Interpretations of the cosmic ray secondary-to-primary ratios measured by DAMPE

Peng-Xiong Ma, Zhi-Hui Xu, Qiang Yuan, Xiao-Jun Bi, Yi-Zhong Fan, Igor V. Moskalenko, Chuan Yue

Front. Phys. ›› 2023, Vol. 18 ›› Issue (4) : 44301.

PDF(7598 KB)
PDF(7598 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (4) : 44301. DOI: 10.1007/s11467-023-1257-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Interpretations of the cosmic ray secondary-to-primary ratios measured by DAMPE

Author information +
History +

Abstract

Precise measurements of the boron-to-carbon and boron-to-oxygen ratios by DAMPE show clear hardenings around 100 GeV/n, which provide important implications on the production, propagation, and interaction of Galactic cosmic rays. In this work we investigate a number of models proposed in literature in light of the DAMPE findings. These models can roughly be classified into two classes, driven by propagation effects or by source ones. Among these models discussed, we find that the re-acceleration of cosmic rays, during their propagation, by random magnetohydrodynamic waves may not reproduce sufficient hardenings of B/C and B/O, and an additional spectral break of the diffusion coefficient is required. The other models can properly explain the hardenings of the ratios. However, depending on simplifications assumed, the models differ in their quality in reproducing the data in a wide energy range. The models with significant re-acceleration effect will under-predict low-energy antiprotons but over-predict low-energy positrons, and the models with secondary production at sources over-predict high-energy antiprotons. For all models high-energy positron excess exists.

Graphical abstract

Keywords

cosmic rays / propagation

Cite this article

Download citation ▾
Peng-Xiong Ma, Zhi-Hui Xu, Qiang Yuan, Xiao-Jun Bi, Yi-Zhong Fan, Igor V. Moskalenko, Chuan Yue. Interpretations of the cosmic ray secondary-to-primary ratios measured by DAMPE. Front. Phys., 2023, 18(4): 44301 https://doi.org/10.1007/s11467-023-1257-7

