Review of the role of ionic liquids in two-dimensional materials

Na Sa, Meng Wu, Hui-Qiong Wang

PDF(6347 KB)
PDF(6347 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (4) : 43601. DOI: 10.1007/s11467-023-1258-6
TOPICAL REVIEW
TOPICAL REVIEW

Review of the role of ionic liquids in two-dimensional materials

Author information +
History +

Abstract

Ionic liquids (ILs) are expected to be used as readily available “designer” solvents, characterized by a number of tunable properties that can be obtained by modulating anion and cation combinations and ion chain lengths. Among them, its high ionicity is outstanding in the preparation and property modulation of two-dimensional (2D) materials. In this review, we mainly focus on the ILs-assisted exfoliation of 2D materials towards large-scale as well as functionalization. Meanwhile, electric-field controlled ILs-gating of 2D material systems have shown novel electronic, magnetic, optical and superconducting properties, attracting a broad range of scientific research activities. Moreover, ILs have also been extensively applied in various field practically. We summarize the recent developments of ILs modified 2D material systems from the electrochemical, solar cells and photocatalysis aspects, discuss their advantages and possibilities as “designer solvent”. It is believed that the design of ILs accompanying with diverse 2D materials will not only solve several scientific problems but also enrich materials design and engineer of 2D materials.

Graphical abstract

Keywords

ionic liquids / two-dimensional materials / liquid phase exfoliation / ionic liquid-gating / electrochemical capacitors / solar cells / photocatalysis

Cite this article

Download citation ▾
Na Sa, Meng Wu, Hui-Qiong Wang. Review of the role of ionic liquids in two-dimensional materials. Front. Phys., 2023, 18(4): 43601 https://doi.org/10.1007/s11467-023-1258-6

