Categorical computation
Liang Kong, Hao Zheng
Categorical computation
In quantum computing, the computation is achieved by linear operators in or between Hilbert spaces. In this work, we explore a new computation scheme, in which the linear operators in quantum computing are replaced by (higher) functors between two (higher) categories. If from Turing computing to quantum computing is the first quantization of computation, then this new scheme can be viewed as the second quantization of computation. The fundamental problem in realizing this idea is how to realize a (higher) functor physically. We provide a theoretical idea of realizing (higher) functors physically based on the physics of topological orders.
quantum computation / categorical computation / topological order
[1] |
L. Crane, I. B. Frenkel, Four dimensional topological quantum field theory. Hopf categories, and the canonical bases. J. Math. Phys., 1994, 35(10): 5136
CrossRef
ADS
Google scholar
|
[2] |
C
|
[3] |
T. Johnson-Freyd. On the classification of topological orders. Commun. Math. Phys., 2022, 393(2): 989
CrossRef
ADS
Google scholar
|
[4] |
L.KongH. Zheng, Categories of quantum liquids I, J. High Energy Phys. 2022, 70 (2022), arXiv: 2011.02859
|
[5] |
X. G. Wen. Choreographed entanglement dances: Topological states of quantum matter. Science, 2019, 363(6429): eaal3099
CrossRef
ADS
Google scholar
|
[6] |
L.KongX. G. WenH.Zheng, Boundary-bulk relation for topological orders as the functor mapping higher categories to their centers, arXiv: 1502.01690 (2015)
|
[7] |
L. Kong, X. G. Wen, H. Zheng. Boundary-bulk relation in topological orders. Nucl. Phys. B, 2017, 922: 62
CrossRef
ADS
Google scholar
|
[8] |
P.EtingofS. GelakiD.NikshychV.Ostrik, Tensor Categories, American Mathematical Society, Providence, RI, 2015
|
[9] |
V.G. Turaev, Quantum Invariant of Knots and 3-Manifolds, de Gruyter Studies in Mathematics, Vol. 18, Walter de Gruyter, Berlin, 1994
|
[10] |
Y. Ai, L. Kong, H. Zheng. Topological orders and factorization homology. Adv. Theor. Math. Phys., 2017, 21(8): 1845
CrossRef
ADS
Google scholar
|
[11] |
L.KongZ. H. Zhang, An invitation to topological orders and category theory, arXiv: 2205.05565 (2022)
|
[12] |
C.L. DouglasD.J. Reutter, Fusion 2-categories and a state-sum invariant for 4-manifolds, arXiv: 1812.11933 (2018)
|
[13] |
D.GaiottoT. Johnson-Freyd, Condensations in higher categories, arXiv: 1905.09566 (2019)
|
[14] |
L.KongY. TianZ.H. Zhang, Defects in the 3-dimensional toric code model form a braided fusion 2-category, J. High Energy Phys. 2020, 78 (2020), arXiv: 2009.06564
|
[15] |
L. Kong, H. Zheng. The center functor is fully faithful. Adv. Math., 2018, 339: 749
CrossRef
ADS
Google scholar
|
[16] |
L.KongH. Zheng, Categories of quantum liquids II, arXiv: 2107.03858 (2021)
|
[17] |
A. Y. Kitaev. Fault-tolerant quantum computation by anyons. Ann. Phys., 2003, 303(1): 2
CrossRef
ADS
Google scholar
|
[18] |
M.Freedman, P/NP and the quantum field computer, Proc. Natl. Acad. Sci. USA 95(1), 98 (1998)
|
[19] |
Z.Wang, Topological Quantum Computation, CBMS Regional Conference Series in Mathematics Publication, Vol. 112, 2010
|
[20] |
K. J. Satzinger, Y. J. Liu, A. Smith, C. Knapp.
CrossRef
ADS
Google scholar
|
[21] |
G. Semeghini, H. Levine, A. Keesling, S. Ebadi, T. T. Wang, D. Bluvstein, R. Verresen, H. Pichler, M. Kalinowski, R. Samajdar, A. Omran, S. Sachdev, A. Vishwanath, M. Greiner, V. Vuletic, M. D. Lukin. Probing topological spin liquids on a programmable quantum simulator. Science, 2021, 374(6572): 1242
CrossRef
ADS
Google scholar
|
[22] |
A. Kitaev, L. Kong. Models for gapped boundaries and domain walls. Commun. Math. Phys., 2012, 313(2): 351
CrossRef
ADS
Google scholar
|
[23] |
J. Nakamura, S. Liang, G. C. Gardner, M. J. Manfra. Direct observation of anyonic braiding statistics. Nat. Phys., 2020, 16(9): 931
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |