Quantum entanglement generation on magnons assisted with microwave cavities coupled to a superconducting qubit

Jiu-Ming Li, Shao-Ming Fei

PDF(4130 KB)
PDF(4130 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (4) : 41301. DOI: 10.1007/s11467-022-1253-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Quantum entanglement generation on magnons assisted with microwave cavities coupled to a superconducting qubit

Author information +
History +

Abstract

We present protocols to generate quantum entanglement on nonlocal magnons in hybrid systems composed of yttrium iron garnet (YIG) spheres, microwave cavities and a superconducting (SC) qubit. In the schemes, the YIGs are coupled to respective microwave cavities in resonant way, and the SC qubit is placed at the center of the cavities, which interacts with the cavities simultaneously. By exchanging the virtual photon, the cavities can indirectly interact in the far-detuning regime. Detailed protocols are presented to establish entanglement for two, three and arbitrary N magnons with reasonable fidelities.

Graphical abstract

Keywords

magnon / superconducting qubit / quantum electrodynamics / quantum entanglement / indirect interaction

Cite this article

Download citation ▾
Jiu-Ming Li, Shao-Ming Fei. Quantum entanglement generation on magnons assisted with microwave cavities coupled to a superconducting qubit. Front. Phys., 2023, 18(4): 41301 https://doi.org/10.1007/s11467-022-1253-3

