum Hall effect in Weyl semimetals. Phys. Rev. B, 2021, 103(24): 245434
CrossRef ADS Google scholar
[194]
K. Klitzing, G. Dorda, M. Pepper. New method for high accuracy determination of the fine structure constant based on quantized Hall resistance. Phys. Rev. Lett., 1980, 45(6): 494
CrossRef ADS Google scholar
[195]
D. J. Thouless, M. Kohmoto, M. P. Nightingale, M. den Nijs. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett., 1982, 49(6): 405
CrossRef ADS Google scholar
[196]
H.Z. Lu, 3D quantum Hall effect, Natl. Sci. Rev. 6(2), 208 (2019)
[197]
F. Liu, H. Y. Deng, K. Wakabayashi. Helical topological edge states in a quadrupole phase. Phys. Rev. Lett., 2019, 122(8): 086804
CrossRef ADS Google scholar
[198]
B. Roy. Antiunitary symmetry protected higher-order topological phases. Phys. Rev. Res., 2019, 1(3): 032048
CrossRef ADS Google scholar
[199]
C. B. Hua, R. Chen, B. Zhou, D. H. Xu. Higher-order topological insulator in a dodecagonal quasicrystal. Phys. Rev. B, 2020, 102(24): 241102
CrossRef ADS Google scholar
[200]
Z. R. Liu, L. H. Hu, C. Z. Chen, B. Zhou, D. H. Xu. Topological excitonic corner states and nodal phase in bilayer quantum spin Hall insulators. Phys. Rev. B, 2021, 103(20): L201115
CrossRef ADS Google scholar
[201]
R. Queiroz, A. Stern. Splitting the hinge mode of higher-order topological insulators. Phys. Rev. Lett., 2019, 123(3): 036802
CrossRef ADS Google scholar
[202]
M. Sitte, A. Rosch, E. Altman, L. Fritz. Topological insulators in magnetic fields: Quantum Hall effect and edge channels with a nonquantized θ term. Phys. Rev. Lett., 2012, 108(12): 126807
CrossRef ADS Google scholar
[203]
F. Zhang, C. L. Kane, E. J. Mele. Surface state magnetization and chiral edge states on topological insulators. Phys. Rev. Lett., 2013, 110(4): 046404
CrossRef ADS Google scholar
[204]
Y. Otaki, T. Fukui. Higher-order topological insulators in a magnetic field. Phys. Rev. B, 2019, 100: 245108
CrossRef ADS Google scholar
[205]
Z. Yan, F. Song, Z. Wang. Majorana corner modes in a high temperature platform. Phys. Rev. Lett., 2018, 121(9): 096803
CrossRef ADS Google scholar
[206]
Z. Yan. Higher-order topological odd parity superconductors. Phys. Rev. Lett., 2019, 123(17): 177001
CrossRef ADS Google scholar
[207]
D. Varjas, A. Lau, K. Pöyhönen, A. R. Akhmerov, D. I. Pikulin, I. C. Fulga. Topological phases without crystalline counterparts. Phys. Rev. Lett., 2019, 123(19): 196401
CrossRef ADS Google scholar
[208]
S. A. A. Ghorashi, T. Li, T. L. Hughes. Higher-order Weyl semimetals. Phys. Rev. Lett., 2020, 125(26): 266804
CrossRef ADS Google scholar
[209]
H. X. Wang, Z. K. Lin, B. Jiang, G. Y. Guo, J. H. Jiang. Higher-order weyl semimetals. Phys. Rev. Lett., 2020, 125(14): 146401
CrossRef ADS Google scholar
[210]
K. Wang, J. X. Dai, L. B. Shao, S. A. Yang, Y. X. Zhao. Boundary criticality of PT invariant topology and secondorder nodalline semimetals. Phys. Rev. Lett., 2020, 125(12): 126403
CrossRef ADS Google scholar
[211]
S. A. Hassani Gangaraj, C. Valagiannopoulos, F. Monticone. Topological scattering resonances at ultralow frequencies. Phys. Rev. Res., 2020, 2(2): 023180
CrossRef ADS Google scholar
[212]
C. Z. Li, A. Q. Wang, C. Li, W. Z. Zheng, A. Brinkman, D. P. Yu, Z. M. Liao. Reducing electronic trans port dimension to topological hinge states by increasing geometry size of Dirac semimetal Josephson junctions. Phys. Rev. Lett., 2020, 124(15): 156601
CrossRef ADS Google scholar
[213]
D. Călugăru, V. Juričič, B. Roy. Higher-order topological phases: A general principle of construction. Phys. Rev. B, 2019, 99(4): 041301