References

[1]
T. Welton. Room-temperature ionic liquids: Solvents for synthesis and catalysis. Chem. Rev., 1999, 99(8): 2071
CrossRef ADS Google scholar
[2]
J. P. Hallett, T. Welton. Room-temperature ionic liquids: Solvents for synthesis and catalysis. 2. Chem. Rev., 2011, 111(5): 3508
CrossRef ADS Google scholar
[3]
S. K. Singh, A. W. Savoy. Ionic liquids synthesis and applications: An overview. J. Mol. Liq., 2020, 297: 112038
CrossRef ADS Google scholar
[4]
K. S. Egorova, E. G. Gordeev, V. P. Ananikov. Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem. Rev., 2017, 117: 7132
CrossRef ADS Google scholar
[5]
J. M. Gomes, S. S. Silva, R. L. Reis. Biocompatible ionic liquids: Fundamental behaviours and applications. Chem. Soc. Rev., 2019, 48(15): 4317
CrossRef ADS Google scholar
[6]
D. R. MacFarlane, M. Forsyth, P. C. Howlett, M. Kar, S. Passerini, J. M. Pringle, H. Ohno, M. Watanabe, F. Yan, W. J. Zheng, S. G. Zhang, J. Zhang. Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nat. Rev. Mater., 2016, 1(2): 15005
CrossRef ADS Google scholar
[7]
W. J. Zhou, M. Zhang, X. Y. Kong, W. W. Huang, Q. C. Zhang. Recent advance in ionic-liquid-based electrolytes for rechargeable metal-ion batteries. Adv. Sci. (Weinh.), 2021, 8(13): 2004490
CrossRef ADS Google scholar
[8]
L. Li, N. Zhao, W. Wei, Y. H. Sun. A review of research progress on CO2 capture, storage, and utilization in Chinese Academy of Sciences. Fuel, 2013, 108: 112
CrossRef ADS Google scholar
[9]
X. X. Tan, X. F. Sun, B. X. Han. Ionic liquid-based electrolytes for CO2 electroreduction and CO2 electroorganic transformation. Natl. Sci. Rev., 2022, 9(4): nwab022
CrossRef ADS Google scholar
[10]
E. V. Kondratenko, G. Mul, J. Baltrusaitis, G. O. Larrazabal, J. Perez-Ramirez. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci., 2013, 6(11): 3112
CrossRef ADS Google scholar
[11]
A. J. Greer, J. Jacquemin, C. Hardacre. Industrial applications of ionic liquids. Molecules, 2020, 25
CrossRef ADS Google scholar
[12]
N. Nasirpour, M. Mohammadpourfard, S. Z. Heris. Ionic liquids: Promising compounds for sustainable chemical processes and applications. Chem. Eng. Res. Des., 2020, 160: 264
CrossRef ADS Google scholar
[13]
A. A. Elgharbawy, F. A. Riyadi, M. Z. Alam, M. Moniruzzaman. Ionic liquids as a potential solvent for lipase-catalysed reactions: A review. J. Mol. Liq., 2018, 251: 150
CrossRef ADS Google scholar
[14]
J. C. Cui, Y. Li, D. Chen, T. G. Zhan, K. D. Zhang. Ionic liquid-based stimuli-responsive functional materials. Adv. Funct. Mater., 2020, 30(50): 2005522
CrossRef ADS Google scholar
[15]
C. W. Cho, T. P. T. Pham, Y. F. Zhao, S. Stolte, Y. S. Yun. Review of the toxic effects of ionic liquids. Sci. Total Environ., 2021, 786: 147309
CrossRef ADS Google scholar
[16]
X. C. Duan, H. Huang, S. H. Xiao, J. W. Deng, G. Zhou, Q. H. Li, T. Wang. 3D hierarchical CuO mesocrystals from ionic liquid precursors: Towards better electrochemical performance for Li-ion batteries. J. Mater. Chem. A, 2016, 4(21): 8402
CrossRef ADS Google scholar
[17]
R. D. Rogers, K. R. Seddon. Ionic liquids - Solvents of the future. Science, 2003, 302(5646): 792
CrossRef ADS Google scholar
[18]
A. K. Geim, K. S. Novoselov. The rise of graphene. Nat. Mater., 2007, 6(3): 183
CrossRef ADS Google scholar
[19]
W. Kong, H. Kum, S. H. Bae, J. Shim, H. Kim, L. P. Kong, Y. Meng, K. J. Wang, C. Kim, J. Kim. Path towards graphene commercialization from lab to market. Nat. Nanotechnol., 2019, 14(10): 927
CrossRef ADS Google scholar
[20]
K. S. Novoselov, A. Mishchenko, A. Carvalho, A. H. Castro Neto. 2D materials and van der Waals heterostructures. Science, 2016, 353(6298): aac9439
CrossRef ADS Google scholar
[21]
S. Mukherjee, Z. Ren, G. Singh. Beyond graphene anode materials for emerging metal ion batteries and supercapacitors. Nano-Micro Lett., 2018, 10(4): 70
CrossRef ADS Google scholar
[22]
S. Jo, N. Ubrig, H. Berger, A. B. Kuzmenko, A. F. Morpurgo. Mono- and bilayer WS2 light-emitting transistors. Nano Lett., 2014, 14(4): 2019
CrossRef ADS Google scholar
[23]
V. Podzorov, M. E. Gershenson, C. Kloc, R. Zeis, E. Bucher. High-mobility field-effect transistors based on transition metal dichalcogenides. Appl. Phys. Lett., 2004, 84(17): 3301
CrossRef ADS Google scholar
[24]
Y. Zhang, J. Ye, Y. Matsuhashi, Y. Iwasa. Ambipolar MoS2 thin flake transistors. Nano Lett., 2012, 12(3): 1136
CrossRef ADS Google scholar
[25]
D. Braga, I. G. Lezama, H. Berger, A. F. Morpurgo. Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. Nano Lett., 2012, 12(10): 5218
CrossRef ADS Google scholar
[26]
A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, F. Wang. Emerging photoluminescence in monolayer MoS2. Nano Lett., 2010, 10(4): 1271
CrossRef ADS Google scholar
[27]
K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett., 2010, 105(13): 136805
CrossRef ADS Google scholar
[28]
A. Kumar, P. K. Ahluwalia, , Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo W; X = S. Te) from ab-initio theory: New direct band gap semiconductors. Eur. Phys. J. B, 2012, 85(6): 186
CrossRef ADS Google scholar
[29]
Y. Chen, J. Xi, D. O. Dumcenco, Z. Liu, K. Suenaga, D. Wang, Z. Shuai, Y. S. Huang, L. Xie. Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys. ACS Nano, 2013, 7(5): 4610
CrossRef ADS Google scholar
[30]
H. Terrones, F. Lopez-Urias, M. Terrones. Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides. Sci. Rep., 2013, 3(1): 1549
CrossRef ADS Google scholar
[31]
Y. Zhang, M. Jeon, L. J. Rich, H. Hong, J. Geng, Y. Zhang, S. Shi, T. E. Barnhart, P. Alexandridis, J. D. Huizinga, M. Seshadri, W. Cai, C. Kim, J. F. Lovell. Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines. Nat. Nanotechnol., 2014, 9(8): 631
CrossRef ADS Google scholar
[32]
A. K. Geim, K. S. Novoselov. The rise and rise of graphene. Nat. Nanotechnol., 2010, 5(11): 755
CrossRef ADS Google scholar
[33]
C. Lee, X. D. Wei, J. W. Kysar, J. Hone. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385
CrossRef ADS Google scholar
[34]
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim. The electronic properties of graphene. Rev. Mod. Phys., 2009, 81(1): 109
CrossRef ADS Google scholar
[35]
L. Song, L. J. Ci, H. Lu, P. B. Sorokin, C. H. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, B. I. Yakobson, P. M. Ajayan. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett., 2010, 10(8): 3209
CrossRef ADS Google scholar
[36]
J. C. Zheng, L. Zhang, A. V. Kretinin, S. V. Morozov, Y. B. Wang, T. Wang, X. J. Li, F. Ren, J. Y. Zhang, C. Y. Lu, J. C. Chen, M. Lu, H. Q. Wang, A. K. Geim, K. S. Novoselov. High thermal conductivity of hexagonal boron nitride laminates. 2D Mater., 2016, 3: 011004
CrossRef ADS Google scholar
[37]
L. K. Li, Y. J. Yu, G. J. Ye, Q. Q. Ge, X. D. Ou, H. Wu, D. L. Feng, X. H. Chen, Y. B. Zhang. Black phosphorus field-effect transistors. Nat. Nanotechnol., 2014, 9(5): 372
CrossRef ADS Google scholar
[38]
L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, D. Akinwande. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol., 2015, 10(3): 227
CrossRef ADS Google scholar
[39]
S. Balendhran, S. Walia, H. Nili, S. Sriram, M. Bhaskaran. Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene. Small, 2015, 11(6): 640
CrossRef ADS Google scholar
[40]
Z. Q. Wang, T. Y. Lu, H. Q. Wang, Y. P. Feng, J. C. Zheng. Review of borophene and its potential applications. Front. Phys., 2019, 14(3): 33403
CrossRef ADS Google scholar
[41]
W. J. Ong, L. L. Tan, Y. H. Ng, S. T. Yong, S. P. Chai. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability. Chem. Rev., 2016, 116(12): 7159
CrossRef ADS Google scholar
[42]
J. B. Pang, R. G. Mendes, A. Bachmatiuk, L. Zhao, H. Q. Ta, T. Gemming, H. Liu, Z. F. Liu, M. H. Rummeli. Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev., 2019, 48(1): 72
CrossRef ADS Google scholar
[43]
K. Khan, A. K. Tareen, M. Aslam, Y. P. Zhang, R. H. Wang, Z. B. Ouyang, Z. Y. Gou, H. Zhang. Recent advances in two-dimensional materials and their nanocomposites in sustainable energy conversion applications. Nanoscale, 2019, 11(45): 21622
CrossRef ADS Google scholar
[44]
X. L. Chen, Z. S. Zhou, B. C. Deng, Z. F. Wu, F. N. Xia, Y. Cao, L. Zhang, W. Huang, N. Wang, L. Wang. Electrically tunable physical properties of two-dimensional materials. Nano Today, 2019, 27: 99
CrossRef ADS Google scholar
[45]
Y. Liu, N. O. Weiss, X. D. Duan, H. C. Cheng, Y. Huang, X. F. Duan. Van der Waals heterostructures and devices. Nat. Rev. Mater., 2016, 1(9): 16042
CrossRef ADS Google scholar
[46]
