Intrinsic magnetic topological materials
Yuan Wang, Fayuan Zhang, Meng Zeng, Hongyi Sun, Zhanyang Hao, Yongqing Cai, Hongtao Rong, Chengcheng Zhang, Cai Liu, Xiaoming Ma, Le Wang, Shu Guo, Junhao Lin, Qihang Liu, Chang Liu, Chaoyu Chen
Intrinsic magnetic topological materials
Topological states of matter possess bulk electronic structures categorized by topological invariants and edge/surface states due to the bulk-boundary correspondence. Topological materials hold great potential in the development of dissipationless spintronics, information storage and quantum computation, particularly if combined with magnetic order intrinsically or extrinsically. Here, we review the recent progress in the exploration of intrinsic magnetic topological materials, including but not limited to magnetic topological insulators, magnetic topological metals, and magnetic Weyl semimetals. We pay special attention to their characteristic band features such as the gap of topological surface state, gapped Dirac cone induced by magnetization (either bulk or surface), Weyl nodal point/line and Fermi arc, as well as the exotic transport responses resulting from such band features. We conclude with a brief envision for experimental explorations of new physics or effects by incorporating other orders in intrinsic magnetic topological materials.
intrinsic magnetic topological insulator / magnetic topological metals / magnetic Weyl semimetal / topological surface states / magnetic gap
[1] |
C. L. Kane, E. J. Mele. Z2 topological order and the quantum spin Hall effect.Phys. Rev. Lett., 2005, 95(14): 146802
CrossRef
ADS
Google scholar
|
[2] |
L. Fu, C. L. Kane. Topological insulators with inversion symmetry.Phys. Rev. B, 2007, 76(4): 045302
CrossRef
ADS
Google scholar
|
[3] |
L. Fu, C. L. Kane, E. J. Mele. Topological insulators in three dimensions.Phys. Rev. Lett., 2007, 98: 106803
CrossRef
ADS
Google scholar
|
[4] |
J. E. Moore, L. Balents. Topological invariants of time-reversal-invariant band structures.Phys. Rev. B, 2007, 75(12): 121306
CrossRef
ADS
Google scholar
|
[5] |
H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, S. C. Zhang, Topological insulators in Bi2Se3. Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface.Nat. Phys., 2009, 5(6): 438
CrossRef
ADS
Google scholar
|
[6] |
B. A. Bernevig, T. L. Hughes, S. C. Zhang. Quantum spin Hall effect and topological phase transition in HgTe quantum wells.Science, 2006, 314(5806): 1757
CrossRef
ADS
Google scholar
|
[7] |
M. König, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, S. C. Zhang. Quantum spin hall insulator state in HgTe quantum wells.Science, 2007, 318(5851): 766
CrossRef
ADS
Google scholar
|
[8] |
D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, M. Z. Hasan. A topological Dirac insulator in a quantum spin Hall phase.Nature, 2008, 452(7190): 970