CrossRef ADS Google scholar
[214]
H. Hu, B. Huang, E. Zhao, W. V. Liu. Dynamical singularities of floquet higher-order topological insulators. Phys. Rev. Lett., 2020, 124(5): 057001
CrossRef ADS Google scholar
[215]
B. Huang, W. V. Liu. Floquet higher-order topological insulators with anomalous dynamical polarization. Phys. Rev. Lett., 2020, 124(21): 216601
CrossRef ADS Google scholar
[216]
M. Kheirkhah, Z. Yan, Y. Nagai, F. Marsiglio. First and second order topological superconductivity and temperature driven topological phase transitions in the extended Hubbard model with spin−orbit coupling. Phys. Rev. Lett., 2020, 125(1): 017001
CrossRef ADS Google scholar
[217]
M. Kheirkhah, Y. Nagai, C. Chen, F. Marsiglio. Majorana corner flatbands in two-dimensional second order topological superconductors. Phys. Rev. B, 2020, 101(10): 104502
CrossRef ADS Google scholar
[218]
A. Sarsen, C. Valagiannopoulos. Robust polarization twist by pairs of multilayers with tilted optical axes. Phys. Rev. B, 2019, 99(11): 115304
CrossRef ADS Google scholar
[219]
J. Noh, W. A. Benalcazar, S. Huang, M. J. Collins, K. P. Chen, T. L. Hughes, M. C. Rechtsman. Topological protection of photonic midgap defect modes. Nat. Photonics, 2018, 12(7): 408
CrossRef ADS Google scholar
[220]
Y. B. Choi, Y. Xie, C. Z. Chen, J. Park, S. B. Song, J. Yoon, B. J. Kim, T. Taniguchi, K. Watanabe, J. Kim, K. C. Fong, M. N. Ali, K. T. Law, G. H. Lee. Evidence of higher-order topology in multilayer WTe2 from Josephson coupling through anisotropic hinge states. Nat. Mater., 2020, 19(9): 974
CrossRef ADS Google scholar
[221]
B. J. Wieder, Z. Wang, J. Cano, X. Dai, L. M. Schoop, B. Bradlyn, B. A. Bernevig. Strong and fragile topological Dirac semimetals with higher-order Fermi arcs. Nat. Commun., 2020, 11(1): 627
CrossRef ADS Google scholar
[222]
B. Xie, H. X. Wang, X. Zhang, P. Zhan, J. H. Jiang, M. Lu, Y. Chen. Higher-order band topology. Nat. Rev. Phys., 2021, 3(7): 520
CrossRef ADS Google scholar
[223]
D. A. Kealhofer, L. Galletti, T. Schumann, A. Suslov, S. Stemmer. Topological insulator state and collapse of the quantum Hall effect in a three-dimensional Dirac semimetal heterojunction. Phys. Rev. X, 2020, 10(1): 011050
CrossRef ADS Google scholar
[224]
B. C. Lin, S. Wang, S. Wiedmann, J. M. Lu, W. Z. Zheng, D. Yu, Z. M. Liao. Observation of an odd integer quantum Hall effect from topological surface states in Cd3As2. Phys. Rev. Lett., 2019, 122(3): 036602
CrossRef ADS Google scholar
[225]
S. Wang, B. C. Lin, W. Z. Zheng, D. Yu, Z. M. Liao. Fano interference between bulk and surface states of a Dirac semimetal Cd3As2 nanowire. Phys. Rev. Lett., 2018, 120(25): 257701
CrossRef ADS Google scholar
[226]
S. Nishihaya, M. Uchida, Y. Nakazawa, M. Kriener, Y. Kozuka, Y. Taguchi, M. Kawasaki. Gate-tuned quantum Hall states in Dirac semimetal. Sci. Adv., 2018, 4(5): eaar5668
CrossRef ADS Google scholar
[227]
L. Galletti, T. Schumann, O. F. Shoron, M. Goyal, D. A. Kealhofer, H. Kim, S. Stemmer. Two-dimensional Dirac fermions in thin films of Cd3As2. Phys. Rev. B, 2018, 97(11): 115132
CrossRef ADS Google scholar
[228]
T. Schumann, L. Galletti, D. A. Kealhofer, H. Kim, M. Goyal, S. Stemmer. Observation of the quantum Hall effect in confined films of the three-dimensional Dirac semimetal Cd3As2. Phys. Rev. Lett., 2018, 120(1): 016801
CrossRef ADS Google scholar
[229]
C. Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Wang, L. Lu, X. C. Ma, Q. K. Xue. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science, 2013, 340(6129): 167