C. S. Liu, H. W. Chen, S. Y. Wang, Q. Liu, Y. G. Jiang, D. W. Zhang, M. Liu, P. Zhou. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol., 2020, 15(7): 545
CrossRef ADS Google scholar
[47]
K. Kang, S. E. Xie, L. J. Huang, Y. M. Han, P. Y. Huang, K. F. Mak, C. J. Kim, D. Muller, J. Park. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature, 2015, 520(7549): 656
CrossRef ADS Google scholar
[48]
C. Chang, W. Chen, Y. Chen, Y. H. Chen, Y. Chen. . Recent progress on two-dimensional materials. Acta Phys. - Chim. Sin., 2021, 37(12): 2108017
CrossRef ADS Google scholar
[49]
S. Keskin, D. Kayrak-Talay, U. Akman, O. Hortacsu. A review of ionic liquids towards supercritical fluid applications. J. Supercrit. Fluids, 2007, 43(1): 150
CrossRef ADS Google scholar
[50]
A. Shariati, C. J. Peters. High-pressure phase equilibria of systems with ionic liquids. J. Supercrit. Fluids, 2005, 34(2): 171
CrossRef ADS Google scholar
[51]
J. F. Brennecke, E. J. Maginn. Ionic liquids: Innovative fluids for chemical processing. AIChE J., 2001, 47(11): 2384
CrossRef ADS Google scholar
[52]
J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King. . Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011, 331(6017): 568
CrossRef ADS Google scholar
[53]
S. Xu, D. Li, P. Wu. One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. Adv. Funct. Mater., 2015, 25(7): 1127
CrossRef ADS Google scholar
[54]
Y. Chen, C. Tan, H. Zhang, L. Wang. Two-dimensional graphene analogues for biomedical applications. Chem. Soc. Rev., 2015, 44(9): 2681
CrossRef ADS Google scholar
[55]
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 2012, 7(11): 699
CrossRef ADS Google scholar
[56]
F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, M. Polini. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol., 2014, 9(10): 780
CrossRef ADS Google scholar
[57]
W. Luo, Y. Wang, E. Hitz, Y. Lin, B. Yang, L. Hu. Solution processed boron nitride nanosheets: Synthesis, assemblies and emerging applications. Adv. Funct. Mater., 2017, 27(31): 1701450
CrossRef ADS Google scholar
[58]
X. Wang, H. Feng, Y. Wu, L. Jiao. Controlled synthesis of highly crystalline mos2 flakes by chemical vapor deposition. J. Am. Chem. Soc., 2013, 135(14): 5304
CrossRef ADS Google scholar
[59]
W. Xing, Y. Chen, X. Wu, X. Xu, P. Ye, T. Zhu, Q. Guo, L. Yang, W. Li, H. Huang. PEDOT: PSS-assisted exfoliation and functionalization of 2D nanosheets for high-performance organic solar cells. Adv. Funct. Mater., 2017, 27(32): 1701622
CrossRef ADS Google scholar
[60]
M. Yi, Z. Shen. A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A, 2015, 3(22): 11700
CrossRef ADS Google scholar
[61]
Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, J. N. Coleman. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol., 2008, 3(9): 563
CrossRef ADS Google scholar
[62]
L. Niu, J. N. Coleman, H. Zhang, H. Shin, M. Chhowalla, Z. Zheng. Production of two-dimensional nanomaterials via liquid-based direct exfoliation. Small, 2016, 12(3): 272
CrossRef ADS Google scholar
[63]
H. Tao, Y. Zhang, Y. Gao, Z. Sun, C. Yan, J. Texter. Scalable exfoliation and dispersion of two-dimensional materials — an update. Phys. Chem. Chem. Phys., 2017, 19(2): 921
CrossRef ADS Google scholar
[64]
X. Feng, W. Xing, H. Yang, B. Yuan, L. Song, Y. Hu, K. M. Liew. High-performance poly(ethylene oxide)/molybdenum disulfide nanocomposite films: Reinforcement of properties based on the gradient interface effect. ACS Appl. Mater. Interfaces, 2015, 7(24): 13164
CrossRef ADS Google scholar
[65]
R. D. Rogers. Reflections on ionic liquids. Nature, 2007, 447(7147): 917
CrossRef ADS Google scholar
[66]
W. Li, P. Wu. Unusual thermal phase transition behavior of an ionic liquid and poly(ionic liquid) in water with significantly different LCST and dynamic mechanism. Polym. Chem., 2014, 5(19): 5578
CrossRef ADS Google scholar
[67]
T. Morishita, H. Okamoto, Y. Katagiri, M. Matsushita, K. Fukumori. A high-yield ionic liquid-promoted synthesis of boron nitride nanosheets by direct exfoliation. Chem. Commun. (Camb.), 2015, 51(60): 12068
CrossRef ADS Google scholar
[68]
M. Matsumoto, Y. Saito, C. Park, T. Fukushima, T. Aida. Ultrahigh-throughput exfoliation of graphite into pristine “single-layer” graphene using microwaves and molecularly engineered ionic liquids. Nat. Chem., 2015, 7(9): 730
CrossRef ADS Google scholar
[69]
W. C. Du, X. Q. Jiang, L. H. Zhu. From graphite to graphene: Direct liquid-phase exfoliation of graphite to produce single- and few-layered pristine graphene. J. Mater. Chem. A, 2013, 1(36): 10592
CrossRef ADS Google scholar
[70]
D. Nuvoli, L. Valentini, V. Alzari, S. Scognamillo, S. B. Bon, M. Piccinini, J. Illescas, A. Mariani. High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid. J. Mater. Chem., 2011, 21(10): 3428
CrossRef ADS Google scholar
[71]
E. Bordes, B. Morcos, D. Bourgogne, J. M. Andanson, P. O. Bussière, C. C. Santini, A. Benayad, M. C. Gomes, A. A. H. Pádua. Dispersion and stabilization of exfoliated graphene in ionic liquids. Front Chem., 2019, 7: 223
CrossRef ADS Google scholar
[72]
X. G. Gu, Y. Zhao, K. Sun, C. L. Z. Vieira, Z. J. Jia, C. Cui, Z. J. Wang, A. Walsh, S. D. Huang. Method of ultrasound-assisted liquid-phase exfoliation to prepare graphene. Ultrason. Sonochem., 2019, 58: 104630
CrossRef ADS Google scholar
[73]
J. Restolho, J. L. Mata, B. Saramago. On the interfacial behavior of ionic liquids: Surface tensions and contact angles. J. Colloid Interface Sci., 2009, 340(1): 82
CrossRef ADS Google scholar
[74]
J. A. Harnisch, M. D. Porter. Electrochemically modulated liquid chromatography: An electrochemical strategy for manipulating chromatographic retention. Analyst (Lond. ), 2001, 126(11): 1841
CrossRef ADS Google scholar
[75]
S. K. Reed, O. J. Lanning, P. A. Madden. Electrochemical interface between an ionic liquid and a model metallic electrode. J. Chem. Phys., 2007, 126(8): 084704
CrossRef ADS Google scholar
[76]
X. Q. Wang, P. F. Fulvio, G. A. Baker, G. M. Veith, R. R. Unocic, S. M. Mahurin, M. F. Chi, S. Dai. Direct exfoliation of natural graphite into micrometre size few layers graphene sheets using ionic liquids. Chem. Commun. (Camb. ), 2010, 46(25): 4487
CrossRef ADS Google scholar
[77]
H. Beneš, R. K. Donato, P. Ecorchard, D. Popelkova, E. Pavlova, D. Schelonka, O. Pop-Georgievski, H. S. Schrekker, V. Stengl. Direct delamination of graphite ore into defect-free graphene using a biphasic solvent system under pressurized ultrasound. RSC Adv., 2016, 6(8): 6008
CrossRef ADS Google scholar
[78]
A. Winchester, S. Ghosh, S. M. Feng, A. L. Elias, T. Mallouk, M. Terrones, S. Talapatra. Electrochemical characterization of liquid phase exfoliated two-dimensional layers of molybdenum disulfide. ACS Appl. Mater. Interfaces, 2014, 6(3): 2125
CrossRef ADS Google scholar
[79]
Y. Biswas, M. Dule, T. K. Mandal. Poly(ionic liquid)-promoted solvent-borne efficient exfoliation of MoS2/MoSe2 nanosheets for dual-responsive dispersion and polymer nanocomposites. J. Phys. Chem. C, 2017, 121(8): 4747
CrossRef ADS Google scholar
[80]
G. Guan, S. Zhang, S. Liu, Y. Cai, M. Low, C. P. Teng, I. Y. Phang, Y. Cheng, K. L. Duei, B. M. Srinivasan, Y. Zheng, Y. W. Zhang, M. Y. Han. Protein induces layer-by-layer exfoliation of transition metal dichalcogenides. J. Am. Chem. Soc., 2015, 137: 6152
CrossRef ADS Google scholar
[81]
R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O'Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, J. N. Coleman. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater., 2011, 23: 3944
CrossRef ADS Google scholar
[82]
Z. Lei, Y. Zhou, P. Wu. Simultaneous exfoliation and functionalization of MoSe2 nanosheets to prepare “smart” nanocomposite hydrogels with tunable dual stimuli-responsive behavior. Small, 2016, 12(23): 3112
CrossRef ADS Google scholar
[83]
X. W. Wang, P. Y. Wu. Aqueous phase exfoliation of two-dimensional materials assisted by thermoresponsive polymeric ionic liquid and their applications in stimuli-responsive hydrogels and highly thermally conductive films. ACS Appl. Mater. Interfaces, 2018, 10(3): 2504
CrossRef ADS Google scholar
[84]
R. Tian, X. Jia, J. Yang, Y. Li, H. Song. Large-scale, green, and high-efficiency exfoliation and noncovalent functionalization of fluorinated graphene by ionic liquid crystal. Chem. Eng. J., 2020, 395: 125104
CrossRef ADS Google scholar
[85]
R. Gusain, H. P. Mungse, N. Kumar, T. R. Ravindran, R. Pandian, H. Sugimura, O. P. Khatri. Covalently attached graphene-ionic liquid hybrid nanomaterials: Synthesis, characterization and tribological application. J. Mater. Chem. A, 2016, 4(3): 926