References

[1]
A. Einstein , B. Podolsky , N. Rosen . Can quantum−mechanical description of physical reality be considered complete. Phys. Rev., 1935, 47(10): 777
CrossRef ADS Google scholar
[2]
D. Bouwmeester , J. W. Pan , M. Daniell , H. Weinfurter , A. Zeilinger . Observation of three-photon Greenberger−Horne−Zeilinger entanglement. Phys. Rev. Lett., 1999, 82(7): 1345
CrossRef ADS Google scholar
[3]
W. Dür , G. Vidal , J. I. Cirac . Three qubits can be entangled in two inequivalent ways. Phys. Rev. A, 2000, 62(6): 062314
CrossRef ADS Google scholar
[4]
R. Horodecki , P. Horodecki , M. Horodecki , K. Horodecki . Quantum entanglement. Rev. Mod. Phys., 2009, 81(2): 865
CrossRef ADS Google scholar
[5]
J. M. Raimond , M. Brune , S. Haroche . Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys., 2001, 73(3): 565
CrossRef ADS Google scholar
[6]
K. G. H. Vollbrecht , J. I. Cirac . Delocalized entanglement of atoms in optical lattices. Phys. Rev. Lett., 2007, 98(19): 190502
CrossRef ADS Google scholar
[7]
M. Bina , F. Casagrande , A. Lulli , E. Solano . Monitoring atom−atom entanglement and decoherence in a solvable tripartite open system in cavity QED. Phys. Rev. A, 2008, 77(3): 033839
CrossRef ADS Google scholar
[8]
J. León , C. Sabín . Photon exchange and correlation transfer in atom-atom entanglement dynamics. Phys. Rev. A, 2009, 79(1): 012301
CrossRef ADS Google scholar
[9]
W. A. Li , G. Y. Huang . Deterministic generation of a three-dimensional entangled state via quantum Zeno dynamics. Phys. Rev. A, 2011, 83(2): 022322
CrossRef ADS Google scholar
[10]
M. Roghani , H. Helm , H. P. Breuer . Entanglement dynamics of a strongly driven trapped atom. Phys. Rev. Lett., 2011, 106(4): 040502
CrossRef ADS Google scholar
[11]
R. Rogers , N. Cummings , L. M. Pedrotti , P. Rice . Atom-field entanglement in cavity QED: Nonlinearity and saturation. Phys. Rev. A, 2017, 96(5): 052311
CrossRef ADS Google scholar
[12]
H. Jo , Y. Song , M. Kim , J. Ahn . Rydberg atom entanglements in the weak coupling regime. Phys. Rev. Lett., 2020, 124(3): 033603
CrossRef ADS Google scholar
[13]
X. Y. Luo , Y. Yu , J. L. Liu , M. Y. Zheng , C. Y. Wang , B. Wang , J. Li , X. Jiang , X. P. Xie , Q. Zhang , X. H. Bao , J. W. Pan . Postselected entanglement between two atomic ensembles separated by 12.5 km. Phys. Rev. Lett., 2022, 129(5): 050503
CrossRef ADS Google scholar
[14]
Z. Jin , S. L. Su , A. D. Zhu , H. F. Wang , S. Zhang . Engineering multipartite steady entanglement of distant atoms via dissipation. Front. Phys., 2018, 13(5): 134209
CrossRef ADS Google scholar
[15]
S. Michalakis , B. Nachtergaele . Entanglement in finitely correlated spin states. Phys. Rev. Lett., 2006, 97(14): 140601
CrossRef ADS Google scholar
[16]
G. Tóth , C. Knapp , O. Gühne , H. J. Briegel . Spin squeezing and entanglement. Phys. Rev. A, 2009, 79(4): 042334
CrossRef ADS Google scholar
[17]
H. Zheng , H. T. Dung , M. Hillery . Application of entanglement conditions to spin systems. Phys. Rev. A, 2010, 81(6): 062311
CrossRef ADS Google scholar
[18]
F. Troiani , S. Carretta , P. Santini . Detection of entanglement between collective spins. Phys. Rev. B, 2013, 88(19): 195421
CrossRef ADS Google scholar
[19]
A. Ström , H. Johannesson , P. Recher . Controllable spin entanglement production in a quantum spin Hall ring. Phys. Rev. B, 2015, 91(24): 245406
CrossRef ADS Google scholar
[20]
J. C. Szabo , N. Trivedi . Entanglement dynamics between Ising spins and a central ancilla. Phys. Rev. A, 2022, 105(5): 052431