CrossRef
ADS
Google scholar
|
[9] |
Y. L. Chen, J. G. Analytis, J. H. Chu, Z. K. Liu, S. K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, Z. X. Shen, Experimental realization of a three-dimensional topological insulator. Bi2Te3.Science, 2009, 325(5937): 178
CrossRef
ADS
Google scholar
|
[10] |
D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, M. Z. Hasan. A tunable topological insulator in the spin helical Dirac transport regime.Nature, 2009, 460(7259): 1101
CrossRef
ADS
Google scholar
|
[11] |
Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, M. Z. Hasan. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface.Nat. Phys., 2009, 5(6): 398
CrossRef
ADS
Google scholar
|
[12] |
T. Valla, Z. H. Pan, D. Gardner, Y. S. Lee, S. Chu. Photoemission spectroscopy of magnetic and nonmagnetic impurities on the surface of the Bi2Se3 topological insulator.Phys. Rev. Lett., 2012, 108(11): 117601
CrossRef
ADS
Google scholar
|
[13] |
C. Chen, S. He, H. Weng, W. Zhang, L. Zhao, H. Liu, X. Jia, D. Mou, S. Liu, J. He, Y. Peng, Y. Feng, Z. Xie, G. Liu, X. Dong, J. Zhang, X. Wang, Q. Peng, Z. Wang, S. Zhang, F. Yang, C. Chen, Z. Xu, X. Dai, Z. Fang, X. J. Zhou. Robustness of topological order and formation of quantum well states in topological insulators exposed to ambient environment.Proc. Natl. Acad. Sci. USA, 2012, 109(10): 3694
CrossRef
ADS
Google scholar
|
[14] |
L. A. Wray, S. Y. Xu, Y. Xia, D. Hsieh, A. V. Fedorov, Y. S. Hor, R. J. Cava, A. Bansil, H. Lin, M. Z. Hasan. A topological insulator surface under strong Coulomb, magnetic and disorder perturbations.Nat. Phys., 2011, 7: 32
CrossRef
ADS
Google scholar
|
[15] |
C. Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Wang, L. Lu, X. C. Ma, Q. K. Xue. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator.Science, 2013, 340(6129): 167
CrossRef
ADS
Google scholar
|
[16] |
R. Yu, W. Zhang, H. J. Zhang, S. C. Zhang, X. Dai, Z. Fang. Quantized anomalous Hall effect in magnetic topological insulators.Science, 2010, 329(5987): 61
CrossRef
ADS
Google scholar
|
[17] |
N. P. Armitage, E. J. Mele, A. Vishwanath. Weyl and Dirac semimetals in three-dimensional solids.Rev. Mod. Phys., 2018, 90(1): 015001
CrossRef
ADS
Google scholar
|
[18] |
A. A. Burkov, L. Balents. Weyl semimetal in a topological insulator multilayer.Phys. Rev. Lett., 2011, 107(12): 127205
CrossRef
ADS
Google scholar
|
[19] |
A. A. Burkov, M. D. Hook, L. Balents. Topological nodal semimetals.Phys. Rev. B, 2011, 84(23): 235126
CrossRef
ADS
Google scholar
|
[20] |
X. G. Wan, A. M. Turner, A. Vishwanath, S. Y. Savrasov. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates.Phys. Rev. B, 2011, 83(20): 205101
CrossRef
ADS
Google scholar
|
[21] |
Z. Wang, Y. Sun, X. Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, Z. Fang, Dirac semimetal,topological phase transitions in A3Bi (A=Na.Rb).Phys. Rev. B, 2012, 85(19): 195320