CrossRef ADS Google scholar
[230]
C. Zhang, A. Narayan, S. Lu, J. Zhang, H. Zhang, Z. Ni, X. Yuan, Y. Liu, J. H. Park, E. Zhang, W. Wang, S. Liu, L. Cheng, L. Pi, Z. Sheng, S. Sanvito, F. Xiu. Evolution of Weyl orbit and quantum Hall effect in Dirac semimetal Cd3As2. Nat. Commun., 2017, 8(1): 1272
CrossRef ADS Google scholar
[231]
M. Uchida, Y. Nakazawa, S. Nishihaya, K. Akiba, M. Kriener, Y. Kozuka, A. Miyake, Y. Taguchi, M. Tokunaga, N. Nagaosa, Y. Tokura, M. Kawasaki. Quantum Hall states observed in thin films of Dirac semimetal Cd3As2. Nat. Commun., 2017, 8(1): 2274
CrossRef ADS Google scholar
[232]
C. Zhang, Y. Zhang, X. Yuan, S. Lu, J. Zhang, A. Narayan, Y. Liu, H. Zhang, Z. Ni, R. Liu, E. S. Choi, A. Suslov, S. Sanvito, L. Pi, H. Z. Lu, A. C. Potter, F. Xiu. Quantum Hall effect based on Weyl orbits in Cd3As2. Nature, 2019, 565(7739): 331
CrossRef ADS Google scholar
[233]
S. Nishihaya, M. Uchida, Y. Nakazawa, R. Kurihara, K. Akiba, M. Kriener, A. Miyake, Y. Taguchi, M. Tokunaga, M. Kawasaki. Quantized surface transport in topological Dirac semimetal films. Nat. Commun., 2019, 10(1): 2564
CrossRef ADS Google scholar
[234]
T. Schumann, L. Galletti, D. A. Kealhofer, H. Kim, S. Goyal, S. Stemmer. Observation of the quantum Hall effect in confined films of the three-dimensional Dirac semimetal Cd3As2. Phys. Rev. Lett., 2018, 120(1): 016801
CrossRef ADS Google scholar
[235]
P. J. W. Moll, N. L. Nair, T. Helm, A. C. Potter, I. Kimchi, A. Vishwanath, J. G. Analytis. Transport evidence for Fermi arc mediated chirality transfer in the Dirac semimetal Cd3As2. Nature, 2016, 535(7611): 266
CrossRef ADS Google scholar
[236]
P. N. Argyres, E. N. Adams. Longitudinal magnetoresistance in the quantum limit. Phys. Rev., 1956, 104(4): 900
CrossRef ADS Google scholar
[237]
P. A. Lee, T. V. Ramakrishnan. Disordered electronic systems. Rev. Mod. Phys., 1985, 57(2): 287
CrossRef ADS Google scholar
[238]
J. Wang, H. Li, C. Chang, K. He, J. S. Lee, H. Lu, Y. Sun, X. Ma, N. Samarth, S. Shen, Q. Xue, M. Xie, M. H. W. Chan. Anomalous anisotropic magnetoresistance in topological insulator films. Nano Res., 2012, 5(10): 739
CrossRef ADS Google scholar
[239]
H. T. He, H. C. Liu, B. K. Li, X. Guo, Z. J. Xu, M. H. Xie, J. N. Wang. Disorderinduced linear magnetoresistance in (221) topological insulator Bi2Se3 films. Appl. Phys. Lett., 2013, 103(3): 031606
CrossRef ADS Google scholar
[240]
S. Wiedmann, A. Jost, B. Fauqué, J. van Dijk, M. J. Meijer, T. Khouri, S. Pezzini, S. Grauer, S. Schreyeck, C. Brüne, H. Buhmann, L. W. Molenkamp, N. E. Hussey. Anisotropic and strong negative magnetoresistance in the three-dimensional topological insulator Bi2Se3. Phys. Rev. B, 2016, 94(8): 081302
CrossRef ADS Google scholar
[241]
L. X. Wang, Y. Yan, L. Zhang, Z. M. Liao, H. C. Wu, D. P. Yu. Zeeman effect on surface electron transport in topological insulator Bi2Se3 nanoribbons. Nanoscale, 2015, 7(40): 16687
CrossRef ADS Google scholar
[242]
O. Breunig, Z. Wang, A. A. Taskin, J. Lux, A. Rosch, Y. Ando. Gigantic negative magnetoresistance in the bulk of a disordered topological insulator. Nat. Commun., 2017, 8(1): 15545
CrossRef ADS Google scholar
[243]
B. A. Assaf, T. Phuphachong, E. Kampert, V. V. Volobuev, P. S. Mandal, J. Sánchez-Barriga, O. Rader, G. Bauer, G. Springholz, L. A. de Vaulchier, Y. Guldner. Negative longitudinal magnetoresistance from the anomalous N = 0 Landau level in topo logical materials. Phys. Rev. Lett., 2017, 119(10): 106602
CrossRef ADS Google scholar
[244]