References

[1]
T.K. Gaisser, Cosmic Rays and Particle Physics, Cambridge and New York: Cambridge University Press, 1990
[2]
V.S. BerezinskiiS.V. BulanovV.A. DogielV.S. Ptuskin, Astrophysics of Cosmic Rays, Amsterdam: North Holland, 1990, edited by V. L. Ginzburg, 1990
[3]
V.L. GinzburgS.I. Syrovatskii, The Origin of Cosmic Rays, New York: Macmillan, 1964
[4]
M. Aguilar, L. Ali Cavasonza, G. Ambrosi, L. Arruda, N. Attig. . Observation of new properties of secondary cosmic rays lithium, beryllium, and boron by the alpha magnetic spectrometer on the International Space Station. Phys. Rev. Lett., 2018, 120(2): 021101
CrossRef ADS Google scholar
[5]
J. J. Engelmann, P. Ferrando, A. Soutoul, P. Goret, E. Juliusson. Charge composition and energy spectra of cosmic-ray nuclei for elements from Be to NI - Results from HEAO-3-C2. Astron. Astrophys., 1990, 233: 96
[6]
S. P. Swordy, D. Mueller, P. Meyer, J. L’Heureux, J. M. Grunsfeld. Relative abundances of secondary and primary cosmic rays at high energies. Astrophys. J., 1990, 349: 625
CrossRef ADS Google scholar
[7]
M. Aguilar, J. Alcaraz, J. Allaby, B. Alpat, G. Ambrosi. . Relative composition and energy spectra of light nuclei in cosmic rays: Results from AMS-01. Astrophys. J., 2010, 724(1): 329
CrossRef ADS Google scholar
[8]
A.D. Panov, ., Relative abundances of cosmic ray nuclei B-C-N-O in the energy region from 10 GeV/n to 300 GeV/n, Results from ATIC-2 (the science flight of ATIC), in: International Cosmic Ray Conference, International Cosmic Ray Conference, Vol. 2 (2008), pp 3–6, arXiv: 0707.4415
[9]
H. S. Ahn, P. S. Allison, M. G. Bagliesi, J. J. Beatty, G. Bigongiari. . Measurements of cosmic-ray secondary nuclei at high energies with the first flight of the CREAM balloon-borne experiment. Astropart. Phys., 2008, 30(3): 133
CrossRef ADS Google scholar
[10]
A. Obermeier, M. Ave, P. Boyle, C. Höppner, J. Hörandel, D. Müller. Energy spectra of primary and secondary cosmic-ray nuclei measured with TRACER. Astrophys. J., 2011, 742(1): 14
CrossRef ADS Google scholar
[11]
O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, R. Bellotti, M. Boezio. . Measurement of boron and carbon fluxes in cosmic rays with the PAMELA experiment. Astrophys. J., 2014, 791(2): 93
CrossRef ADS Google scholar
[12]
M. Aguilar, L. Ali Cavasonza, G. Ambrosi, L. Arruda, N. Attig. . Precise measurement of the boron to carbon flux ratio in cosmic rays from 1.9 GV to 2.6 TV with the alpha magnetic spectrometer on the International Space Station. Phys. Rev. Lett., 2016, 117(23): 231102
CrossRef ADS Google scholar
[13]
V. Grebenyuk, D. Karmanov, I. Kovalev, I. Kudryashov, A. Kurganov, A. Panov, D. Podorozhny, A. Tkachenko, L. Tkachev, A. Turundaevskiy, O. Vasiliev, A. Voronin. Secondary cosmic rays in the NUCLEON space experiment. Adv. Space Res., 2019, 64(12): 2559
CrossRef ADS Google scholar
[14]
A. C. Cummings, E. C. Stone, B. C. Heikkila, N. Lal, W. R. Webber, G. Johannesson, I. V. Moskalenko, E. Orlando, T. A. Porter. Galactic cosmic rays in the local interstellar medium: Voyager 1 observations and model results. Astrophys. J., 2016, 831(1): 18
CrossRef ADS Google scholar
[15]