CrossRef
ADS
Google scholar
|
[22] |
S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, A. M. Rappe. Dirac semimetal in three dimensions.Phys. Rev. Lett., 2012, 108(14): 140405
CrossRef
ADS
Google scholar
|
[23] |
Z. J. Wang, H. M. Weng, Q. S. Wu, X. Dai, Z. Fang. Three-dimensional Dirac semimetal and quantum transport in Cd3As2.Phys. Rev. B, 2013, 88(12): 125427
CrossRef
ADS
Google scholar
|
[24] |
W. Ning, Z. Mao. Recent advancements in the study of intrinsic magnetic topological insulators and magnetic Weyl semimetals.APL Mater., 2020, 8(9): 090701
CrossRef
ADS
Google scholar
|
[25] |
M. Z. Hasan, G. Chang, I. Belopolski, G. Bian, S. Y. Xu, J. X. Yin. Dirac and high-fold chiral fermions in topological quantum matter.Nat. Rev. Mater., 2021, 6(9): 784
CrossRef
ADS
Google scholar
|
[26] |
B. A. Bernevig, C. Felser, H. Beidenkopf. Progress and prospects in magnetic topological materials.Nature, 2022, 603(7899): 41
CrossRef
ADS
Google scholar
|
[27] |
F. Tang, H. C. Po, A. Vishwanath, X. Wan. Comprehensive search for topological materials using symmetry indicators.Nature, 2019, 566(7745): 486
CrossRef
ADS
Google scholar
|
[28] |
M. G. Vergniory, L. Elcoro, C. Felser, N. Regnault, B. A. Bernevig, Z. Wang. A complete catalogue of high-quality topological materials.Nature, 2019, 566(7745): 480
CrossRef
ADS
Google scholar
|
[29] |
T. Zhang, Y. Jiang, Z. Song, H. Huang, Y. He, Z. Fang, H. Weng, C. Fang. Catalogue of topological electronic materials.Nature, 2019, 566(7745): 475
CrossRef
ADS
Google scholar
|
[30] |
C. Liu, X. R. Liu. Angle resolved photoemission spectroscopy studies on three dimensional strong topological insulators and magnetic topological insulators.Acta Phys. Sin., 2019, 68(22): 227901
CrossRef
ADS
Google scholar
|
[31] |
Y. Ando. Topological insulator materials.J. Phys. Soc. Jpn., 2013, 82(10): 102001
CrossRef
ADS
Google scholar
|
[32] |
J. A. Sobota, Y. He, Z. X. Shen. Angle-resolved photoemission studies of quantum materials.Rev. Mod. Phys., 2021, 93(2): 025006
CrossRef
ADS
Google scholar
|
[33] |
Y.Wang, On the topological surface states of the intrinsic magnetic topological insulator Mn−Bi−Te family, arXiv: 2211.04017 (2022)
|
[34] |
Y. Zhao, Q. Liu. Routes to realize the axion-insulator phase in MnBi2Te4(Bi2Te3)n family.Appl. Phys. Lett., 2021, 119(6): 060502
CrossRef
ADS
Google scholar
|
[35] |
P. Wang, J. Ge, J. Li, Y. Liu, Y. Xu, J. Wang. Intrinsic magnetic topological insulators.Innovation, 2021, 2(2): 100098
CrossRef
ADS
Google scholar
|
[36] |
Y. Li, Y. Xu. First-principles discovery of novel quantum physics and materials: From theory to experiment.Comput. Mater. Sci., 2021, 190: 110262
CrossRef
ADS
Google scholar
|
[37] |