CrossRef ADS Google scholar
[21]
V. Azimi-Mousolou , A. Bergman , A. Delin , O. Eriksson , M. Pereiro , D. Thonig , E. Sjöqvist . Entanglement duality in spin−spin interactions. Phys. Rev. A, 2022, 106(3): 032407
CrossRef ADS Google scholar
[22]
A. Retzker , J. I. Cirac , B. Reznik . Detecting vacuum entanglement in a linear ion trap. Phys. Rev. Lett., 2005, 94(5): 050504
CrossRef ADS Google scholar
[23]
G. X. Li , S. P. Wu , G. M. Huang . Generation of entanglement and squeezing in the system of two ions trapped in a cavity. Phys. Rev. A, 2005, 71(6): 063817
CrossRef ADS Google scholar
[24]
F. L. Semião , K. Furuya . Entanglement in the dispersive interaction of trapped ions with a quantized field. Phys. Rev. A, 2007, 75(4): 042315
CrossRef ADS Google scholar
[25]
F. Nicacio , K. Furuya , F. L. Semião . Motional entanglement with trapped ions and a nanomechanical resonator. Phys. Rev. A, 2013, 88(2): 022330
CrossRef ADS Google scholar
[26]
C. D. B. Bentley , A. R. R. Carvalho , D. Kielpinski , J. J. Hope . Detection-enhanced steady state entanglement with ions. Phys. Rev. Lett., 2014, 113(4): 040501
CrossRef ADS Google scholar
[27]
K. Lake , S. Weidt , J. Randall , E. D. Standing , S. C. Webster , W. K. Hensinger . Generation of spin-motion entanglement in a trapped ion using long-wavelength radiation. Phys. Rev. A, 2015, 91(1): 012319
CrossRef ADS Google scholar
[28]
J. Hannegan , J. D. Siverns , J. Cassell , Q. Quraishi . Improving entanglement generation rates in trapped-ion quantum networks using nondestructive photon measurement and storage. Phys. Rev. A, 2021, 103(5): 052433
CrossRef ADS Google scholar
[29]
D. C. Cole , S. D. Erickson , G. Zarantonello , K. P. Horn , P. Y. Hou , J. J. Wu , D. H. Slichter , F. Reiter , C. P. Koch , D. Leibfried . Resource-efficient dissipative entanglement of two trapped-ion qubits. Phys. Rev. Lett., 2022, 128(8): 080502
CrossRef ADS Google scholar
[30]
H. S. Eisenberg , G. Khoury , G. A. Durkin , C. Simon , D. Bouwmeester . Quantum entanglement of a large number of photons. Phys. Rev. Lett., 2004, 93(19): 193901
CrossRef ADS Google scholar
[31]
J. O. S. Yin , S. J. van Enk . Entanglement and purity of one- and two-photon states. Phys. Rev. A, 2008, 77(6): 062333
CrossRef ADS Google scholar
[32]
D. Salart , O. Landry , N. Sangouard , N. Gisin , H. Herrmann , B. Sanguinetti , C. Simon , W. Sohler , R. T. Thew , A. Thomas , H. Zbinden . Purification of single-photon entanglement. Phys. Rev. Lett., 2010, 104(18): 180504
CrossRef ADS Google scholar
[33]
H. Wang , M. Mariantoni , R. C. Bialczak , M. Lenander , E. Lucero , M. Neeley , A. D. O’Connell , D. Sank , M. Weides , J. Wenner , T. Yamamoto , Y. Yin , J. Zhao , J. M. Martinis , A. N. Cleland , Martinis N. Cleland . Deterministic entanglement of photons in two superconducting microwave resonators. Phys. Rev. Lett., 2011, 106(6): 060401
CrossRef ADS Google scholar
[34]
X. L. Wang , L. K. Chen , W. Li , H. L. Huang , C. Liu , C. Chen , Y. H. Luo , Z. E. Su , D. Wu , Z. D. Li , H. Lu , Y. Hu , X. Jiang , C. Z. Peng , L. Li , N. L. Liu , Y. A. Chen , C. Y. Lu , J. W. Pan . Experimental ten-photon entanglement. Phys. Rev. Lett., 2016, 117(21): 210502
CrossRef ADS Google scholar
[35]
O. Kfir . Entanglements of electrons and cavity photons in the strong-coupling regime. Phys. Rev. Lett., 2019, 123(10): 103602
CrossRef ADS Google scholar
[36]