P. Ferrando, N. Lal, F. B. McDonald, W. R. Webber. Studies of low-energy Galactic cosmic-ray composition at 22 AU. I — Secondary/primary ratios. Astron. Astrophys., 1991, 247(1): 163
[16]
J. S. George, K. A. Lave, M. E. Wiedenbeck, W. R. Binns, A. C. Cummings, A. J. Davis, G. A. de Nolfo, P. L. Hink, M. H. Israel, R. A. Leske, R. A. Mewaldt, L. M. Scott, E. C. Stone, T. T. von Rosenvinge, N. E. Yanasak. Elemental composition and energy spectra of Galactic cosmic rays during solar cycle 23. Astrophys. J., 2009, 698(2): 1666
CrossRef ADS Google scholar
[17]
Q. Yuan, S. J. Lin, K. Fang, X. J. Bi. Propagation of cosmic rays in the AMS-02 era. Phys. Rev. D, 2017, 95(8): 083007
CrossRef ADS Google scholar
[18]
A. W. Strong, I. V. Moskalenko. Propagation of cosmic-ray nucleons in the Galaxy. Astrophys. J., 1998, 509(1): 212
CrossRef ADS Google scholar
[19]
J. Feng, N. Tomassetti, A. Oliva. Bayesian analysis of spatial-dependent cosmic-ray propagation: Astrophysical background of antiprotons and positrons. Phys. Rev. D, 2016, 94(12): 123007
CrossRef ADS Google scholar
[20]
D. Mueller, S. P. Swordy, P. Meyer, J. L’Heureux, J. M. Grunsfeld. Energy spectra and composition of primary cosmic rays. Astrophys. J., 1991, 374: 356
CrossRef ADS Google scholar
[21]
D. Maurin, F. Donato, R. Taillet, P. Salati. Cosmic rays below Z = 30 in a diffusion model: New constraints on propagation parameters. Astrophys. J., 2001, 555(2): 585
CrossRef ADS Google scholar
[22]
M. Ave, P. J. Boyle, C. Hoppner, J. Marshall, D. Müller. Propagation and source energy spectra of cosmic ray nuclei at high energies. Astrophys. J., 2009, 697(1): 106
CrossRef ADS Google scholar
[23]
A. Putze, L. Derome, D. Maurin. A Markov chain Monte Carlo technique to sample transport and source parameters of Galactic cosmic rays (II): Results for the diffusion model combining B/C and radioactive nuclei. Astron. Astrophys., 2010, 516: A66
CrossRef ADS Google scholar
[24]
R. Trotta, G. Johannesson, I. V. Moskalenko, T. A. Porter, R. Ruiz de Austri, A. W. Strong. Constraints on cosmic ray propagation models from a global Bayesian analysis. Astrophys. J., 2011, 729(2): 106
CrossRef ADS Google scholar
[25]
A. Obermeier, P. Boyle, J. Horandel, D. Müller. The boron-to-carbon abundance ratio and Galactic propagation of cosmic radiation. Astrophys. J., 2012, 752(1): 69
CrossRef ADS Google scholar
[26]
H. B. Jin, Y. L. Wu, Y. F. Zhou. Cosmic ray propagation and dark matter in light of the latest AMS-02 data. J. Cosmol. Astropart. Phys., 2015, 9: 049
CrossRef ADS Google scholar
[27]
G. Jóhannesson, R. R. Austri, A. C. Vincent, I. V. Moskalenko, E. Orlando, T. A. Porter, A. W. Strong, R. Trotta, F. Feroz, P. Graff, M. P. Hobson. Bayesian analysis of cosmic ray propagation: Evidence against homogeneous diffusion. Astrophys. J., 2016, 824(1): 16
CrossRef ADS Google scholar
[28]
M. Korsmeier, A. Cuoco. Galactic cosmic-ray propagation in the light of AMS-02: Analysis of protons, helium, and antiprotons. Phys. Rev. D, 2016, 94(12): 123019
CrossRef ADS Google scholar
[29]
J. S. Niu, T. Li. Galactic cosmic-ray model in the light of AMS-02 nuclei data. Phys. Rev. D, 2018, 97(2): 023015
CrossRef ADS Google scholar
[30]
J. Wu, H. Chen. Revisit cosmic ray propagation by using 1H, 2H, 3He and 4He. Phys. Lett. B, 2019, 789: 292
CrossRef ADS Google scholar
[31]
A. Kolmogorov. The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Akademiia Nauk SSSR Doklady, 1941, 30: 301
[32]
M. Aguilar, L. Ali Cavasonza, G. Ambrosi, L. Arruda, N. Attig. . The Alpha Magnetic Spectrometer (AMS) on the international space station (Part II): Results from the first seven years. Phys. Rep., 2021, 894: 1
CrossRef ADS Google scholar
[33]
J. Chang. Dark matter particle explorer: The first Chinese cosmic ray and hard gamma-ray detector in space. Chin. J. Space Sci., 2014, 34: 550
CrossRef ADS Google scholar
[34]
J. Chang, G. Ambrosi, Q. An, R. Asfandiyarov, P. Azzarello. . The DArk matter particle explorer mission. Astropart. Phys., 2017, 95: 6
CrossRef ADS Google scholar
[35]
F. Alemanno. . Detection of spectral hardenings in cosmic-ray boron-to-carbon and boron-to-oxygen flux ratios with DAMPE. Sci. Bull. (Beijing), 2022, 67(21): 2162
CrossRef ADS Google scholar
[36]
A. D. Panov, J. H. Jr Adams, H. S. Ahn, G. L. Bashinzhagyan, J. W. Watts, J. P. Wefel, J. Wu, O. Ganel, T. G. Guzik, V. I. Zatsepin, I. Isbert, K. C. Kim, M. Christl, E. N. Kouznetsov, M. I. Panasyuk, E. S. Seo, N. V. Sokolskaya, J. Chang, W. K. H. Schmidt, A. R. Fazely. Energy spectra of abundant nuclei of primary cosmic rays from the data of ATIC-2 experiment: Final results. Bull. Russ. Acad. Sci. Physics, 2009, 73(5): 564
CrossRef ADS Google scholar
[37]
H. S. Ahn, P. Allison, M. G. Bagliesi, J. J. Beatty, G. Bigongiari. . Discrepant hardening observed in cosmic ray elemental spectra. Astrophys. J. Lett., 2010, 714(1): L89
CrossRef ADS Google scholar
[38]
M. Aguilar, L. Ali Cavasonza, B. Alpat, G. Ambrosi, L. Arruda. . Observation of the identical rigidity dependence of He, C, and O cosmic rays at high rigidities by the alpha magnetic spectrometer on the International Space Station. Phys. Rev. Lett., 2017, 119(25): 251101
CrossRef ADS Google scholar
[39]
O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, M. G. Bagliesi. . Direct measurement of the cosmic-ray carbon and oxygen spectra from 10 GeV/n to 2.2 TeV/n with the calorimetric electron telescope on the International Space Station. Phys. Rev. Lett., 2020, 125(25): 251102
CrossRef ADS Google scholar
[40]
O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, R. Bellotti, M. Boezio. . PAMELA measurements of cosmic-ray proton and helium spectra. Science, 2011, 332(6025): 69
CrossRef ADS Google scholar
[41]
Q. An, R. Asfandiyarov, P. Azzarello, P. Bernardini, X. J. Bi. . Measurement of the cosmic ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite. Sci. Adv., 2019, 5(9): eaax3793
CrossRef ADS Google scholar
[42]
F. Alemanno, Q. An, P. Azzarello, F. C. T. Barbato, P. Bernardini. . Measurement of the cosmic ray helium energy spectrum from 70 GeV to 80 TeV with the DAMPE space mission. Phys. Rev. Lett., 2021, 126(20): 201102
CrossRef ADS Google scholar
[43]
Y. Génolini, P. D. Serpico, M. Boudaud, S. Caroff, V. Poulin, L. Derome, J. Lavalle, D. Maurin, V. Poireau, S. Rosier, P. Salati, M. Vecchi. Indications for a high-rigidity break in the cosmic-ray diffusion coefficient. Phys. Rev. Lett., 2017, 119(24): 241101
CrossRef ADS Google scholar
[44]