C.Y. Chen, Surface state energy gap of magnetic origin and “semi magnetic topological insulator”, Physics 50, 267 (2021) (in Chinese)
|
[38] |
K. He. MnBi2Te4-family intrinsic magnetic topological materials.npj Quantum Mater., 2020, 5: 90
CrossRef
ADS
Google scholar
|
[39] |
G. H. Zhan, H. Q Wang, H. J. Zhang. Antiferromagnetic topological insulators and axion insulators — MnBi2Te4 family magnetic systems.Physics, 2020, 49(12): 817
CrossRef
ADS
Google scholar
|
[40] |
T. Kida, L. A. Fenner, A. A. Dee, I. Terasaki, M. Hagiwara, A. S. Wills. The giant anomalous Hall effect in the ferromagnet Fe3Sn2 — a frustrated Kagomé metal.J. Phys.: Condens. Matter, 2011, 23(11): 112205
CrossRef
ADS
Google scholar
|
[41] |
F. D. M. Haldane. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”.Phys. Rev. Lett., 1988, 61(18): 2015
CrossRef
ADS
Google scholar
|
[42] |
P. Y. Chang, O. Erten, P. Coleman. Möbius Kondo insulators.Nat. Phys., 2017, 13(8): 794
CrossRef
ADS
Google scholar
|
[43] |
K. Shiozaki, M. Sato, K. Gomi. Z2 topology in nonsymmorphic crystalline insulators: Möbius twist in surface states.Phys. Rev. B, 2015, 91(15): 155120
CrossRef
ADS
Google scholar
|
[44] |
R. X. Zhang, F. Wu, S. Das Sarma. Mobius insulator and higher-order topology in MnBi2nTe3n+1.Phys. Rev. Lett., 2020, 124(13): 136407
CrossRef
ADS
Google scholar
|
[45] |
C. Liu, Y. Wang, H. Li, Y. Wu, Y. Li, J. Li, K. He, Y. Xu, J. Zhang, Y. Wang. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator.Nat. Mater., 2020, 19(5): 522
CrossRef
ADS
Google scholar
|
[46] |
C. Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Wang, L. Lu, X. C. Ma, Q. K. Xue. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator.Science, 2013, 340(6129): 167
CrossRef
ADS
Google scholar
|
[47] |
L. Wu, M. Salehi, N. Koirala, J. Moon, S. Oh, N. P. Armitage. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator.Science, 2016, 354(6316): 1124
CrossRef
ADS
Google scholar
|
[48] |
E. Liu, Y. Sun, N. Kumar, L. Muechler, A. Sun, L. Jiao, S. Y. Yang, D. Liu, A. Liang, Q. Xu, J. Kroder, V. Süß, H. Borrmann, C. Shekhar, Z. Wang, C. Xi, W. Wang, W. Schnelle, S. Wirth, Y. Chen, S. T. B. Goennenwein, C. Felser. Giant anomalous Hall effect in a ferromagnetic Kagomé-lattice semimetal.Nat. Phys., 2018, 14(11): 1125
CrossRef
ADS
Google scholar
|
[49] |
C. L. Zhang, S. Y. Xu, I. Belopolski, Z. Yuan, Z. Lin, B. Tong, G. Bian, N. Alidoust, C. C. Lee, S. M. Huang, T. R. Chang, G. Chang, C. H. Hsu, H. T. Jeng, M. Neupane, D. S. Sanchez, H. Zheng, J. Wang, H. Lin, C. Zhang, H. Z. Lu, S. Q. Shen, T. Neupert, M. Zahid Hasan, S. Jia. Signatures of the Adler−Bell−Jackiw chiral anomaly in a Weyl fermion semimetal.Nat. Commun., 2016, 7(1): 10735
CrossRef
ADS
Google scholar
|
[50] |
S. N. Guin, P. Vir, Y. Zhang, N. Kumar, S. J. Watzman, C. Fu, E. Liu, K. Manna, W. Schnelle, J. Gooth, C. Shekhar, Y. Sun, C. Felser. Zero-field Nernst effect in a ferromagnetic Kagomé-lattice Weyl-semimetal Co3Sn2S2.Adv. Mater., 2019, 31(25): 1806622