H. J. Kim, K. S. Kim, J. F. Wang, M. Sasaki, T. Satoh, A. Ohnishi, M. Kitaura, M. Yang, L. Li. Dirac versus Weyl fermions in topological insulators: Adler−Bell−Jackiw anomaly in transport phenomena. Phys. Rev. Lett., 2013, 111(24): 246603
CrossRef ADS Google scholar
[245]
K. S. Kim, H. J. Kim, M. Sasaki. Boltzmann equation approach to anomalous transport in a Weyl metal. Phys. Rev. B, 2014, 89(19): 195137
CrossRef ADS Google scholar
[246]
Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosic, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, T. Valla. Chiral magnetic effect in ZrTe5. Nat. Phys., 2016, 12(6): 550
CrossRef ADS Google scholar
[247]
C. L. Zhang, S. Y. Xu, I. Belopolski, Z. Yuan, Z. Lin, B. Tong, G. Bian, N. Alidoust, C. C. Lee, S. M. Huang, T. R. Chang, G. Chang, C. H. Hsu, H. T. Jeng, M. Neupane, D. S. Sanchez, H. Zheng, J. Wang, H. Lin, C. Zhang, H. Z. Lu, S. Q. Shen, T. Neupert, M. Zahid Hasan, S. Jia. Signatures of the Adler−Bell−Jackiw chiral anomaly in a Weyl Fermion semimetal. Nat. Commun., 2016, 7(1): 10735
CrossRef ADS Google scholar
[248]
X. C. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang, H. Liang, M. Xue, H. Weng, Z. Fang, X. Dai, G. Chen. Observation of the chiral anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X, 2015, 5(3): 031023
CrossRef ADS Google scholar
[249]
J. Xiong, S. K. Kushwaha, T. Liang, J. W. Krizan, M. Hirschberger, W. Wang, R. J. Cava, N. P. Ong. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science, 2015, 350(6259): 413
CrossRef ADS Google scholar
[250]
C. Z. Li, L. X. Wang, H. W. Liu, J. Wang, Z. M. Liao, D. P. Yu. Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires. Nat. Commun., 2015, 6(1): 10137
CrossRef ADS Google scholar
[251]
C. Zhang, E. Zhang, W. Wang, Y. Liu, Z. G. Chen, S. Lu, S. Liang, J. Cao, X. Yuan, L. Tang, Q. Li, C. Zhou, T. Gu, Y. Wu, J. Zou, F. Xiu. Room temperature chiral charge pumping in Dirac semimetals. Nat. Commun., 2017, 8(1): 13741
CrossRef ADS Google scholar
[252]
F. Arnold, C. Shekhar, S.-C. Wu, Yan Sun, R. D. Reis, N. Kumar, M. Naumann, M. O. Ajeesh, M. Schmidt, A. G. Grushin, J. H. Bardarson, M. Baenitz, D. Sokolov, H. Borrmann, M. Nicklas, C. Felser, E. Hassinger, B. Yan. Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP. Nat. Commun., 2016, 7: 11615
CrossRef ADS Google scholar
[253]
X.J. YangY. P. LiuZ.WangY.ZhengZ.A. Xu, Chiral anomaly induced negative magnetoresistance in topological Weyl semimetal NbAs, arXiv: 1506.03190 (2015)
[254]
X.YangY. LiZ.WangY.ZhenZ.A. Xu, Observation of negative magnetoresistance and nontrivial π Berry’s phase in 3D Weyl semimetal NbAs, arXiv: 1506.02283 (2015)
[255]
H. Wang, C. K. Li, H. Liu, J. Yan, J. Wang, J. Liu, Z. Lin, Y. Li, Y. Wang, L. Li, D. Mandrus, X. C. Xie, J. Feng, J. Wang. Chiral anomaly and ultrahigh mobility in crystalline HfTe5. Phys. Rev. B, 2016, 93(16): 165127
CrossRef ADS Google scholar
[256]
S. L. Adler. Axial vector vertex in spinor electrodynamics. Phys. Rev., 1969, 177(5): 2426
CrossRef ADS Google scholar
[257]
J.S. BellR. Jackiw, A PCAC puzzle: π0γγ in the σmodel, Nuovo Cim., A 60(1), 47 (1969)
[258]
H. B. Nielsen, M. Ninomiya. Absence of neutrinos on a lattice (i): Proof by homotopy theory. Nucl. Phys. B, 1981, 185(1): 20
CrossRef ADS Google scholar
[259]
B. Bradlyn, J. Cano, Z. Wang, M. G. Vergniory, C. Felser, R. J. Cava, B. A. Bernevig. Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals. Science, 2016, 353(6299): aaf5037
CrossRef ADS Google scholar
[260]