A. E. Vladimirov, G. Johannesson, I. V. Moskalenko, T. A. Porter. Testing the origin of high-energy cosmic rays. Astrophys. J., 2012, 752(1): 68
CrossRef ADS Google scholar
[45]
M. J. Boschini, S. D. Torre, M. Gervasi, D. Grandi, G. Jóhannesson, G. L. Vacca, N. Masi, I. V. Moskalenko, S. Pensotti, T. A. Porter, L. Quadrani, P. G. Rancoita, D. Rozza, M. Tacconi. Inference of the local interstellar spectra of cosmic-ray nuclei Z ≤ 28 with the GALPROPHELMOD framework. Astrophys. J. Suppl. Ser., 2020, 250(2 Suppl.): 27
CrossRef ADS Google scholar
[46]
P. Blasi, E. Amato, P. D. Serpico. Spectral breaks as a signature of cosmic ray induced turbulence in the Galaxy. Phys. Rev. Lett., 2012, 109(6): 061101
CrossRef ADS Google scholar
[47]
R. Cowsik, T. Madziwa-Nussinov. Spectral intensities of antiprotons and the nested leaky-box model for cosmic rays in the Galaxy. Astrophys. J., 2016, 827(2): 119
CrossRef ADS Google scholar
[48]
Q. Yuan, C.-R. Zhu, X.-J. Bi, D.-M. Wei. Secondary cosmic-ray nucleus spectra disfavor particle transport in the Galaxy without reacceleration. J. Cosmol. Astropart. Phys., 2020, 2020: 027
CrossRef ADS Google scholar
[49]
M. A. Malkov, I. V. Moskalenko. On the origin of observed cosmic-ray spectrum below 100 TV. Astrophys. J., 2022, 933(1): 78
CrossRef ADS Google scholar
[50]
Y. Q. Guo, Q. Yuan. Understanding the spectral hardenings and radial distribution of Galactic cosmic rays and Fermi diffuse γ rays with spatially-dependent propagation. Phys. Rev. D, 2018, 97(6): 063008
CrossRef ADS Google scholar
[51]
P. Mertsch, A. Vittino, S. Sarkar. Explaining cosmic ray antimatter with secondaries from old supernova remnants. Phys. Rev. D, 2021, 104(10): 103029
CrossRef ADS Google scholar
[52]
V. Bresci, E. Amato, P. Blasi, G. Morlino. Effects of reacceleration and source grammage on secondary cosmic rays spectra. Mon. Not. R. Astron. Soc., 2019, 488(2): 2068
CrossRef ADS Google scholar
[53]
N. Kawanaka, S. H. Lee. Origin of spectral hardening of secondary cosmic-ray nuclei. Astrophys. J., 2021, 917(2): 61
CrossRef ADS Google scholar
[54]
A. W. Strong, I. V. Moskalenko, V. S. Ptuskin. Cosmic-ray propagation and interactions in the Galaxy. Annu. Rev. Nucl. Part. Sci., 2007, 57(1): 285
CrossRef ADS Google scholar
[55]
Q. Yuan. Implications on cosmic ray injection and propagation parameters from Voyager/ACE/AMS-02 nucleus data. Sci. China Phys. Mech. Astron., 2019, 62(4): 49511
CrossRef ADS Google scholar
[56]
E. S. Seo, V. S. Ptuskin. Stochastic reacceleration of cosmic rays in the interstellar medium. Astrophys. J., 1994, 431: 705
CrossRef ADS Google scholar
[57]
T. A. Porter, G. Johannesson, I. V. Moskalenko. The GALPROP cosmic-ray propagation and nonthermal emissions framework: Release v57. Astrophys. J. Suppl. Ser., 2022, 262(1 Suppl.): 30
CrossRef ADS Google scholar
[58]
L. J. Gleeson, W. I. Axford. Solar Modulation of Galactic Cosmic Rays. Astrophys. J., 1968, 154: 1011
CrossRef ADS Google scholar
[59]
M. J. Boschini, S. Della Torre, M. Gervasi, G. La Vacca, P. G. Rancoita. The transport of Galactic cosmic rays in heliosphere: The HELMOD model compared with other commonly employed solar modulation models. Adv. Space Res., 2022, 70(9): 2636
CrossRef ADS Google scholar
[60]