CrossRef
ADS
Google scholar
|
[51] |
E. K. Liu, S. Zhang. Topologically enhanced zero-field transverse Nernst thermoelectric effect in magnetic topological semimetals.Sci. China Phys. Mech. &Astron., 2019, 49(12): 127001
CrossRef
ADS
Google scholar
|
[52] |
R. S. K. Mong, A. M. Essin, J. E. Moore. Antiferromagnetic topological insulators.Phys. Rev. B, 2010, 81(24): 245209
CrossRef
ADS
Google scholar
|
[53] |
M. M. Otrokov, T. V. Menshchikova, M. G. Vergniory, I. P. Rusinov, A. Yu Vyazovskaya, Y. M. Koroteev, G. Bihlmayer, A. Ernst, P. M. Echenique, A. Arnau, E. V. Chulkov. Highly-ordered wide bandgap materials for quantized anomalous Hall and magnetoelectric effects.2D Mater., 2017, 4: 025082
CrossRef
ADS
Google scholar
|
[54] |
M. M. Otrokov, T. V. Menshchikova, I. P. Rusinov, M. G. Vergniory, V. M. Kuznetsov, E. V. Chulkov. Magnetic extension as an efficient method for realizing the quantum anomalous hall state in topological insulators.JETP Lett., 2017, 105(5): 297
CrossRef
ADS
Google scholar
|
[55] |
Y. Gong, J. Guo, J. Li, K. Zhu, M. Liao, X. Liu, Q. Zhang, L. Gu, L. Tang, X. Feng, D. Zhang, W. Li, C. Song, L. Wang, P. Yu, X. Chen, Y. Wang, H. Yao, W. Duan, Y. Xu, S. C. Zhang, X. Ma, Q. K. Xue, K. He. Experimental realization of an intrinsic magnetic topological insulator.Chin. Phys. Lett., 2019, 36(7): 076801
CrossRef
ADS
Google scholar
|
[56] |
D. Zhang, M. Shi, T. Zhu, D. Xing, H. Zhang, J. Wang. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect.Phys. Rev. Lett., 2019, 122(20): 206401
CrossRef
ADS
Google scholar
|
[57] |
M. M. Otrokov, I. P. Rusinov, M. Blanco-Rey, M. Hoffmann, A. Y. Vyazovskaya, S. V. Eremeev, A. Ernst, P. M. Echenique, A. Arnau, E. V. Chulkov. Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 films.Phys. Rev. Lett., 2019, 122(10): 107202
CrossRef
ADS
Google scholar
|
[58] |
J. Li, Y. Li, S. Du, Z. Wang, B. L. Gu, S. C. Zhang, K. He, W. Duan, Y. Xu. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials.Sci. Adv., 2019, 5(6): eaaw5685
CrossRef
ADS
Google scholar
|
[59] |
M. M. Otrokov, I. I. Klimovskikh, H. Bentmann, D. Estyunin, A. Zeugner, Z. S. Aliev, S. Gaß, A. U. B. Wolter, A. V. Koroleva, A. M. Shikin, M. Blanco-Rey, M. Hoffmann, I. P. Rusinov, A. Y. Vyazovskaya, S. V. Eremeev, Y. M. Koroteev, V. M. Kuznetsov, F. Freyse, J. Sánchez-Barriga, I. R. Amiraslanov, M. B. Babanly, N. T. Mamedov, N. A. Abdullayev, V. N. Zverev, A. Alfonsov, V. Kataev, B. Büchner, E. F. Schwier, S. Kumar, A. Kimura, L. Petaccia, G. Di Santo, R. C. Vidal, S. Schatz, K. Kißner, M. Ünzelmann, C. H. Min, S. Moser, T. R. F. Peixoto, F. Reinert, A. Ernst, P. M. Echenique, A. Isaeva, E. V. Chulkov. Prediction and observation of an antiferromagnetic topological insulator.Nature, 2019, 576(7787): 416