CrossRef ADS Google scholar
[86]
M. Li, A. S. Westover, R. Carter, L. Oakes, N. Muralidharan, T. C. Boire, H. J. Sung, C. L. Pint. Noncovalent Pi−Pi stacking at the carbon electrolyte interface: Controlling the voltage window of electrochemical supercapacitors. ACS Appl. Mater. Interfaces, 2016, 8(30): 19558
CrossRef ADS Google scholar
[87]
W. Song, J. Yan, H. Ji. Tribological performance of an imidazolium ionic liquid-functionalized SiO2@graphene oxide as an additive. ACS Appl. Mater. Interfaces, 2021, 13(42): 50573
CrossRef ADS Google scholar
[88]
R. Tian, X. Jia, M. Lan, S. Wang, Y. Li, J. Yang, D. Shao, L. Feng, Q. Su, H. Song. Ionic liquid crystals confining ultrathin MoS2 nanosheets: A high-concentration and stable aqueous dispersion. ACS Sustain. Chem. & Eng., 2022, 10(13): 4186
CrossRef ADS Google scholar
[89]
N. G. Shang, P. Papakonstantinou, S. Sharma, G. Lubarsky, M. X. Li, D. W. McNeill, A. J. Quinn, W. Z. Zhou, R. Blackley. Controllable selective exfoliation of high-quality graphene nanosheets and nanodots by ionic liquid assisted grinding. Chem. Commun. (Camb.), 2012, 48(13): 1877
CrossRef ADS Google scholar
[90]
W. T. Zhang, Y. R. Wang, D. H. Zhang, S. X. Yu, W. X. Zhu, J. Wang, F. Q. Zheng, S. X. Wang, J. L. Wang. A one-step approach to the large-scale synthesis of functionalized MoS2 nanosheets by ionic liquid assisted grinding. Nanoscale, 2015, 7(22): 10210
CrossRef ADS Google scholar
[91]
S. Z. Bisri, S. Shimizu, M. Nakano, Y. Iwasa. Endeavor of iontronics: From fundamentals to applications of ion-controlled electronics. Adv. Mater., 2017, 29(25): 1607054
CrossRef ADS Google scholar
[92]
H. Yuan, H. Shimotani, A. Tsukazaki, A. Ohtomo, M. Kawasaki, Y. Iwasa. High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids. Adv. Funct. Mater., 2009, 19(7): 1046
CrossRef ADS Google scholar
[93]
S. Ono, N. Minder, Z. Chen, A. Facchetti, A. F. Morpurgo. High-performance n-type organic field-effect transistors with ionic liquid gates. Appl. Phys. Lett., 2010, 97(14): 143307
CrossRef ADS Google scholar
[94]
K. Hong, S. H. Kim, K. H. Lee, C. D. Frisbie. Printed, sub-2V ZnO electrolyte gated transistors and inverters on plastic. Adv. Mater., 2013, 25(25): 3413
CrossRef ADS Google scholar
[95]
K. Ueno, S. Nakamura, H. Shimotani, A. Ohtomo, N. Kimura, T. Nojima, H. Aoki, Y. Iwasa, M. Kawasaki. Electric-field-induced superconductivity in an insulator. Nat. Mater., 2008, 7(11): 855
CrossRef ADS Google scholar
[96]
J. T. Ye, S. Inoue, K. Kobayashi, Y. Kasahara, H. T. Yuan, H. Shimotani, Y. Iwasa. Liquid-gated interface superconductivity on an atomically flat film. Nat. Mater., 2010, 9(2): 125
CrossRef ADS Google scholar
[97]
K. Ueno, S. Nakamura, H. Shimotani, H. T. Yuan, N. Kimura, T. Nojima, H. Aoki, Y. Iwasa, M. Kawasaki. Discovery of superconductivity in KTaO3 by electrostatic carrier doping. Nat. Nanotechnol., 2011, 6(7): 408
CrossRef ADS Google scholar
[98]
J. Ye, M. F. Craciun, M. Koshino, S. Russo, S. Inoue, H. Yuan, H. Shimotani, A. F. Morpurgo, Y. Iwasa. Accessing the transport properties of graphene and its multilayers at high carrier density. Proc. Natl. Acad. Sci. USA, 2011, 108(32): 13002
CrossRef ADS Google scholar
[99]
A. T. Bollinger, G. Dubuis, J. Yoon, D. Pavuna, J. Misewich, I. Bozovic. Superconductor−insulator transition in La2-xSrxCuO4 at the pair quantum resistance. Nature, 2011, 472(7344): 458
CrossRef ADS Google scholar
[100]
Y. Saito, Y. Nakamura, M. S. Bahramy, Y. Kohama, J. Ye, Y. Kasahara, Y. Nakagawa, M. Onga, M. Tokunaga, T. Nojima, Y. Yanase, Y. Iwasa. Superconductivity protected by spin-valley locking in ion-gated MoS2. Nat. Phys., 2016, 12: 144
CrossRef ADS Google scholar
[101]
Y. Yu, F. Yang, X. F. Lu, Y. J. Yan, Y. H. Cho, L. Ma, X. Niu, S. Kim, Y. W. Son, D. Feng, S. Li, S. W. Cheong, X. H. Chen, Y. Zhang. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol., 2015, 10(3): 270
CrossRef ADS Google scholar
[102]
Y. Saito, T. Nojima, Y. Iwasa. Gate-induced superconductivity in two-dimensional atomic crystals. Supercond. Sci. Technol., 2016, 29(9): 093001
CrossRef ADS Google scholar
[103]
Y. C. Wu, D. F. Li, C. L. Wu, H. Y. Hwang, Y. Cui. Electrostatic gating and intercalation in 2D materials. Nat. Rev. Mater., 2022,
CrossRef ADS Google scholar
[104]
L.LiuJ. HanL.XuJ.ZhouC.Zhao S.DingH. ShiM.XiaoL.DingZ.Ma C.JinZ. ZhangL.M. Peng, Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics, Science 368 (2020) 850
[105]
I. G. Lezama, A. Ubaldini, M. Longobardi, E. Giannini, C. Renner, A. B. Kuzmenko, A. F. Morpurgo. Surface transport and band gap structure of exfoliated 2H-MoTe2 crystals. 2D Mater., 2014, 1: 021002
CrossRef ADS Google scholar
[106]
F. L. Wang, P. Stepanov, M. Gray, C. N. Lau, M. E. Itkis, R. C. Haddon. Ionic liquid gating of suspended MoS2 field effect transistor devices. Nano Lett., 2015, 15(8): 5284
CrossRef ADS Google scholar
[107]
W. Shi, J. T. Ye, Y. J. Zhang, R. Suzuki, M. Yoshida, J. Miyazaki, N. Inoue, Y. Saito, Y. Iwasa. Superconductivity series in transition metal dichalcogenides by ionic gating. Sci. Rep., 2015, 5(1): 12534
CrossRef ADS Google scholar
[108]
S. Larentis, J. R. Tolsma, B. Fallahazad, D. C. Dillen, K. Kim, A. H. MacDonald, E. Tutuc. Band offset and negative compressibility in graphene−MoS2 heterostructures. Nano Lett., 2014, 14(4): 2039
CrossRef ADS Google scholar
[109]
G. Dezi, N. Scopigno, S. Caprara, M. Grilli. Negative electronic compressibility and nanoscale inhomogeneity in ionic-liquid gated two-dimensional superconductors. Phys. Rev. B, 2018, 98(21): 214507
CrossRef ADS Google scholar
[110]
M. M. Ugeda, A. J. Bradley, Y. Zhang, S. Onishi, Y. Chen, W. Ruan, C. Ojeda-Aristizabal, H. Ryu, M. T. Edmonds, H. Z. Tsai, A. Riss, S. K. Mo, D. Lee, A. Zettl, Z. Hussain, Z. X. Shen, M. F. Crommie. Characterization of collective ground states in single-layer NbSe2. Nat. Phys., 2016, 12(1): 92
CrossRef ADS Google scholar
[111]
A. W. Tsen, B. Hunt, Y. D. Kim, Z. J. Yuan, S. Jia, R. J. Cava, J. Hone, P. Kim, C. R. Dean, A. N. Pasupathy. Nature of the quantum metal in a two-dimensional crystalline superconductor. Nat. Phys., 2016, 12: 208
CrossRef ADS Google scholar
[112]
X. Xi, L. Zhao, Z. Wang, H. Berger, L. Forro, J. Shan, K. F. Mak. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol., 2015, 10: 765
CrossRef ADS Google scholar
[113]
X. Xi, H. Berger, L. Forro, J. Shan, K. F. Mak. Gate tuning of electronic phase transitions in two-dimensional NbSe2. Phys. Rev. Lett., 2016, 117(10): 106801
CrossRef ADS Google scholar
[114]
Y. Chen, W. Xing, X. Wang, B. Shen, W. Yuan, T. Su, Y. Ma, Y. Yao, J. Zhong, Y. Yun, X. C. Xie, S. Jia, W. Han. Role of oxygen in ionic liquid gating on two-dimensional Cr2Ge2Te6: A non-oxide material. ACS Appl. Mater. Interfaces, 2018, 10(1): 1383
CrossRef ADS Google scholar
[115]
C. Y. Cheng, W. L. Pai, Y. H. Chen, N. T. Paylaga, P. Y. Wu, C. W. Chen, C. T. Liang, F. C. Chou, R. Sankar, M. S. Fuhrer, S. Y. Chen, W. H. Wang. Phase modulation of self-gating in ionic liquid-functionalized InSe field-effect transistors. Nano Lett., 2022, 22(6): 2270
CrossRef ADS Google scholar
[116]
T. Xu, H. Du, H. Liu, W. Liu, X. Zhang, C. Si, P. Liu, K. Zhang. Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv. Mater., 2021, 33(48): 2101368
CrossRef ADS Google scholar
[117]
S. Alipoori, S. Mazinani, S. H. Aboutalebi, F. Sharif. Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: Opportunities and challenges. J. Energy Storage, 2020, 27: 101072
CrossRef ADS Google scholar
[118]
D. R. MacFarlane, N. Tachikawa, M. Forsyth, J. M. Pringle, P. C. Howlett, G. D. Elliott, J. H. Davis, M. Watanabe, P. Simon, C. A. Angell. Energy applications of ionic liquids. Energy Environ. Sci., 2014, 7(1): 232
CrossRef ADS Google scholar
[119]
Y. W. Chi, C. C. Hu, H. H. Shen, K. P. Huang. New approach for high-voltage electrical double-layer capacitors using vertical graphene nanowalls with and without nitrogen doping. Nano Lett., 2016, 16(9): 5719
CrossRef ADS Google scholar
[120]
A. Balducci, F. Soavi, M. Mastragostino. The use of ionic liquids as solvent-free green electrolytes for hybrid supercapacitors. Appl. Phys. A, 2006, 82: 627
CrossRef ADS Google scholar
[121]
A. Balducci, W. A. Henderson, M. Mastragostino, S. Passerini, P. Simon, F. Soavi. Cycling stability of a hybrid activated carbon//poly(3-methylthiophene) supercapacitor with N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid as electrolyte. Electrochim. Acta, 2005, 50(11): 2233
CrossRef ADS Google scholar
[122]