R.CowsikL. W. Wilson, Is the residence time of cosmic rays in the Galaxy energy-dependent? in: International Cosmic Ray Conference, International Cosmic Ray Conference, Vol. 1 (1973), p. 500
[61]
R. Cowsik, B. Burch. Positron fraction in cosmic rays and models of cosmic-ray propagation. Phys. Rev. D, 2010, 82(2): 023009
CrossRef ADS Google scholar
[62]
Y. Génolini, D. Maurin, I. V. Moskalenko, M. Unger, Current status, desired precision of the isotopic production cross sections relevant to astrophysics of cosmic rays: Li. Be, B, C, and N. Phys. Rev. C, 2018, 98(3): 034611
CrossRef ADS Google scholar
[63]
I.V. MoskalenkoA.E. VladimirovT.A. PorterA.W. Strong, Isotopic Production Cross Sections for CR Applications (ISOPROCS Project), in: International Cosmic Ray Conference, International Cosmic Ray Conference, Vol. 33 (2013), p. 803
[64]
I. V. Moskalenko, A. W. Strong, J. F. Ormes, M. S. Potgieter. Secondary antiprotons and propagation of cosmic rays in the Galaxy and heliosphere. Astrophys. J., 2002, 565(1): 280
CrossRef ADS Google scholar
[65]
A.Lukasiak, Voyager measurements of the charge and isotopic composition of cosmic ray Li, Be and B nuclei and implications for their production in the Galaxy, in: International Cosmic Ray Conference, Vol. 3 (1999), p. 41
[66]
N. E. Yanasak, M. E. Wiedenbeck, R. A. Mewaldt, A. J. Davis, A. C. Cummings, J. S. George, R. A. Leske, E. C. Stone, E. R. Christian, T. T. von Rosenvinge, W. R. Binns, P. L. Hink, M. H. Israel. Measurement of the secondary radionuclides 10Be, 26Al, 36Cl, 54Mn, and 14C and implications for the Galactic cosmic-ray age. Astrophys. J., 2001, 563(2): 768
CrossRef ADS Google scholar
[67]
J. A. Simpson, M. Garcia-Munoz. Cosmic-ray lifetime in the Galaxy — Experimental results and models. Space Sci. Rev., 1988, 46(3−4): 205
CrossRef ADS Google scholar
[68]
J. J. Connell. Galactic cosmic-ray confinement time: ULYSSES high energy telescope measurements of the secondary radionuclide 10Be. Astrophys. J., 1998, 501(1): L59
CrossRef ADS Google scholar
[69]
T. Hams, L. M. Barbier, M. Bremerich, E. R. Christian, G. A. de Nolfo, S. Geier, H. Gobel, S. K. Gupta, M. Hof, W. Menn, R. A. Mewaldt, J. W. Mitchell, S. M. Schindler, M. Simon, R. E. Streitmatter. Measurement of the abundance of radioactive 10Be and other light isotopes in cosmic radiation up to 2 GeV nucleon-1 with the balloon-borne instrument ISOMAX. Astrophys. J., 2004, 611(2): 892
CrossRef ADS Google scholar
[70]
D.Foreman-MackeyD.W. HoggD.Lang J.Goodman, emcee: The MCMC hammer, Publ. Astron. Soc. Pac. 125(925), 306 (2013), doi: 10.1086/670067
[71]
M. A. Malkov, I. V. Moskalenko. The TeV cosmic-ray bump: A message from the Epsilon Indi or Epsilon Eridani star. Astrophys. J., 2021, 911(2): 151
CrossRef ADS Google scholar
[72]
M. Ackermann, M. Ajello, W. B. Atwood, L. Baldini, J. Ballet. . Fermi-LAT observations of the diffuse γ-ray emission: Implications for cosmic rays and the interstellar medium. Astrophys. J., 2012, 750(1): 3
CrossRef ADS Google scholar
[73]
A. U. Abeysekara, A. Albert, R. Alfaro, C. Alvarez, J. D. Álvarez. . Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth. Science, 2017, 358(6365): 911
CrossRef ADS Google scholar
[74]