CrossRef
ADS
Google scholar
|
[60] |
Z. S. Aliev, I. R. Amiraslanov, D. I. Nasonova, A. V. Shevelkov, N. A. Abdullayev, Z. A. Jahangirli, E. N. Orujlu, M. M. Otrokov, N. T. Mamedov, M. B. Babanly, E. V. Chulkov. Novel ternary layered manganese bismuth tellurides of the MnTe−Bi2Te3 system: Synthesis and crystal structure.J. Alloys Compd., 2019, 789: 443
CrossRef
ADS
Google scholar
|
[61] |
J. Wu, F. Liu, C. Liu, Y. Wang, C. Li, Y. Lu, S. Matsuishi, H. Hosono. Toward 2D magnets in the (MnBi2Te4)(Bi2Te3)n bulk crystal.Adv. Mater., 2020, 32(23): e2001815
CrossRef
ADS
Google scholar
|
[62] |
D. Souchay, M. Nentwig, D. Günther, S. Keilholz, J. de Boor, A. Zeugner, A. Isaeva, M. Ruck, A. U. B. Wolter, B. Büchner, O. Oeckler. Layered manganese bismuth tellurides with GeBi4Te7- and GeBi6Te10-type structures: Towards multifunctional materials.J. Mater. Chem. C, 2019, 7(32): 9939
CrossRef
ADS
Google scholar
|
[63] |
D. S. Lee, T. H. Kim, C. H. Park, C. Y. Chung, Y. S. Lim, W. S. Seo, H. H. Park, Crystal structure, properties of a new layered chalcogenide semiconductor. Bi2MnTe4.CrystEngComm, 2013, 15(27): 5532
CrossRef
ADS
Google scholar
|
[64] |
T. Hirahara, S. V. Eremeev, T. Shirasawa, Y. Okuyama, T. Kubo, R. Nakanishi, R. Akiyama, A. Takayama, T. Hajiri, S. I. Ideta, M. Matsunami, K. Sumida, K. Miyamoto, Y. Takagi, K. Tanaka, T. Okuda, T. Yokoyama, S. I. Kimura, S. Hasegawa, E. V. Chulkov. Large-gap magnetic topological heterostructure formed by subsurface incorporation of a ferromagnetic layer.Nano Lett., 2017, 17(6): 3493
CrossRef
ADS
Google scholar
|
[65] |
J. A. Hagmann, X. Li, S. Chowdhury, S. N. Dong, S. Rouvimov, S. J. Pookpanratana, K. Man Yu, T. A. Orlova, T. B. Bolin, C. U. Segre, D. G. Seiler, C. A. Richter, X. Liu, M. Dobrowolska, J. K. Furdyna. Molecular beam epitaxy growth and structure of self-assembled Bi2Se3/Bi2MnSe4 multilayer heterostructures.New J. Phys., 2017, 19(8): 085002
CrossRef
ADS
Google scholar
|
[66] |
L. Ding, C. Hu, F. Ye, E. Feng, N. Ni, H. Cao. Crystal and magnetic structures of magnetic topological insulators MnBi2Te4 and MnBi4Te7.Phys. Rev. B, 2020, 101(2): 020412
CrossRef
ADS
Google scholar
|
[67] |
J. Q. Yan, Q. Zhang, T. Heitmann, Z. Huang, K. Y. Chen, J. G. Cheng, W. Wu, D. Vaknin, B. C. Sales, R. J. McQueeney. Crystal growth and magnetic structure of MnBi2Te4.Phys. Rev. Mater., 2019, 3(6): 064202
CrossRef
ADS
Google scholar
|
[68] |
M. Z. Shi, B. Lei, C. S. Zhu, D. H. Ma, J. H. Cui, Z. L. Sun, J. J. Ying, X. H. Chen. Magnetic and transport properties in the magnetic topological insulators MnBi2Te4(Bi2Te3)n (n=1, 2).Phys. Rev. B, 2019, 100(15): 155144
CrossRef
ADS
Google scholar
|
[69] |
Y. J. Hao, P. Liu, Y. Feng, X. M. Ma, E. F. Schwier, M. Arita, S. Kumar, C. Hu, R. Lu, M. Zeng, Y. Wang, Z. Hao, H. Y. Sun, K. Zhang, J. Mei, N. Ni, L. Wu, K. Shimada, C. Chen, Q. Liu, C. Liu. Gapless surface Dirac cone in antiferromagnetic topological insulator MnBi2Te4.Phys. Rev. X, 2019, 9: 041038