A. C. Dada , J. Kaniewski , C. Gawith , M. Lavery , R. H. Hadfield , D. Faccio , M. Clerici . Near-maximal two-photon entanglement for optical quantum communication at 2.1μm. Phys. Rev. Appl., 2021, 16(5): L051005
CrossRef ADS Google scholar
[37]
J. V. Rakonjac , D. Lago-Rivera , A. Seri , M. Mazzera , S. Grandi , H. de Riedmatten . Entanglement between a telecom photon and an on-demand multimode solid-state quantum memory. Phys. Rev. Lett., 2021, 127(21): 210502
CrossRef ADS Google scholar
[38]
H. Wang , B. C. Ren , A. H. Wang , A. Alsaedi , T. Hayat , F. G. Deng . General hyperentanglement concentration for polarization spatial-time-bin multi-photon systems with linear optics. Front. Phys., 2018, 13(5): 130315
CrossRef ADS Google scholar
[39]
T. Liu , Z. F. Zheng , Y. Zhang , Y. L. Fang , C. P. Yang . Transferring entangled states of photonic cat-state qubits in circuit QED. Front. Phys., 2020, 15(2): 21603
CrossRef ADS Google scholar
[40]
U. Akram , W. Munro , K. Nemoto , G. J. Milburn . Photon−phonon entanglement in coupled optomechanical arrays. Phys. Rev. A, 2012, 86(4): 042306
CrossRef ADS Google scholar
[41]
S. Finazzi , I. Carusotto . Entangled phonons in atomic Bose−Einstein condensates. Phys. Rev. A, 2014, 90(3): 033607
CrossRef ADS Google scholar
[42]
S. S. Chen , H. Zhang , Q. Ai , G. J. Yang . Phononic entanglement concentration via optomechanical interactions. Phys. Rev. A, 2019, 100(5): 052306
CrossRef ADS Google scholar
[43]
M. Di Tullio , N. Gigena , R. Rossignoli . Fermionic entanglement in superconducting systems. Phys. Rev. A, 2018, 97(6): 062109
CrossRef ADS Google scholar
[44]
M. Gong , M. C. Chen , Y. Zheng , S. Wang , C. Zha , H. Deng , Z. Yan , H. Rong , Y. Wu , S. Li , F. Chen , Y. Zhao , F. Liang , J. Lin , Y. Xu , C. Guo , L. Sun , A. D. Castellano , H. Wang , C. Peng , C. Y. Lu , X. Zhu , J. W. Pan . Genuine 12-qubit entanglement on a superconducting quantum processor. Phys. Rev. Lett., 2019, 122(11): 110501
CrossRef ADS Google scholar
[45]
W. Ning , X. J. Huang , P. R. Han , H. Li , H. Deng , Z. B. Yang , Z. R. Zhong , Y. Xia , K. Xu , D. Zheng , S. B. Zheng . Deterministic entanglement swapping in a superconducting circuit. Phys. Rev. Lett., 2019, 123(6): 060502
CrossRef ADS Google scholar
[46]
Y. Ma , X. Pan , W. Cai , X. Mu , Y. Xu , L. Hu , W. Wang , H. Wang , Y. P. Song , Z. B. Yang , S. B. Zheng , L. Sun . Manipulating complex hybrid entanglement and testing multipartite bell inequalities in a superconducting circuit. Phys. Rev. Lett., 2020, 125(18): 180503
CrossRef ADS Google scholar
[47]
S. Krastanov , H. Raniwala , J. Holzgrafe , K. Jacobs , M. Lončar , M. J. Reagor , D. R. Englund . Optically heralded entanglement of superconducting systems in quantum networks. Phys. Rev. Lett., 2021, 127(4): 040503
CrossRef ADS Google scholar
[48]
A. Cervera-Lierta , M. Krenn , A. Aspuru-Guzik , A. Galda . Experimental high-dimensional Greenberger−Horne−Zeilinger entanglement with superconducting transmon qutrits. Phys. Rev. Appl., 2022, 17(2): 024062
CrossRef ADS Google scholar
[49]
J. Li , S. Y. Zhu , G. S. Agarwal . Magnon−photon−phonon entanglement in cavity magnomechanics. Phys. Rev. Lett., 2018, 121(20): 203601
CrossRef ADS Google scholar
[50]
J. Li , S. Y. Zhu . Entangling two magnon modes via magnetostrictive interaction. New J. Phys., 2019, 21(8): 085001
CrossRef ADS Google scholar
[51]
H. Y. Yuan , S. Zheng , Z. Ficek , Q. Y. He , M. H. Yung . Enhancement of magnon-magnon entanglement inside a cavity. Phys. Rev. B, 2020, 101(1): 014419