A. Balducci, U. Bardi, S. Caporali, M. Mastragostino, F. Soavi. Ionic liquids for hybrid supercapacitors. Electrochem. Commun., 2004, 6(6): 566
CrossRef ADS Google scholar
[123]
M. Mastragostino, F. Soavi. Strategies for high-performance supercapacitors for HEV. J. Power Sources, 2007, 174(1): 89
CrossRef ADS Google scholar
[124]
M. Galiński, A. Lewandowski, I. Stepniak. Ionic liquids as electrolytes. Electrochim. Acta, 2006, 51(26): 5567
CrossRef ADS Google scholar
[125]
A. Lewandowski, M. Galinski. Carbon-ionic liquid double-layer capacitors. J. Phys. Chem. Solids, 2004, 65(2−3): 281
CrossRef ADS Google scholar
[126]
A. Balducci, R. Dugas, P. L. Taberna, P. Simon, D. Plee, M. Mastragostino, S. Passerini. High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte. J. Power Sources, 2007, 165(2): 922
CrossRef ADS Google scholar
[127]
C. Arbizzani, S. Beninati, M. Lazzari, F. Soavi, M. Mastragostino. Electrode materials for ionic liquid-based supercapacitors. J. Power Sources, 2007, 174(2): 648
CrossRef ADS Google scholar
[128]
A. Eftekhari. Supercapacitors utilising ionic liquids. Energy Storage Mater., 2017, 9: 47
CrossRef ADS Google scholar
[129]
R. Y. Lin, P. L. Taberna, S. Fantini, V. Presser, C. R. Perez, F. Malbosc, N. L. Rupesinghe, K. B. K. Teo, Y. Gogotsi, P. Simon. Capacitive energy storage from −50 to 100 °C using an ionic liquid electrolyte. J. Phys. Chem. Lett., 2011, 2(19): 2396
CrossRef ADS Google scholar
[130]
M. Kunze, S. Jeong, G. B. Appetecchi, M. Schöenhoff, M. Winter, S. Passerini. Mixtures of ionic liquids for low temperature electrolytes. Electrochim. Acta, 2012, 82: 69
CrossRef ADS Google scholar
[131]
W. Y. Tsai, R. Lin, S. Murali, L. L. Zhang, J. K. McDonough, R. S. Ruoff, P. L. Taberna, Y. Gogotsi, P. Simon. Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from −50 to 80 °C. Nano Energy, 2013, 2(3): 403
CrossRef ADS Google scholar
[132]
C. Lethien, J. Le Bideau, T. Brousse. Challenges and prospects of 3D micro-supercapacitors for powering the internet of things. Energy Environ. Sci., 2019, 12(1): 96
CrossRef ADS Google scholar
[133]
Z. Yang, J. Tian, Z. Yin, C. Cui, W. Qian, F. Wei. Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review. Carbon, 2019, 141: 467
CrossRef ADS Google scholar
[134]
C. Cui, W. Qian, Y. Yu, C. Kong, B. Yu, L. Xiang, F. Wei. Highly electroconductive mesoporous graphene nanofibers and their capacitance performance at 4 V. J. Am. Chem. Soc., 2014, 136(6): 2256
CrossRef ADS Google scholar
[135]
Y. Yu, C. Cui, W. Qian, F. Wei. Full capacitance potential of SWCNT electrode in ionic liquids at 4 V. J. Mater. Chem. A, 2014, 2(46): 19897
CrossRef ADS Google scholar
[136]
M. Lazzari, M. Mastragostino, F. Soavi. Capacitance response of carbons in solvent-free ionic liquid electrolytes. Electrochem. Commun., 2007, 9(7): 1567
CrossRef ADS Google scholar
[137]
D. R. MacFarlane, P. Meakin, J. Sun, N. Amini, M. Forsyth. Pyrrolidinium imides: A new family of molten salts and conductive plastic crystal phases. J. Phys. Chem. B, 1999, 103(20): 4164
CrossRef ADS Google scholar
[138]
W. A. Henderson, S. Passerini. Phase behavior of ionic liquid-LiX mixtures: Pyrrolidinium cations and TFSI- anions. Chem. Mater., 2004, 16(15): 2881
CrossRef ADS Google scholar
[139]
Y. Zhou, H. Qi, J. Yang, Z. Bo, F. Huang, M. S. Islam, X. Lu, L. Dai, R. Amal, C. H. Wang, Z. Han. Two-birds-one-stone: Multifunctional supercapacitors beyond traditional energy storage. Energy Environ. Sci., 2021, 14(4): 1854
CrossRef ADS Google scholar
[140]
G. Lota, K. Fic, E. Frackowiak. Carbon nanotubes and their composites in electrochemical applications. Energy Environ. Sci., 2011, 4(5): 1592
CrossRef ADS Google scholar
[141]
M. F. El-Kady, Y. L. Shao, R. B. Kaner. Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater., 2016, 1(7): 16033
CrossRef ADS Google scholar
[142]
A. G. Pandolfo, A. F. Hollenkamp. Carbon properties and their role in supercapacitors. J. Power Sources, 2006, 157(1): 11
CrossRef ADS Google scholar
[143]
L. Hao, J. Ning, B. Luo, B. Wang, Y. Zhang, Z. Tang, J. Yang, A. Thomas, L. Zhi. Structural evolution of 2D microporous covalent triazine-based framework toward the study of high-performance supercapacitors. J. Am. Chem. Soc., 2015, 137(1): 219
CrossRef ADS Google scholar
[144]
Y. W. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, R. S. Ruoff. Carbon-based supercapacitors produced by activation of graphene. Science, 2011, 332(6037): 1537
CrossRef ADS Google scholar
[145]
C. Largeot, C. Portet, J. Chmiola, P.-L. Taberna, Y. Gogotsi, P. Simon. Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc., 2008, 130: 2730
CrossRef ADS Google scholar
[146]
J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P. L. Taberna. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science, 2006, 313(5794): 1760
CrossRef ADS Google scholar
[147]
C. Zheng, W. Z. Qian, C. J. Cui, Q. Zhang, Y. G. Jin, M. Q. Zhao, P. H. Tan, F. Wei. Hierarchical carbon nanotube membrane with high packing density and tunable porous structure for high voltage supercapacitors. Carbon, 2012, 50(14): 5167
CrossRef ADS Google scholar
[148]
Y. S. Yun, S. Y. Cho, J. Shim, B. H. Kim, S. J. Chang, S. J. Baek, Y. S. Huh, Y. Tak, Y. W. Park, S. Park, H. J. Jin. Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv. Mater., 2013, 25(14): 1993
CrossRef ADS Google scholar
[149]
Z. B. Lei, Z. H. Liu, H. J. Wang, X. X. Sun, L. Lu, X. S. Zhao. A high-energy-density supercapacitor with graphene-CMK-5 as the electrode and ionic liquid as the electrolyte. J. Mater. Chem. A, 2013, 1(6): 2313
CrossRef ADS Google scholar
[150]
T. Kim, H. C. Kang, T. Tran Thanh, J. D. Lee, H. Kim, W. S. Yang, H. G. Yoon, K. S. Suh. Ionic liquid-assisted microwave reduction of graphite oxide for supercapacitors. RSC Adv., 2012, 2(23): 8808
CrossRef ADS Google scholar
[151]
H. Wang, Z. Xu, A. Kohandehghan, Z. Li, K. Cui, X. Tan, T. J. Stephenson, C. K. King’ondu, C. M. B. Holt, B. C. Olsen, J. K. Tak, D. Harfield, A. O. Anyia, D. Mitlin. Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano, 2013, 7(6): 5131
CrossRef ADS Google scholar
[152]
L. L. Zhang, X. Zhao, M. D. Stoller, Y. Zhu, H. Ji, S. Murali, Y. Wu, S. Perales, B. Clevenger, R. S. Ruoff. Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett., 2012, 12(4): 1806
CrossRef ADS Google scholar
[153]
N. Jung, S. Kwon, D. Lee, D. M. Yoon, Y. M. Park, A. Benayad, J. Y. Choi, J. S. Park. Synthesis of chemically bonded graphene/carbon nanotube composites and their application in large volumetric capacitance supercapacitors. Adv. Mater., 2013, 25(47): 6854
CrossRef ADS Google scholar
[154]
G. P. Hao, A. H. Lu, W. Dong, Z. Y. Jin, X. Q. Zhang, J. T. Zhang, W. C. Li. Sandwich-type microporous carbon nanosheets for enhanced supercapacitor performance. Adv. Energy Mater., 2013, 3(11): 1421
CrossRef ADS Google scholar
[155]
T. Brousse, D. Belanger, J. W. Long. To be or not to be pseudocapacitive. J. Electrochem. Soc., 2015, 162(5): A5185
CrossRef ADS Google scholar
[156]
P. Simon, Y. Gogotsi, B. Dunn. Where do batteries end and supercapacitors begin. Science, 2014, 343(6176): 1210
CrossRef ADS Google scholar
[157]
B. E. Conway. Transition from supercapacitor to battery behavior in electrochemical energy-storage. J. Electrochem. Soc., 1991, 138(6): 1539
CrossRef ADS Google scholar
[158]
E. Mourad, L. Coustan, P. Lannelongue, D. Zigah, A. Mehdi, A. Vioux, S. A. Freunberger, F. Favier, O. Fontaine. Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors. Nat. Mater., 2017, 16: 446
CrossRef ADS Google scholar
[159]
P. Simon, Y. Gogotsi. Perspectives for electrochemical capacitors and related devices. Nat. Mater., 2020, 19(11): 1151
CrossRef ADS Google scholar
[160]
Y. Jing, Z. Zhou, C. R. Cabrera, Z. Chen. Graphene, inorganic graphene analogs and their composites for lithium ion batteries. J. Mater. Chem. A, 2014, 2(31): 12104
CrossRef ADS Google scholar
[161]
M. K. Aslam, Y. B. Niu, M. W. Xu, MXenes for non-lithium-ion (Na. Mg, and Al) batteries and supercapacitors. Adv. Energy Mater., 2021, 11(2): 2000681
CrossRef ADS Google scholar
[162]
A. Peigney, C. Laurent, E. Flahaut, R. R. Bacsa, A. Rousset. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon, 2001, 39(4): 507
CrossRef ADS Google scholar
[163]
J. Wang, B. Ding, Y. Xu, L. Shen, H. Dou, X. Zhang. Crumpled nitrogen-doped graphene for supercapacitors with high gravimetric and volumetric performances. ACS Appl. Mater. Interfaces, 2015, 7(40): 22284
CrossRef ADS Google scholar
[164]
X. Yang, C. Cheng, Y. Wang, L. Qiu, D. Li. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science, 2013, 341(6145): 534