CrossRef
ADS
Google scholar
|
[70] |
C. Hu, K. N. Gordon, P. Liu, J. Liu, X. Zhou, P. Hao, D. Narayan, E. Emmanouilidou, H. Sun, Y. Liu, H. Brawer, A. P. Ramirez, L. Ding, H. Cao, Q. Liu, D. Dessau, N. Ni. A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling.Nat. Commun., 2020, 11(1): 97
CrossRef
ADS
Google scholar
|
[71] |
X. M. Ma, Z. Chen, E. F. Schwier, Y. Zhang, Y. J. Hao, S. Kumar, R. Lu, J. Shao, Y. Jin, M. Zeng, X. R. Liu, Z. Hao, K. Zhang, W. Mansuer, C. Song, Y. Wang, B. Zhao, C. Liu, K. Deng, J. Mei, K. Shimada, Y. Zhao, X. Zhou, B. Shen, W. Huang, C. Liu, H. Xu, C. Chen. Hybridization-induced gapped and gapless states on the surface of magnetic topological insulators.Phys. Rev. B, 2020, 102(24): 245136
CrossRef
ADS
Google scholar
|
[72] |
R. Lu, H. Sun, S. Kumar, Y. Wang, M. Gu, M. Zeng, Y. J. Hao, J. Li, J. Shao, X. M. Ma, Z. Hao, K. Zhang, W. Mansuer, J. Mei, Y. Zhao, C. Liu, K. Deng, W. Huang, B. Shen, K. Shimada, E. F. Schwier, C. Liu, Q. Liu, C. Chen. Half-magnetic topological insulator with magnetization-induced Dirac gap at a selected surface.Phys. Rev. X, 2021, 11(1): 011039
CrossRef
ADS
Google scholar
|
[73] |
Y. J. Chen, L. X. Xu, J. H. Li, Y. W. Li, H. Y. Wang, C. F. Zhang, H. Li, Y. Wu, A. J. Liang, C. Chen, S. W. Jung, C. Cacho, Y. H. Mao, S. Liu, M. X. Wang, Y. F. Guo, Y. Xu, Z. K. Liu, L. X. Yang, Y. L. Chen. Topological electronic structure and its temperature evolution in antiferromagnetic topological insulator MnBi2Te4.Phys. Rev. X, 2019, 9(4): 041040
CrossRef
ADS
Google scholar
|
[74] |
H. Li, S. Y. Gao, S. F. Duan, Y. F. Xu, K. J. Zhu, S. J. Tian, J. C. Gao, W. H. Fan, Z. C. Rao, J. R. Huang, J. J. Li, D. Y. Yan, Z. T. Liu, W. L. Liu, Y. B. Huang, Y. L. Li, Y. Liu, G. B. Zhang, P. Zhang, T. Kondo, S. Shin, H. C. Lei, Y. G. Shi, W. T. Zhang, H. M. Weng, T. Qian, H. Ding. Dirac surface states in intrinsic magnetic topological insulators EuSn2As2 and MnBi2nTe3n+1.Phys. Rev. X, 2019, 9(4): 041039
CrossRef
ADS
Google scholar
|
[75] |
A. Liang, C. Chen, H. Zheng, W. Xia, K. Huang, L. Wei, H. Yang, Y. Chen, X. Zhang, X. Xu, M. Wang, Y. Guo, L. Yang, Z. Liu, Y. Chen. Approaching a minimal topological electronic structure in antiferromagnetic topological insulator MnBi2Te4 via surface modification.Nano Lett., 2022, 22(11): 4307
CrossRef
ADS
Google scholar
|
[76] |
R. Xu, Y. Bai, J. Zhou, J. Li, X. Gu, N. Qin, Z. Yin, X. Du, Q. Zhang, W. Zhao, Y. Li, Y. Wu, C. Ding, L. Wang, A. Liang, Z. Liu, Y. Xu, X. Feng, K. He, Y. Chen, L. Yang. Evolution of the electronic structure of ultrathin MnBi2Te4 films.Nano Lett., 2022, 22(15): 6320
CrossRef
ADS
Google scholar
|
[77] |