F. Aharonian, Q. An, Axikegu X. Bai, L. X. Bai. . Extended very-high-energy gamma-ray emission surrounding PSR J 0622 +3749 observed by LHAASO-KM2A. Phys. Rev. Lett., 2021, 126(24): 241103
CrossRef ADS Google scholar
[75]
D. Hooper, I. Cholis, T. Linden, K. Fang. HAWC observations strongly favor pulsar interpretations of the cosmic-ray positron excess. Phys. Rev. D, 2017, 96(10): 103013
CrossRef ADS Google scholar
[76]
K. Fang, X. J. Bi, P. F. Yin, Q. Yuan. Two-zone diffusion of electrons and positrons from Geminga explains the positron anomaly. Astrophys. J., 2018, 863(1): 30
CrossRef ADS Google scholar
[77]
N. Tomassetti. Origin of the cosmic-ray spectral hardening. Astrophys. J. Lett., 2012, 752(1): L13
CrossRef ADS Google scholar
[78]
B. Q. Qiao, W. Liu, M. J. Zhao, X. J. Bi, Y. Q. Guo. Galactic cosmic ray propagation: sub-PeV diffuse gammaray and neutrino emission. Front. Phys., 2022, 17(4): 44501
CrossRef ADS Google scholar
[79]
M. J. Zhao, K. Fang, X. J. Bi. Constraints on the spatially dependent cosmic-ray propagation model from Bayesian analysis. Phys. Rev. D, 2021, 104(12): 123001
CrossRef ADS Google scholar
[80]
Y. Q. Guo, Z. Tian, C. Jin. Spatial-dependent propagation of cosmic rays results in the spectrum of proton, ratios of P/P, and B/C, and anisotropy of nuclei. Astrophys. J., 2016, 819(1): 54
CrossRef ADS Google scholar
[81]
J. Skilling. Cosmic rays in the Galaxy: Convection or diffusion. Astrophys. J., 1971, 170: 265
CrossRef ADS Google scholar
[82]
S. Recchia, P. Blasi, G. Morlino. On the radial distribution of Galactic cosmic rays. Mon. Not. R. Astron. Soc., 2016, 462(1): L88
CrossRef ADS Google scholar
[83]
Y. Fujita, K. Kohri, R. Yamazaki, K. Ioka. Is the PAMELA anomaly caused by supernova explosions near the Earth. Phys. Rev. D, 2009, 80(6): 063003
CrossRef ADS Google scholar
[84]
W. Liu, X. J. Bi, S. J. Lin, B. B. Wang, P. F. Yin. Excesses of cosmic ray spectra from a single nearby source. Phys. Rev. D, 2017, 96(2): 023006
CrossRef ADS Google scholar
[85]
R. Yang, F. Aharonian. Interpretation of the excess of antiparticles within a modified paradigm of Galactic cosmic rays. Phys. Rev. D, 2019, 100(6): 063020
CrossRef ADS Google scholar
[86]
M. A. Malkov, P. H. Diamond, R. Z. Sagdeev. Positive charge prevalence in cosmic rays: Room for dark matter in the positron spectrum. Phys. Rev. D, 2016, 94(6): 063006
CrossRef ADS Google scholar
[87]
K. Kohri, K. Ioka, Y. Fujita, R. Yamazaki. Can we explain AMS-02 antiproton and positron excesses simultaneously by nearby supernovae without pulsars or dark matter. Prog. Theor. Exper. Phys., 2016, 2016: 021E01
CrossRef ADS Google scholar
[88]
M. Amenomori, Y. W. Bao, X. J. Bi, D. Chen, T. L. Chen. . First detection of sub-PeV diffuse gamma rays from the Galactic disk: Evidence for ubiquitous Galactic cosmic rays beyond PeV energies. Phys. Rev. Lett., 2021, 126(14): 141101
CrossRef ADS Google scholar
[89]
P. P. Zhang, B. Q. Qiao, Q. Yuan, S. W. Cui, Y. Q. Guo. Ultrahigh-energy diffuse gamma-ray emission from cosmic-ray interactions with the medium surrounding acceleration sources. Phys. Rev. D, 2022, 105(2): 023002
CrossRef ADS Google scholar
[90]
P. P. Zhang, X. Y. He, W. Liu, Y. Q. Guo. Evidence of fresh cosmic ray in Galactic plane based on DAMPE measurement of B/C and B/O ratios. J. Cosmol. Astropart. Phys., 2023, 02: 007
