Categorical computation

Liang Kong, Hao Zheng

PDF(3624 KB)
PDF(3624 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (2) : 21302. DOI: 10.1007/s11467-022-1251-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Categorical computation

Author information +
History +

Abstract

In quantum computing, the computation is achieved by linear operators in or between Hilbert spaces. In this work, we explore a new computation scheme, in which the linear operators in quantum computing are replaced by (higher) functors between two (higher) categories. If from Turing computing to quantum computing is the first quantization of computation, then this new scheme can be viewed as the second quantization of computation. The fundamental problem in realizing this idea is how to realize a (higher) functor physically. We provide a theoretical idea of realizing (higher) functors physically based on the physics of topological orders.

Graphical abstract

Keywords

quantum computation / categorical computation / topological order

Cite this article

Download citation ▾
Liang Kong, Hao Zheng. Categorical computation. Front. Phys., 2023, 18(2): 21302 https://doi.org/10.1007/s11467-022-1251-5

References

[1]
L. Crane, I. B. Frenkel, Four dimensional topological quantum field theory. Hopf categories, and the canonical bases. J. Math. Phys., 1994, 35(10): 5136
CrossRef ADS Google scholar
[2]
C. Weibel, The K-book: An introduction to algebraic K-theory, Graduate Studies in Math. Vol. 145, AMS, 2013
[3]
T. Johnson-Freyd. On the classification of topological orders. Commun. Math. Phys., 2022, 393(2): 989
CrossRef ADS Google scholar
[4]
L.KongH. Zheng, Categories of quantum liquids I, J. High Energy Phys. 2022, 70 (2022), arXiv: 2011.02859
[5]
X. G. Wen. Choreographed entanglement dances: Topological states of quantum matter. Science, 2019, 363(6429): eaal3099
CrossRef ADS Google scholar
[6]
L.KongX. G. WenH.Zheng, Boundary-bulk relation for topological orders as the functor mapping higher categories to their centers, arXiv: 1502.01690 (2015)
[7]
L. Kong, X. G. Wen, H. Zheng. Boundary-bulk relation in topological orders. Nucl. Phys. B, 2017, 922: 62
CrossRef ADS Google scholar
[8]
P.EtingofS. GelakiD.NikshychV.Ostrik, Tensor Categories, American Mathematical Society, Providence, RI, 2015
[9]
V.G. Turaev, Quantum Invariant of Knots and 3-Manifolds, de Gruyter Studies in Mathematics, Vol. 18, Walter de Gruyter, Berlin, 1994
[10]
Y. Ai, L. Kong, H. Zheng. Topological orders and factorization homology. Adv. Theor. Math. Phys., 2017, 21(8): 1845
CrossRef ADS Google scholar
[11]
L.KongZ. H. Zhang, An invitation to topological orders and category theory, arXiv: 2205.05565 (2022)
[12]
C.L. DouglasD.J. Reutter, Fusion 2-categories and a state-sum invariant for 4-manifolds, arXiv: 1812.11933 (2018)
[13]
D.GaiottoT. Johnson-Freyd, Condensations in higher categories, arXiv: 1905.09566 (2019)
[14]
L.KongY. TianZ.H. Zhang, Defects in the 3-dimensional toric code model form a braided fusion 2-category, J. High Energy Phys. 2020, 78 (2020), arXiv: 2009.06564
[15]
L. Kong, H. Zheng. The center functor is fully faithful. Adv. Math., 2018, 339: 749
CrossRef ADS Google scholar
[16]
L.KongH. Zheng, Categories of quantum liquids II, arXiv: 2107.03858 (2021)
[17]
A. Y. Kitaev. Fault-tolerant quantum computation by anyons. Ann. Phys., 2003, 303(1): 2
CrossRef ADS Google scholar
[18]
M.Freedman, P/NP and the quantum field computer, Proc. Natl. Acad. Sci. USA 95(1), 98 (1998)
[19]
Z.Wang, Topological Quantum Computation, CBMS Regional Conference Series in Mathematics Publication, Vol. 112, 2010
[20]
K. J. Satzinger, Y. J. Liu, A. Smith, C. Knapp. . Realizing topologically ordered states on a quantum processor. Science, 2021, 374(6572): 1237
CrossRef ADS Google scholar
[21]
G. Semeghini, H. Levine, A. Keesling, S. Ebadi, T. T. Wang, D. Bluvstein, R. Verresen, H. Pichler, M. Kalinowski, R. Samajdar, A. Omran, S. Sachdev, A. Vishwanath, M. Greiner, V. Vuletic, M. D. Lukin. Probing topological spin liquids on a programmable quantum simulator. Science, 2021, 374(6572): 1242
CrossRef ADS Google scholar
[22]
A. Kitaev, L. Kong. Models for gapped boundaries and domain walls. Commun. Math. Phys., 2012, 313(2): 351
CrossRef ADS Google scholar
[23]
J. Nakamura, S. Liang, G. C. Gardner, M. J. Manfra. Direct observation of anyonic braiding statistics. Nat. Phys., 2020, 16(9): 931
CrossRef ADS Google scholar

Acknowledgements

We thank Zheng-Wei Liu, Ce Shen, Xiao-Ming Sun, Zhong Wang and Bo Yang for comments. We are supported by Guangdong Provincial Key Laboratory (Grant No. 2019B121203002). L.K. is also supported by the National Natural Science Foundation of China under Grant No. 11971219 and Guangdong Basic and Applied Basic Research Foundation under Grant No. 2020B1515120100. H.Z. is also supported by the National Natural Science Foundation of China under Grant No. 11871078.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(3624 KB)

Accesses

Citations

Detail

Sections
Recommended

/