CrossRef ADS Google scholar
[165]
R. Futamura, T. Iiyama, Y. Takasaki, Y. Gogotsi, M. J. Biggs, M. Salanne, J. Segalini, P. Simon, K. Kaneko. Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores. Nat. Mater., 2017, 16: 1225
CrossRef ADS Google scholar
[166]
Z. N. Li, S. Gadipelli, H. C. Li, C. A. Howard, D. J. L. Brett, P. R. Shearing, Z. X. Guo, I. P. Parkin, F. Li. Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage. Nat. Energy, 2020, 5(2): 160
CrossRef ADS Google scholar
[167]
C. Cheng, G. Jiang, G. P. Simon, J. Z. Liu, D. Li. Low-voltage electrostatic modulation of ion diffusion through layered graphene-based nanoporous membranes. Nat. Nanotechnol., 2018, 13: 685
CrossRef ADS Google scholar
[168]
X. L. Su, C. R. Ye, X. P. Li, M. H. Guo, R. G. Cao, K. Ni, Y. W. Zhu. Heterogeneous stacking carbon films for optimized supercapacitor performance. Energy Storage Mater., 2022, 50: 365
CrossRef ADS Google scholar
[169]
J. Kim, S. Kim. Preparation and electrochemical property of ionic liquid-attached graphene nanosheets for an application of supercapacitor electrode. Electrochim. Acta, 2014, 119: 11
CrossRef ADS Google scholar
[170]
J. Kim, S. Kim. Surface-modified reduced graphene oxide electrodes for capacitors by ionic liquids and their electrochemical properties. Appl. Surf. Sci., 2014, 295: 31
CrossRef ADS Google scholar
[171]
B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B. C. Hosler, L. Hultman, P. R. C. Kent, Y. Gogotsi, M. W. Barsoum. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano, 2015, 9(10): 9507
CrossRef ADS Google scholar
[172]
Q. Hu, D. Sun, Q. Wu, H. Wang, L. Wang, B. Liu, A. Zhou, J. He. MXene: A new family of promising hydrogen storage medium. J. Phys. Chem. A, 2013, 117(51): 14253
CrossRef ADS Google scholar
[173]
Y. Dong, S. Zheng, J. Qin, X. Zhao, H. Shi, X. Wang, J. Chen, Z. S. Wu. All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li-S batteries. ACS Nano, 2018, 12(3): 2381
CrossRef ADS Google scholar
[174]
M. R. Lukatskaya, O. Mashtalir, C. E. Ren, Y. Dall’Agnese, P. Rozier, P. L. Taberna, M. Naguib, P. Simon, M. W. Barsoum, Y. Gogotsi. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 2013, 341(6153): 1502
CrossRef ADS Google scholar
[175]
A. VahidMohammadi, J. Moncada, H. Chen, E. Kayali, J. Orangi, C. A. Carrero, M. Beidaghi. Thick and freestanding MXene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance. J. Mater. Chem. A, 2018, 6(44): 22123
CrossRef ADS Google scholar
[176]
M. Lu, H. J. Li, W. J. Han, J. N. Chen, W. Shi, J. H. Wang, X. M. Meng, J. G. Qi, H. B. Li, B. S. Zhang, W. Zhang, W. Zheng. 2D titanium carbide (MXene) electrodes with lower-F surface for high performance lithium-ion batteries. J. Energy Chem., 2019, 31: 148
CrossRef ADS Google scholar
[177]
F. Wu, Y. Jiang, Z. Q. Ye, Y. X. Huang, Z. H. Wang, S. J. Li, Y. Mei, M. Xie, L. Li, R. J. Chen. A 3D flower-like VO2/MXene hybrid architecture with superior anode performance for sodium ion batteries. J. Mater. Chem. A, 2019, 7(3): 1315
CrossRef ADS Google scholar
[178]
Y. Xia, T. S. Mathis, M. Q. Zhao, B. Anasori, A. Dang, Z. H. Zhou, H. Cho, Y. Gogotsi, S. Yang. Thickness - independent capacitance of vertically aligned liquid-crystalline MXenes. Nature, 2018, 557: 409
CrossRef ADS Google scholar
[179]
C. F. Zhang, M. P. Kremer, A. Seral-Ascaso, S. H. Park, N. McEvoy, B. Anasori, Y. Gogotsi, V. Nicolosi. Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Adv. Funct. Mater., 2018, 28(9): 1705506
CrossRef ADS Google scholar
[180]
S. Xu, Y. Dall’Agnese, G. Wei, C. Zhang, Y. Gogotsi, W. Han. Screen-printable microscale hybrid device based on MXene and layered double hydroxide electrodes for powering force sensors. Nano Energy, 2018, 50: 479
CrossRef ADS Google scholar
[181]
Z. Lin, D. Barbara, P. L. Taberna, K. L. Van Aken, B. Anasori, Y. Gogotsi, P. Simon. Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte. J. Power Sources, 2016, 326: 575
CrossRef ADS Google scholar
[182]
Z. F. Lin, P. Rozier, B. Duployer, P. L. Taberna, B. Anasori, Y. Gogotsi, P. Simon. Electrochemical and in-situ X-ray diffraction studies of Ti3C2Tx MXene in ionic liquid electrolyte. Electrochem. Commun., 2016, 72: 50
CrossRef ADS Google scholar
[183]
S. H. Zheng, C. Zhang, F. Zhou, Y. F. Dong, X. Y. Shi, V. Nicolosi, Z. S. Wu, X. H. Bao. Ionic liquid pre-intercalated MXene films for ionogel-based flexible micro-supercapacitors with high volumetric energy density. J. Mater. Chem. A, 2019, 7(16): 9478
CrossRef ADS Google scholar
[184]
O. D. Bakulina, M. Y. Ivanov, S. A. Prikhod’ko, S. Pylaeva, I. V. Zaytseva, N. V. Surovtsev, N. Y. Adonin, M. V. Fedin. Nanocage formation and structural anomalies in imidazolium ionic liquid glasses governed by alkyl chains of cations. Nanoscale, 2020, 12(38): 19982
CrossRef ADS Google scholar
[185]
K. Liang, R. A. Matsumoto, W. Zhao, N. C. Osti, I. Popov, B. P. Thapaliya, S. Fleischmann, S. Misra, K. Prenger, M. Tyagi, E. Mamontov, V. Augustyn, R. R. Unocic, A. P. Sokolov, S. Dai, P. T. Cummings, M. Naguib. Engineering the interlayer spacing by pre-intercalation for high performance supercapacitor MXene electrodes in room temperature ionic liquid. Adv. Funct. Mater., 2021, 31(33): 2104007
CrossRef ADS Google scholar
[186]
Q. Fan, R. Z. Zhao, M. J. Yi, P. Qi, C. X. Chai, H. Ying, J. C. Hao. Ti3C2-MXene composite films functionalized with polypyrrole and ionic liquid-based microemulsion particles for supercapacitor applications. Chem. Eng. J., 2022, 428: 131107
CrossRef ADS Google scholar
[187]
Y. J. Wan, K. Rajavel, X. M. Li, X. Y. Wang, S. Y. Liao, Z. Q. Lin, P. L. Zhu, R. Sun, C. P. Wong. Electromagnetic interference shielding of Ti3C2Tx MXene modified by ionic liquid for high chemical stability and excellent mechanical strength. Chem. Eng. J., 2021, 408: 127303
CrossRef ADS Google scholar
[188]
J. S. Lee, X. Q. Wang, H. M. Luo, G. A. Baker, S. Dai. Facile ionothermal synthesis of microporous and mesoporous carbons from task specific ionic liquids. J. Am. Chem. Soc., 2009, 131: 4596
CrossRef ADS Google scholar
[189]
Y. Yoshida, K. Fujie, D. W. Lim, R. Ikeda, H. Kitagawa. Superionic conduction over a wide temperature range in a metal-organic framework impregnated with ionic liquids. Angew. Chem. Int. Ed., 2019, 58(32): 10909
CrossRef ADS Google scholar
[190]
S. Bi, H. Banda, M. Chen, L. Niu, M. Chen, T. Wu, J. Wang, R. Wang, J. Feng, T. Chen, M. Dinca, A. A. Kornyshev, G. Feng. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes. Nat. Mater., 2020, 19: 552
CrossRef ADS Google scholar
[191]
C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev., 2015, 44(21): 7484
CrossRef ADS Google scholar
[192]
H. Yang, S. Kannappan, A. S. Pandian, J. H. Jang, Y. S. Lee, W. Lu. Graphene supercapacitor with both high power and energy density. Nanotechnology, 2017, 28(44): 445401
CrossRef ADS Google scholar
[193]
A. González, E. Goikolea, J. Andoni Barrena, R. Mysyk. Review on supercapacitors: Technologies and materials. Renew. Sustain. Energy Rev., 2016, 58: 1189
CrossRef ADS Google scholar
[194]
S. Pohlmann, R. S. Kühnel, T. A. Centeno, A. Balducci. The influence of anion-cation combinations on the physicochemical properties of advanced electrolytes for supercapacitors and the capacitance of activated carbons. ChemElectroChem, 2014, 1(8): 1301
CrossRef ADS Google scholar
[195]
K. L. Van Aken, M. Beidaghi, Y. Gogotsi. Formulation of ionic-liquid electrolyte to expand the voltage window of supercapacitors. Angew. Chem. Int. Ed., 2015, 54(16): 4806
CrossRef ADS Google scholar
[196]
S. Pohlmann, C. Ramirez-Castro, A. Balducci. The influence of conductive salt ion selection on EDLC electrolyte characteristics and carbon-electrolyte interaction. J. Electrochem. Soc., 2015, 162(5): A5020
CrossRef ADS Google scholar
[197]
W. Q. Ye, H. Y. Wang, J. Q. Ning, Y. J. Zhong, Y. Hu. New types of hybrid electrolytes for supercapacitors. J. Energy Chem., 2021, 57: 219
CrossRef ADS Google scholar
[198]
R. Hagiwara, K. Matsumoto, Y. Nakamori, T. Tsuda, Y. Ito, H. Matsumoto, K. Momota. Physicochemical properties of 1, 3-dialkylimidazolium fluorohydrogenate room-temperature molten salts. J. Electrochem. Soc., 2003, 150(12): D195
CrossRef ADS Google scholar
[199]
C. Kong, W. Qian, C. Zheng, Y. Yu, C. Cui, F. Wei. Raising the performance of a 4 V supercapacitor based on an EMIBF4-single walled carbon nanotube nanofluid electrolyte. Chem. Commun. (Camb.), 2013, 49(91): 10727
CrossRef ADS Google scholar
[200]