CrossRef ADS Google scholar
[52]
D. Kong , X. Hu , L. Hu , J. Xu . Magnon−atom interaction via dispersive cavities: Magnon entanglement. Phys. Rev. B, 2021, 103(22): 224416
CrossRef ADS Google scholar
[53]
V. Azimi Mousolou , Y. Liu , A. Bergman , A. Delin , O. Eriksson , M. Pereiro , D. Thonig , E. Sjöqvist . Magnon−magnon entanglement and its quantification via a microwave cavity. Phys. Rev. B, 2021, 104(22): 224302
CrossRef ADS Google scholar
[54]
F. Wang , C. Gou , J. Xu , C. Gong . Hybrid magnonatom entanglement and magnon blockade via quantum interference. Phys. Rev. A, 2022, 106(1): 013705
CrossRef ADS Google scholar
[55]
S.-F. Qi , J. Jing . Generation of Bell and Greenberger-Horne-Zeilinger states from a hybrid qubit-photon-magnon system. Phys. Rev. A, 2022, 105: 022624
CrossRef ADS Google scholar
[56]
B. Rogers , M. Paternostro , G. M. Palma , G. De Chiara . Entanglement control in hybrid optomechanical systems. Phys. Rev. A, 2012, 86(4): 042323
CrossRef ADS Google scholar
[57]
M. Borrelli , M. Rossi , C. Macchiavello , S. Maniscalco . Witnessing entanglement in hybrid systems. Phys. Rev. A, 2014, 90: 020301(R)
CrossRef ADS Google scholar
[58]
C. Joshi , J. Larson , T. P. Spiller . Quantum state engineering in hybrid open quantum systems. Phys. Rev. A, 2016, 93(4): 043818
CrossRef ADS Google scholar
[59]
Q. Z. Ye , Z. T. Liang , W. X. Zhang , D. J. Pan , Z. Y. Xue , H. Yan . Speedup of entanglement generation in hybrid quantum systems through linear driving. Phys. Rev. A, 2022, 106(1): 012407
CrossRef ADS Google scholar
[60]
Z. L. Xiang , S. Ashhab , J. Q. You , F. Nori . Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems. Rev. Mod. Phys., 2013, 85(2): 623
CrossRef ADS Google scholar
[61]
A. Blais , R. S. Huang , A. Wallraff , S. M. Girvin , R. J. Schoelkopf . Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A, 2004, 69(6): 062320
CrossRef ADS Google scholar
[62]
J. Q. You , F. Nori . Superconducting circuits and quantum information. Phys. Today, 2005, 58(11): 42
CrossRef ADS Google scholar
[63]
A. Blais , A. L. Grimsmo , S. M. Girvin , A. Wallraff . Circuit quantum electrodynamics. Rev. Mod. Phys., 2021, 93(2): 025005
CrossRef ADS Google scholar
[64]
H. Y. Yuan , P. Yan , S. Zheng , Q. Y. He , K. Xia , M. H. Yung . Steady Bell state generation via magnon−photon coupling. Phys. Rev. Lett., 2020, 124(5): 053602
CrossRef ADS Google scholar
[65]
Y. Zhao , L. Wang , J. Xue , Q. Zhang , Y. Tian , S. Yan , L. Bai , M. Harder , Q. Guo , Y. Zhai . Measuring the magnon phase in a hybrid magnon−photon system. Phys. Rev. B, 2022, 105(17): 174405
CrossRef ADS Google scholar
[66]
X. Zhang , C. L. Zou , L. Jiang , H. Tang . Cavity magnomechanics. Sci. Adv., 2016, 2(3): e1501286
CrossRef ADS Google scholar
[67]
S. Streib , N. Vidal-Silva , K. Shen , G. E. W. Bauer . Magnon−phonon interactions in magnetic insulators. Phys. Rev. B, 2019, 99(18): 184442
CrossRef ADS Google scholar
[68]
M. Yu , H. Shen , J. Li . Magnetostrictively induced stationary entanglement between two microwave fields. Phys. Rev. Lett., 2020, 124(21): 213604
CrossRef ADS Google scholar
[69]
S. F. Qi , J. Jing . Magnon-assisted photon-phonon conversion in the presence of structured environments. Phys. Rev. A, 2021, 103(4): 043704
CrossRef ADS Google scholar
[70]
X. Zhang , C. L. Zou , L. Jiang , H. X. Tang . Strongly coupled magnons and cavity microwave photons. Phys. Rev. Lett., 2014, 113(15): 156401