G. Chang, B. J. Wieder, F. Schindler, D. S. Sanchez, I. Belopolski, S. M. Huang, B. Singh, D. Wu, T. R. Chang, T. Neupert, S. Y. Xu, H. Lin, M. Z. Hasan. Topological quantum properties of chiral crystals. Nat. Mater., 2018, 17(11): 978
CrossRef ADS Google scholar
[261]
P. Goswami, J. H. Pixley, S. Das Sarma. Axial anomaly and longitudinal magnetoresistance of a generic three-dimensional metal. Phys. Rev. B, 2015, 92(7): 075205
CrossRef ADS Google scholar
[262]
D. N. Basov, M. M. Fogler, A. Lanzara, F. Wang, Y. Zhang. Colloquium: Graphene spectroscopy. Rev. Mod. Phys., 2014, 86(3): 959
CrossRef ADS Google scholar
[263]
M. Z. Hasan, C. L. Kane. Colloquium: Topological insulators. Rev. Mod. Phys., 2010, 82(4): 3045
CrossRef ADS Google scholar
[264]
J. C. Charlier, X. Blase, S. Roche. Electronic and transport properties of nanotubes. Rev. Mod. Phys., 2007, 79(2): 677
CrossRef ADS Google scholar
[265]
K.S. NovoselovV.I. Fal′koL. ColomboP.R. GellertM.G. SchwabK.Kim, A roadmap for graphene, Nature 490(7419), 192 (2012)
[266]
T. Liang, Q. Gibson, M. N. Ali, M. H. Liu, R. J. Cava, N. P. Ong. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nat. Mater., 2015, 14(3): 280
CrossRef ADS Google scholar
[267]
Z. Wang, Y. Sun, X. Q. Chen, C. Franchini, G. Xu, S. Weng, X. Dai, Z. Fang, Dirac semimetal, topological phase transitions in A3Bi (A = Na. Rb). Phys. Rev. B, 2012, 85(19): 195320
CrossRef ADS Google scholar
[268]
Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, Y. L. Chen, Discovery of a three-dimensional topological Dirac semimetal. Na3Bi. Science, 2014, 343(6173): 864
CrossRef ADS Google scholar
[269]
Z.K. LiuJ. JiangB.ZhouZ.J. WangY.Zhang H.M. WengD. PrabhakaranS.K. MoH.PengP.Dudin T.KimM. HoeschZ.FangX.DaiZ.X. Shen D.L. FengZ. HussainY.L. Chen, A stable three-dimensional topological Dirac semimetal Cd3As2, Nat. Mater. 13(7), 677 (2014)
[270]
S.M. HuangS. Y. XuI.BelopolskiC.C. LeeG.Chang B.K. WangN. AlidoustG.BianM.NeupaneC.Zhang S.JiaA. BansilH.LinM.Z. Hasan, A Weyl fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class, Nat. Commun. 6(1), 7373 (2015)
[271]
H. M. Weng, C. Fang, Z. Fang, B. A. Bernevig, T. Dai. Weyl semimetal phase in noncentrosymmetric transition metal monophosphides. Phys. Rev. X, 2015, 5(1): 011029
CrossRef ADS Google scholar
[272]
S. Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C. C. Lee, S. M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. K. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, M. Z. Hasan. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science, 2015, 349(6248): 613
CrossRef ADS Google scholar
[273]
B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, H. Ding. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X, 2015, 5(3): 031013
CrossRef ADS Google scholar
[274]
X. Wan, A. M. Turner, A. Vishwanath, S. Y. Savrasov. Topological semimetal and Fermi arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B, 2011, 83(20): 205101
CrossRef ADS Google scholar
[275]
K. Y. Yang, Y. M. Lu, Y. Ran. Quantum Hall effects in a Weyl semimetal: Possible application in pyrochlore iridates. Phys. Rev. B, 2011, 84(7): 075129
CrossRef ADS Google scholar
[276]
A. A. Burkov, L. Balents. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett., 2011, 107(12): 127205
CrossRef ADS Google scholar
[277]
H. B. Nielsen, M. Ninomiya. The Adler−Bell− Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B, 1983, 130: 389
CrossRef ADS Google scholar
[278]
D. T. Son, B. Z. Spivak. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B, 2013, 88(10): 104412
CrossRef ADS Google scholar
[279]