D. Yang, X. Zhou, R. X. Yang, Z. Yang, W. Yu, X. L. Wang, C. Li, S. Z. Liu, R. P. H. Chang. Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells. Energy Environ. Sci., 2016, 9(10): 3071
CrossRef ADS Google scholar
[201]
S. Bai, P. M. Da, C. Li, Z. P. Wang, Z. C. Yuan, F. Fu, M. Kawecki, X. J. Liu, N. Sakai, J. T. W. Wang, S. Huettner, S. Buecheler, M. Fahlman, F. Gao, H. J. Snaith. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature, 2019, 571: 245
CrossRef ADS Google scholar
[202]
G. Divitini, S. Cacovich, F. Matteocci, L. Cina, A. Di Carlo, C. Ducati. In situ observation of heat-induced degradation of perovskite solar cells. Nat. Energy, 2016, 1(2): 15012
CrossRef ADS Google scholar
[203]
T. Leijtens, E. T. Hoke, G. Grancini, D. J. Slotcavage, G. E. Eperon, J. M. Ball, M. De Bastiani, A. R. Bowring, N. Martino, K. Wojciechowski, M. D. McGehee, H. J. Snaith, A. Petrozza. Mapping electric field-induced switchable poling and structural degradation in hybrid lead halide perovskite thin films. Adv. Energy Mater., 2015, 5(20): 1500962
CrossRef ADS Google scholar
[204]
K. Domanski, B. Roose, T. Matsui, M. Saliba, S. H. Turren-Cruz, J. P. Correa-Baena, C. Roldan-Carmona, G. Richardson, J. M. Foster, F. De Angelis, J. M. Ball, A. Petrozza, N. Mine, M. K. Nazeeruddin, W. Tress, M. Grätzel, U. Steiner, A. Hagfeldt, A. Abate. Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells. Energy Environ. Sci., 2017, 10(2): 604
CrossRef ADS Google scholar
[205]
X. J. Zhu, M. Y. Du, J. S. Feng, H. Wang, Z. Xu, L. K. Wang, S. N. Zuo, C. Y. Wang, Z. Y. Wang, C. Zhang, X. D. Ren, S. Priya, D. Yang, S. Liu. High-efficiency perovskite solar cells with imidazolium-based ionic liquid for surface passivation and charge transport. Angew. Chem. Int. Ed., 2021, 60(8): 4238
CrossRef ADS Google scholar
[206]
X. Wang, X. Ran, X. Liu, H. Gu, S. Zuo, W. Hui, H. Lu, B. Sun, X. Gao, J. Zhang, Y. Xia, Y. Chen, W. Huang. Tailoring component interaction for air-processed efficient and stable all-inorganic perovskite photovoltaic. Angew. Chem. Int. Ed., 2020, 59(32): 13354
CrossRef ADS Google scholar
[207]
C. Liu, Z. Fang, J. S. Sun, Q. Lou, J. F. Ge, X. Chen, E. J. Zhou, M. H. Shang, W. Y. Yang, Z. Y. Ge. Imidazolium ionic liquid as organic spacer for tuning the excitonic structure of 2D perovskite materials. ACS Energy Lett., 2020, 5(11): 3617
CrossRef ADS Google scholar
[208]
W. Hui, L. F. Chao, H. Lu, F. Xia, Q. Wei. . Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity. Science, 2021, 371: 1359
CrossRef ADS Google scholar
[209]
A. K. Geim, I. V. Grigorieva. Van der Waals heterostructures. Nature, 2013, 499(7459): 419
CrossRef ADS Google scholar
[210]
Y. F. Sun, S. Gao, Y. Xie. Atomically-thick two-dimensional crystals: Electronic structure regulation and energy device construction. Chem. Soc. Rev., 2014, 43(2): 530
CrossRef ADS Google scholar
[211]
X.HuangC. TanZ.YinH.Zhang, 25th anniversary article: Hybrid nanostructures based on two-Dimensional nanomaterials, Adv. Mater. 26(14), 2185 (2014)
[212]
Y. Sun, S. Gao, F. Lei, C. Xiao, Y. Xie. Ultrathin two-dimensional inorganic materials: New opportunities for solid state nanochemistry. Acc. Chem. Res., 2015, 48(1): 3
CrossRef ADS Google scholar
[213]
Y. Sun, H. Cheng, S. Gao, Z. Sun, Q. Liu, Q. Liu, F. Lei, T. Yao, J. He, S. Wei, Y. Xie. Freestanding tin disulfide single-layers realizing efficient visible-light water splitting. Angew. Chem. Int. Ed., 2012, 51(35): 8727
CrossRef ADS Google scholar
[214]
J. Li, Y. Yu, L. Zhang. Bismuth oxyhalide nanomaterials: Layered structures meet photocatalysis. Nanoscale, 2014, 6(15): 8473
CrossRef ADS Google scholar
[215]
J. Jiang, K. Zhao, X. Xiao, L. Zhang. Synthesis and facet-dependent photoreactivity of BiOCl Single-crystalline nanosheets. J. Am. Chem. Soc., 2012, 134(10): 4473
CrossRef ADS Google scholar
[216]
J. Łuczak, M. Paszkiewicz, A. Krukowska, A. Malankowska, A. Zaleska-Medynska. Ionic liquids for nano- and microstructures preparation (Part 1): Properties and multifunctional role. Adv. Colloid Interface Sci., 2016, 230: 13
CrossRef ADS Google scholar
[217]
J. Łuczak, M. Paszkiewicz, A. Krukowska, A. Malankowska, A. Zaleska-Medynska. Ionic liquids for nano- and microstructures preparation (Part 2): Application in synthesis. Adv. Colloid Interface Sci., 2016, 227: 1
CrossRef ADS Google scholar
[218]
L. Dou, Y. Xiang, J. Zhong, J. Li, S. Huang. Ionic liquid-assisted preparation of thin Bi2SiO5 nanosheets for effective photocatalytic degradation of RhB. Mater. Lett., 2020, 261: 127117
CrossRef ADS Google scholar
[219]
J. Xia, M. Ji, J. Di, B. Wang, S. Yin, M. He, Q. Zhang, H. Li. Improved photocatalytic activity of few-layer Bi4O5I2 nanosheets induced by efficient charge separation and lower valence position. J. Alloys Compd., 2017, 695: 922
CrossRef ADS Google scholar
[220]
J. H. Li, J. Ren, Y. J. Hao, E. P. Zhou, Y. Wang, X. J. Wang, R. Su, Y. Liu, X. H. Qi, F. T. Li. Construction of beta-Bi2O3/Bi2O2CO3 heterojunction photocatalyst for deep understanding the importance of separation efficiency and valence band position. J. Hazard. Mater., 2021, 401: 123262
CrossRef ADS Google scholar
[221]
M. K. Jana, K. Biswas, C. N. R. Rao. Ionothermal synthesis of few-layer nanostructures of Bi2Se3 and related materials. Chemistry, 2013, 19(28): 9110
CrossRef ADS Google scholar
[222]
J. Z. Zhao, M. X. Ji, J. Di, Y. P. Ge, P. F. Zhang, J. X. Xia, H. M. Li. Synthesis of g-C3N4/Bi4O5Br2 via reactable ionic liquid and its cooperation effect for the enhanced photocatalytic behavior towards ciprofloxacin degradation. J. Photochem. Photobiol. A, 2017, 347: 168
CrossRef ADS Google scholar
[223]
Q. Y. Zhu, Z. Y. Wang, L. F. Chen, H. Y. Cheng, Z. W. Qi. Ionic-liquid-controlled two-dimensional monolayer Bi2MoO6 and its adsorption of azo molecules. ACS Appl. Nano Mater., 2018, 1(9): 5083
CrossRef ADS Google scholar
[224]
A. Pancielejko, J. Luczak, W. Lisowski, G. Trykowski, D. Venieri, A. Zaleska-Medynska, P. Mazierski. Ionic liquid as morphology-directing agent of two-dimensional Bi2WO6: New insight into photocatalytic and antibacterial activity. Appl. Surf. Sci., 2022, 599: 153971
CrossRef ADS Google scholar
[225]
M. Peplow. Graphene booms in factories but lacks a killer app. Nature, 2015, 522(7556): 268
CrossRef ADS Google scholar
[226]
S. Ravula, S. N. Baker, G. Kamath, G. A. Baker. Ionic liquid-assisted exfoliation and dispersion: stripping graphene and its two-dimensional layered inorganic counterparts of their inhibitions. Nanoscale, 2015, 7(10): 4338
CrossRef ADS Google scholar
[227]
J. Lu, J. Yang, J. Wang, A. Lim, S. Wang, K. P. Loh. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano, 2009, 3(8): 2367
CrossRef ADS Google scholar
[228]
Y. Zhang, S. W. Li, Y. X. Xu, X. Y. Shi, M. X. Zhang, Y. N. Huang, Y. Liang, Y. Q. Chen, W. L. Ji, J. R. Kim, W. L. Song, D. G. Yu, I. Kim. Engineering of hollow polymeric nanosphere-supported imidazolium-based ionic liquids with enhanced antimicrobial activities. Nano Res., 2022, 15(6): 5556
CrossRef ADS Google scholar
[229]
S. Tajik, A. Lohrasbi-Nejad, P. Mohammadzadeh Jahani, M. B. Askari, P. Salarizadeh, H. Beitollahi. Co-detection of carmoisine and tartrazine by carbon paste electrode modified with ionic liquid and MoO3/WO3 nanocomposite. J. Food Meas. Charact., 2022, 16(1): 722
CrossRef ADS Google scholar
[230]
F. G. Nejad, I. Sheikhshoaie, H. Beitollahi. Simultaneous detection of carmoisine and tartrazine in food samples using GO-Fe3O4-PAMAM and ionic liquid based electrochemical sensor. Food Chem. Toxicol., 2022, 162: 112864
CrossRef ADS Google scholar
[231]
H. Karimi-Maleh, R. Darabi, M. Shabani-Nooshabadi, M. Baghayeri, F. Karimi, J. Rouhi, M. Alizadeh, O. Karaman, Y. Vasseghian, C. Karaman. Determination of D&C Red 33 and Patent Blue V Azo dyes using an impressive electrochemical sensor based on carbon paste electrode modified with ZIF-8/g-C3N4/Co and ionic liquid in mouthwash and toothpaste as real samples. Food Chem. Toxicol., 2022, 162: 112907
CrossRef ADS Google scholar
[232]
M. Degani, Q. Z. An, M. Albaladejo-Siguan, Y. J. Hofstetter, C. Cho, F. Paulus, G. Grancini, Y. Vaynzof. 23.7% efficient inverted perovskite solar cells by dual interfacial modification. Sci. Adv., 2021, 7(49): eabj7930
CrossRef ADS Google scholar
[233]
G. Zeng, W. J. Chen, X. B. Chen, Y. Hu, Y. Chen, B. Zhang, H. Y. Chen, W. W. Sun, Y. X. Shen, Y. W. Li, F. Yan, Y. F. Li. Realizing 17.5% efficiency flexible organic solar cells via atomic-level chemical welding of silver nanowire electrodes. J. Am. Chem. Soc., 2022, 144(19): 8658
CrossRef ADS Google scholar