CrossRef ADS Google scholar
[71]
Y. P. Wang , G. Q. Zhang , D. Zhang , X. Q. Luo , W. Xiong , S. P. Wang , T. F. Li , C. M. Hu , J. Q. You . Magnon Kerr effect in a strongly coupled cavity-magnon system. Phys. Rev. B, 2016, 94(22): 224410
CrossRef ADS Google scholar
[72]
Y. P. Wang , G. Q. Zhang , D. Zhang , T. F. Li , C. M. Hu , J. Q. You . Bistability of cavity magnon polaritons. Phys. Rev. Lett., 2018, 120(5): 057202
CrossRef ADS Google scholar
[73]
R. Hisatomi , A. Osada , Y. Tabuchi , T. Ishikawa , A. Noguchi , R. Yamazaki , K. Usami , Y. Nakamura . Bidirectional conversion between microwave and light via ferromagnetic magnons. Phys. Rev. B, 2016, 93(17): 174427
CrossRef ADS Google scholar
[74]
J. Li , S. Y. Zhu , G. S. Agarwal . Squeezed states of magnons and phonons in cavity magnomechanics. Phys. Rev. A, 2019, 99: 021801(R)
CrossRef ADS Google scholar
[75]
J. Zou , S. K. Kim , Y. Tserkovnyak . Tuning entanglement by squeezing magnons in anisotropic magnets. Phys. Rev. B, 2020, 101(1): 014416
CrossRef ADS Google scholar
[76]
V. A. S. V. Bittencourt , V. Feulner , S. V. Kusminskiy . Magnon heralding in cavity optomagnonics. Phys. Rev. A, 2019, 100(1): 013810
CrossRef ADS Google scholar
[77]
C. Kittel . On the theory of ferromagnetic resonance absorption. Phys. Rev., 1948, 73(2): 155
CrossRef ADS Google scholar
[78]
J. Chen , C. Liu , T. Liu , Y. Xiao , K. Xia , G. E. W. Bauer , M. Wu , H. Yu . Strong interlayer magnon-magnon coupling in magnetic metal-insulator hybrid nanostructures. Phys. Rev. Lett., 2018, 120(21): 217202
CrossRef ADS Google scholar
[79]
L. Liensberger , A. Kamra , H. Maier-Flaig , S. Geprägs , A. Erb , S. T. B. Goennenwein , R. Gross , W. Belzig , H. Huebl , M. Weiler . Exchange-enhanced ultrastrong magnon−magnon coupling in a compensated ferrimagnet. Phys. Rev. Lett., 2019, 123(11): 117204
CrossRef ADS Google scholar
[80]
Y. Li , V. G. Yefremenko , M. Lisovenko , C. Trevillian , T. Polakovic , T. W. Cecil , P. S. Barry , J. Pearson , R. Divan , V. Tyberkevych , C. L. Chang , U. Welp , W. K. Kwok , V. Novosad . Coherent coupling of two remote magnonic resonators mediated by superconducting circuits. Phys. Rev. Lett., 2022, 128(4): 047701
CrossRef ADS Google scholar
[81]
Y. Tabuchi , S. Ishino , A. Noguchi , T. Ishikawa , R. Yamazaki , K. Usami , Y. Nakamura . Coherent coupling between a ferromagnetic magnon and a superconducting qubit. Science, 2015, 349(6246): 405
CrossRef ADS Google scholar
[82]
D. Lachance-Quirion , S. P. Wolski , Y. Tabuchi , S. Kono , K. Usami , Y. Nakamura . Entanglement-based single shot detection of a single magnon with a superconducting qubit. Science, 2020, 367(6476): 425
CrossRef ADS Google scholar
[83]
J. K. Xie , S. L. Ma , F. L. Li . Quantum-interference enhanced magnon blockade in an yttrium-iron-garnet sphere coupled to superconducting circuits. Phys. Rev. A, 2020, 101(4): 042331
CrossRef ADS Google scholar
[84]
D. F. James , J. Jerke . Effective Hamiltonian theory and its applications in quantum information. Can. J. Phys., 2007, 85(6): 625
CrossRef ADS Google scholar
[85]
I. Buluta , F. Nori . Quantum simulators. Science, 2009, 326(5949): 108
CrossRef ADS Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 12075159 and 12171044, Beijing Natural Science Foundation (Grant No. Z190005), and the Academician Innovation Platform of Hainan Province.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(4130 KB)

Accesses

Citations

Detail

Sections
Recommended

/