D.Shoenberg, Magnetic Oscillations in Metals, Cambridge University Press, 1984
[280]
S.E. SebastianN.HarrisonE.Palm T.P. MurphyC. H. MielkeR.LiangD.A. BonnW.N. Hardy G.G. Lonzarich, A multi-component Fermi surface in the vortex state of an underdoped high-Tc superconductor, Nature 454(7201), 200 (2008)
[281]
L. Li, J. G. Checkelsky, Y. S. Hor, C. Uher, A. F. Hebard, R. J. Cava, N. P. Ong. Phase transitions of Dirac electrons in bismuth. Science, 2008, 321(5888): 547
CrossRef ADS Google scholar
[282]
Z. Zhang, W. Wei, F. Yang, Z. Zhu, M. Guo, Y. Feng, D. Yu, M. Yao, N. Harrison, R. McDonald, Y. Zhang, D. Guan, D. Qian, J. Jia, Y. Wang. Zeeman effect of the topological surface states revealed by quantum oscillations up to 91 Tesla. Phys. Rev. B, 2015, 92(23): 235402
CrossRef ADS Google scholar
[283]
N. L. Brignall. The de Haasvan−Alphen effect in n-InSb and n-InAs. J. Phys. C, 1974, 7(23): 4266
CrossRef ADS Google scholar
[284]
Y. Zhang, Y. W. Tan, H. L. Stormer, P. Kim. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 2005, 438(7065): 201
CrossRef ADS Google scholar
[285]
M. Imada, A. Fujimori, Y. Tokura. Metal−insulator transitions. Rev. Mod. Phys., 1998, 70(4): 1039
CrossRef ADS Google scholar
[286]
S. L. Sondhi, S. M. Girvin, J. P. Carini, D. Shahar. Continuous quantum phase transitions. Rev. Mod. Phys., 1997, 69(1): 315
CrossRef ADS Google scholar
[287]
S. V. Kravchenko, M. P. Sarachik. Metal–insulator transition in two-dimensional electron systems. Rep. Prog. Phys., 2004, 67(1): 1
CrossRef ADS Google scholar
[288]
D. J. Newson, M. Pepper. Critical conductivity at the magnetic field-induced metal−insulator transition in n-GaAs and n-InSb. J. Phys. C, 1986, 19(21): 3983
CrossRef ADS Google scholar
[289]
V. J. Goldman, M. Shayegan, H. D. Drew. Anomalous Hall effect below the magnetic field induced metal−insulator transition in narrow gap semiconductors. Phys. Rev. Lett., 1986, 57(8): 1056
CrossRef ADS Google scholar
[290]
M. C. Maliepaard, M. Pepper, R. Newbury, J. E. F. Frost, D. C. Peacock, D. A. Ritchie, G. A. C. Jones, G. Hill. Evidence of a magneticfield-induced insulator metal−insulator transition. Phys. Rev. B, 1989, 39(2): 1430
CrossRef ADS Google scholar
[291]
P. Dai, Y. Zhang, M. P. Sarachik. Effect of a magnetic field on the critical conductivity exponent at the metal−insulator transition. Phys. Rev. Lett., 1991, 67(1): 136
CrossRef ADS Google scholar
[292]
S. Kivelson, D. H. Lee, S. C. Zhang. Global phase diagram in the quantum Hall effect. Phys. Rev. B, 1992, 46(4): 2223
CrossRef ADS Google scholar
[293]
T. Wang, K. P. Clark, G. F. Spencer, A. M. Mack, W. P. Kirk. Magnetic field-induced metal−insulator transition in two dimensions. Phys. Rev. Lett., 1994, 72(5): 709
CrossRef ADS Google scholar
[294]
Y. Tomioka, A. Asamitsu, H. Kuwahara, Y. Moritomo, Y. Tokura. Magnetic field-induced metal-insulator phenomena in Pr1−xCaxMno3 with controlled charge ordering instability. Phys. Rev. B, 1996, 53(4): R1689
CrossRef ADS Google scholar
[295]
D. Popović, A. B. Fowler, S. Washburn. Metal−insulator transition in two dimensions: Effects of dis order and magnetic field. Phys. Rev. Lett., 1997, 79(8): 1543
CrossRef ADS Google scholar
[296]
X. C. Xie, X. R. Wang, D. Z. Liu. Kosterlitz−Thouless type metal−insulator transition of a 2D electron gas in a random magnetic field. Phys. Rev. Lett., 1998, 80(16): 3563
CrossRef ADS Google scholar
[297]
J. An, C. D. Gong, H. Q. Lin. Theory of the magnetic field-induced metal−insulator transition. Phys. Rev. B, 2001, 63(17): 174434
CrossRef ADS Google scholar
[298]