Acknowledgements

This work was supported by the Natural Science Foundation of Fujian Province of China (No. 2022J01007), the Fundamental Research Funds for Central Universities (Grant No. 20720210018), and the National Natural Science Foundation of China (No. 11704317).

Abbreviations

Cations of ILs
[BMIM] 1-butyl-3-methylimidazolium
[EMIM] 1-ethyl-3-methylimidazolium
Anions of ILs
[PF6] hexafluorophosphate
[BF4] tetrafluoroborate
[TFSI] or [NTf2] bis(trifluoromethylsulfonyl) imide
Other
ILs Ionic liquids
2D materials two-dimensional materials
TMDs transition metal dichalcogenide
MoS2 molybdenum disulfide
MoSe2 Molybdenum(IV) selenide
MoTe2 Molybdenum Ditelluride
WS2 Tungsten disulfide
WSe2 Tungsten(IV) selenide
ReS2 Rhenium Disulfide
TaS2 tantalum disulfide
NMDs noble metal dichalcogenides
PdSe2 Palladium diselenide
PtSe2 Platina Diselenide
PtS2 Platinum disulfide
h-BN hexanol boron nitride
BP black phosphorus
LDHs layered double hydroxide
g-C3N4 graphite carbon nitrides
MOFs metal-organic frameworks
COFs covalent-organic frameworks
LPE liquid phase exfoliation
NMP N-methylpyrrolidone
N12P 1-dodecyl-2-pyrrolidone
(P[VBTP][Cl]) poly(triphenyl-4-vinylbenzylphosphonium chloride)
(P[VimBu][Br]) poly(3-N-butyl-1-vinylimidazolium bromide)
(PNIL) (poly(N-isopropylacrylamide-co-IL)
FG fluorinated graphene
EDLTs electrical double-layer transistors
FETs field-effect transistors
CNT carbon nanotubes
SS subthreshold swing
CDW charge-density-wave
Cr2Ge2Te6 Chromium germanium tellurium
m-CTF microporous covalent triazine structure
rGO reduced graphene oxide
aMEGO activated microwave exfoliated graphene oxide
GNS 2D graphene nanosheets
GO graphite oxide
(EMI-TFSI) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide
Ti3C2Tx Titanium carbide
MSCs micro-supercapacitors
AA-Ti3C2 AA-cation-intercalated Ti3C2Tx
EMIM-TFSI 1-ethly-3-methylimidazolium bis-(trifluoromethylsulfonyl)-imide
DMIM 1,3-dimethyl-3-imidazolium
Cs0.08FA0.92PbI3 formamidinium-cesium lead iodide perovskite
[Hnmp]Cl [N-methyl-pyrrolidonium] chloride
Bi2O2CO3 Bismuth subcarbonate
Bi2Se3 bismuth selenide
[C16mim]Br 1-hexadecyl-3-methylimidazole bromide
Bi2MoO6 Bismuth molybdenum oxide
Bi2WO6 Bismuth tungstate

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(6347 KB)

Accesses

Citations

Detail

Sections
Recommended

/