CrossRef ADS Google scholar
[91]
H. Zeng, Y. Xin, S. Liu. Evolution of high-energy particle distribution in supernova remnants. Astrophys. J., 2019, 874(1): 50
CrossRef ADS Google scholar
[92]
P. Blasi. Origin of the positron excess in cosmic rays. Phys. Rev. Lett., 2009, 103(5): 051104
CrossRef ADS Google scholar
[93]
M. Ahlers, P. Mertsch, S. Sarkar. Cosmic ray acceleration in supernova remnants and the FERMI/PAMELA data. Phys. Rev. D, 2009, 80(12): 123017
CrossRef ADS Google scholar
[94]
E. G. Berezhko, L. T. Ksenofontov, V. S. Ptuskin, V. N. Zirakashvili, H. J. Volk. Cosmic ray production in super-nova remnants including reacceleration: The secondary to primary ratio. Astron. Astrophys., 2003, 410(1): 189
CrossRef ADS Google scholar
[95]
P. Mertsch, S. Sarkar. Testing astrophysical models for the PAMELA positron excess with cosmic ray nuclei. Phys. Rev. Lett., 2009, 103(8): 081104
CrossRef ADS Google scholar
[96]
I. Cholis, D. Hooper. Constraining the origin of the rising cosmic ray positron fraction with the boron-to-carbon ratio. Phys. Rev. D, 2014, 89(4): 043013
CrossRef ADS Google scholar
[97]
P. Blasi, P. D. Serpico. High-energy antiprotons from old supernova remnants. Phys. Rev. Lett., 2009, 103(8): 081103
CrossRef ADS Google scholar
[98]
M. Aguilar, L. Ali Cavasonza, B. Alpat, G. Ambrosi, L. Arruda. . Antiproton flux, antiproton-to-proton flux ratio, and properties of elementary particle fluxes in primary cosmic rays measured with the alpha magnetic spectrometer on the International Space Station. Phys. Rev. Lett., 2016, 117(9): 091103
CrossRef ADS Google scholar
[99]
M. Aguilar, D. Aisa, B. Alpat, A. Alvino, G. Ambrosi. . Precision measurement of the proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the alpha magnetic spectrometer on the International Space Station. Phys. Rev. Lett., 2015, 114(17): 171103
CrossRef ADS Google scholar
[100]
M. Aguilar, L. Ali Cavasonza, G. Ambrosi, L. Arruda, N. Attig. . Towards understanding the origin of cosmic-ray positrons. Phys. Rev. Lett., 2019, 122(4): 041102
CrossRef ADS Google scholar
[101]
M. Y. Cui, Q. Yuan, Y. L. Sming Tsai, Y. Z. Fan. A possible dark matter annihilation signal in the AMS-02 antiproton data. Phys. Rev. Lett., 2017, 118(19): 191101
CrossRef ADS Google scholar
[102]
Y. Z. Fan, T. P. Tang, Y. L. S. Tsai, L. Wu. Inert Higgs dark matter for CDF II W — Boson mass and detection prospects. Phys. Rev. Lett., 2022, 129(9): 091802
CrossRef ADS Google scholar
[103]
I. V. Moskalenko, A. W. Strong, S. G. Mashnik, J. F. Ormes. Challenging cosmic-ray propagation with antiprotons: Evidence for a “fresh” nuclei component. Astrophys. J., 2003, 586(2): 1050
CrossRef ADS Google scholar

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2021YFA0718404), the National Natural Science Foundation of China (Nos. 12220101003 and 12103094), and the Project for Young Scientists in Basic Research of Chinese Academy of Sciences (No. YSBR-061). The calculation was partially done on the Cosmology Simulation Database (CSD) of the National Basic Science Data Center (NBSDC-DB-10).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(7598 KB)

Accesses

Citations

Detail

Sections
Recommended

/