H. Kempa, P. Esquinazi, Y. Kopelevich. Field induced metal−insulator transition in the c axis resistivity of graphite. Phys. Rev. B, 2002, 65(24): 241101
CrossRef ADS Google scholar
[299]
E. V. Gorbar, V. P. Gusynin, V. A. Miransky, I. A. Shovkovy. Magnetic field driven metal−insulator phase transition in planar systems. Phys. Rev. B, 2002, 66(4): 045108
CrossRef ADS Google scholar
[300]
Y. Kopelevich, J. C. M. Pantoja, R. R. da Silva, S. Moehlecke. Universal magnetic field driven metal insulator−metal transformations in graphite and bismuth. Phys. Rev. B, 2006, 73(16): 165128
CrossRef ADS Google scholar
[301]
D. J. W. Geldart, D. Neilson. Quantum critical behavior in the insulating region of the two-dimensional metalinsulator transition. Phys. Rev. B, 2007, 76(19): 193304
CrossRef ADS Google scholar
[302]
S. Calder, V. O. Garlea, D. F. McMorrow, M. D. Lumsden, M. B. Stone, J. C. Lang, J. W. Kim, J. A. Schlueter, Y. G. Shi, K. Yamaura, Y. S. Sun, Y. Tsujimoto, A. D. Christianson. Magnetically driven metal−insulator transition in NaOsO3. Phys. Rev. Lett., 2012, 108(25): 257209
CrossRef ADS Google scholar
[303]
K. Ueda, J. Fujioka, B. J. Yang, J. Shiogai, A. Tsukazaki, S. Nakamura, S. Awaji, N. Nagaosa, Y. Tokura. Magnetic field-induced insulator−semimetal transition in a pyrochlore Nd2Ir2O7. Phys. Rev. Lett., 2015, 115(5): 056402
CrossRef ADS Google scholar
[304]
Z. Tian, Y. Kohama, T. Tomita, H. Ishizuka, T. H. Hsieh, J. J. Ishikawa, K. Kindo, L. Balents, S. Nakatsuji. Field-induced quantum metal–insulator transition in the pyrochlore iridate Nd2Ir2O7. Nat. Phys., 2016, 12(2): 134
CrossRef ADS Google scholar
[305]
P. Wang, Y. Ren, F. Tang, P. Wang, T. Hou, H. Zeng, L. Zhang, Z. Qiao. Approaching three-dimensional quantum Hall effect in bulk HfTe5. Phys. Rev. B, 2020, 101(16): 161201
CrossRef ADS Google scholar
[306]
M. Vojta. Quantum phase transitions. Rep. Prog. Phys., 2003, 66(12): 2069
CrossRef ADS Google scholar
[307]
H. Löhneysen, A. Rosch, M. Vojta, P. Wölfle. Fermi-liquid instabilities at magnetic quantum phase transitions. Rev. Mod. Phys., 2007, 79(3): 1015
CrossRef ADS Google scholar
[308]
E. Abrahams, P. W. Anderson, D. C. Licciardello, T. V. Ramakrishnan. Scaling theory of localization: Absence of quantum diffusion in two dimensions. Phys. Rev. Lett., 1979, 42(10): 673
CrossRef ADS Google scholar
[309]
F. J. Wegner. Electrons in disordered systems: scaling near the mobility edge. Z. Phys. B, 1976, 25: 327
[310]
W. L. McMillan. Scaling theory of the metal-insulator transition in amorphous materials. Phys. Rev. B, 1981, 24(5): 2739
CrossRef ADS Google scholar
[311]
C. A. Stafford, A. J. Millis. Scaling theory of the Mott−Hubbard metal−insulator transition in one dimension. Phys. Rev. B, 1993, 48(3): 1409
CrossRef ADS Google scholar
[312]
B. Huckestein. Scaling theory of the integer quantum Hall effect. Rev. Mod. Phys., 1995, 67(2): 357
CrossRef ADS Google scholar
[313]
V. Dobrosavljević, E. Abrahams, E. Miranda, S. Chakravarty. Scaling theory of two-dimensional metal−insulator transitions. Phys. Rev. Lett., 1997, 79(3): 455
CrossRef ADS Google scholar
[314]
A. Pelissetto, E. Vicari. Critical phenomena and renormalization group theory. Phys. Rep., 2002, 368(6): 549
CrossRef ADS Google scholar
[315]
G.Grüner, Density Waves in Solids, CRC Press, 2018
[316]
T.Giamarchi, Quantum Physics in One Dimension, Vol. 121, Clarendon Press, 2003
[317]
H. Watanabe, Y. Yanase. Nonlinear electric transport in odd parity magnetic multipole systems: Application to Mn-based compounds. Phys. Rev. Res., 2020, 2(4): 043081
CrossRef ADS Google scholar
[318]
S. Y. Xu, Y. Xia, L. A. Wray, S. Jia, F. Meier, J. H. Dil, J. Osterwalder, B. Slomski, A. Bansil, H. Lin, R. J. Cava, M. Z. Hasan. Topological phase transition and texture inversion in a tunable topological insulator. Science, 2011, 332(6029): 560
CrossRef ADS Google scholar
[319]
Y. Gong, J. Guo, J. Li, K. Zhu, M. Liao, X. Liu, Q. Zhang, L. Gu, L. Tang, X. Feng, D. Zhang, W. Li, C. Song, L. Wang, P. Yu, X. Chen, Y. Wang, H. Yao, W. Duan, Y. Xu, S. C. Zhang, X. Ma, Q. K. Xue, K. He. Experimental realization of an intrinsic magnetic topological insulator. Chin. Phys. Lett., 2019, 36(7): 076801
CrossRef ADS Google scholar
[320]
M. M. Otrokov, I. P. Rusinov, M. Blanco-Rey, M. Hoffmann, A. Y. Vyazovskaya, S. V. Eremeev, A. Ernst, P. M. Echenique, A. Arnau, E. V. Chulkov. Unique thickness dependent properties of the van Der Waals interlayer antiferromagnet MnBi2Te4 films. Phys. Rev. Lett., 2019, 122(10): 107202
CrossRef ADS Google scholar
[321]
C. Reeg, O. Dmytruk, D. Chevallier, D. Loss, J. Klinovaja. Zero energy Andreev bound states from quantum dots in proximitized Rashba nanowires. Phys. Rev. B, 2018, 98(24): 245407
CrossRef ADS Google scholar
[322]
C. A. Li, S. B. Zhang, J. Li, B. Trauzettel. Higher-order Fabry−Pérot interferometer from topological hinge states. Phys. Rev. Lett., 2021, 127(2): 026803
CrossRef ADS Google scholar
[323]
L. D. Landau. Paramagnetism of metals. Eur. Phys. J. A, 1930, 64(9−10): 629
CrossRef ADS Google scholar
[324]
Z. Zhu, R. McDonald, A. Shekhter, B. Ramshaw, K. A. Modic, F. Balakirev, N. Harrison. Magnetic field tuning of an excitonic insulator between the weak and strong coupling regimes in quantum limit graphite. Sci. Rep., 2017, 7(1): 1733
CrossRef ADS Google scholar
[325]
S. Galeski, X. Zhao, R. Wawrzyńczak, T. Meng, T. Förster, P. M. Lozano, S. Honnali, N. Lamba, T. Ehmcke, A. Markou, Q. Li, G. Gu, W. Zhu, J. Wosnitza, C. Felser, G. F. Chen, J. Gooth. Unconventional Hall response in the quantum limit of HfTe5. Nat. Commun., 2020, 11(1): 5926
CrossRef ADS Google scholar
[326]
S.WangA. E. KovalevA.V. SuslovT.Siegrist, A facility for X-ray diffraction in magnetic fields up to 25 t and temperatures between 15 and 295 K, Rev. Sci. Instrum. 86(12), 123902 (2015)
[327]
Y.NarumiK. KindoK.KatsumataM.KawauchiC.BroennimannU.StaubH.ToyokawaY.Tanaka K.KikkawaT. YamamotoM.HagiwaraT.IshikawaH.Kitamura, X-ray diffraction studies in pulsed high magnetic fields, J. Phys. Conf. Ser. 51, 494 (2006)
[328]
P.PototschingE.GratzH.KirchmayrA.Lindbaum, X-ray diffraction in magnetic fields, J. Alloys Compd. 247(1–2), 234 (1997)
[329]
P. Wang, F. Tang, P. Wang, H. Zhu, C. W. Cho, J. Wang, X. Du, Y. Shao, L. Zhang. Quantum transport properties of β-Bi4I4 near and well beyond the extreme quantum limit. Phys. Rev. B, 2021, 103(15): 155201
CrossRef ADS Google scholar

Acknowledgements

We thank helpful discussions with Haipeng Sun and Rui Chen. This work was supported by the National Key R&D Program of China (No. 2022YFA1403700), the National Natural Science Foundation of China (No. 11925402), Guangdong province (Nos. 2020KCXTD001 and 2016ZT06D348), and the Science, Technology and Innovation Commission of Shenzhen Municipality (Nos. ZDSYS20170303165926217, JAY20170412152620376, and KYTDPT20181011104202253). The numerical calculations were supported by Center for Computational Science and Engineering of SUSTech.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(5566 KB)

Accesses

Citations

Detail

Sections
Recommended

/