R. C. Vidal, H. Bentmann, T. R. F. Peixoto, A. Zeugner, S. Moser, C. H. Min, S. Schatz, K. Kißner, M. Ünzelmann, C. I. Fornari, H. B. Vasili, M. Valvidares, K. Sakamoto, D. Mondal, J. Fujii, I. Vobornik, S. Jung, C. Cacho, T. K. Kim, R. J. Koch, C. Jozwiak, A. Bostwick, J. D. Denlinger, E. Rotenberg, J. Buck, M. Hoesch, F. Diekmann, S. Rohlf, M. Kalläne, K. Rossnagel, M. M. Otrokov, E. V. Chulkov, M. Ruck, A. Isaeva, F. Reinert. Surface states and Rashba-type spin polarization in antiferromagnetic MnBi2Te4 (0001).Phys. Rev. B, 2019, 100(12): 121104
CrossRef
ADS
Google scholar
|
[78] |
S. H. Lee, Y. Zhu, Y. Wang, L. Miao, T. Pillsbury, H. Yi, S. Kempinger, J. Hu, C. A. Heikes, P. Quarterman, W. Ratcliff, J. A. Borchers, H. Zhang, X. Ke, D. Graf, N. Alem, C. Z. Chang, N. Samarth, Z. Mao. Spin scattering and noncollinear spin structure-induced intrinsic anomalous Hall effect in antiferromagnetic topological insulator MnBi2Te4.Phys. Rev. Res., 2019, 1(1): 012011
CrossRef
ADS
Google scholar
|
[79] |
Y. Hu, L. Xu, M. Shi, A. Luo, S. Peng, Z. Y. Wang, J. J. Ying, T. Wu, Z. K. Liu, C. F. Zhang, Y. L. Chen, G. Xu, X. H. Chen, J. F. He. Universal gapless Dirac cone and tunable topological states in (MnBi2Te4)m(Bi2Te3)n heterostructures.Phys. Rev. B, 2020, 101: 161113(R)
CrossRef
ADS
Google scholar
|
[80] |
D. Nevola, H. X. Li, J. Q. Yan, R. G. Moore, H. N. Lee, H. Miao, P. D. Johnson. Coexistence of surface ferromagnetism and a gapless topological state in MnBi2Te4.Phys. Rev. Lett., 2020, 125(11): 117205
CrossRef
ADS
Google scholar
|
[81] |
A. M. Shikin, D. A. Estyunin, I. I. Klimovskikh, S. O. Filnov, E. F. Schwier, S. Kumar, K. Miyamoto, T. Okuda, A. Kimura, K. Kuroda, K. Yaji, S. Shin, Y. Takeda, Y. Saitoh, Z. S. Aliev, N. T. Mamedov, I. R. Amiraslanov, M. B. Babanly, M. M. Otrokov, S. V. Eremeev, E. V. Chulkov. Nature of the Dirac gap modulation and surface magnetic interaction in axion antiferromagnetic topological insulator MnBi2Te4.Sci. Rep., 2020, 10(1): 13226
CrossRef
ADS
Google scholar
|
[82] |
P. Swatek, Y. Wu, L. L. Wang, K. Lee, B. Schrunk, J. Yan, A. Kaminski. Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4.Phys. Rev. B, 2020, 101(16): 161109
CrossRef
ADS
Google scholar
|
[83] |
A. M. Shikin, D. A. Estyunin, N. L. Zaitsev, D. Glazkova, I. I. Klimovskikh, S. O. Filnov, A. G. Rybkin, E. F. Schwier, S. Kumar, A. Kimura, N. Mamedov, Z. Aliev, M. B. Babanly, K. Kokh, O. E. Tereshchenko, M. M. Otrokov, E. V. Chulkov, K. A. Zvezdin, A. K. Zvezdin. Sample-dependent Dirac-point gap in MnBi2Te4 and its response to applied surface charge: A combined photoemission and ab initio study.Phys. Rev. B, 2021, 104(11): 115168
CrossRef
ADS
Google scholar
|
[84] |
R. C. Vidal, H. Bentmann, J. I. Facio, T. Heider, P. Kagerer, C. I. Fornari, T. R. F. Peixoto, T. Figgemeier, S. Jung, C. Cacho, B. Buchner, J. van den Brink, C. M. Schneider, L. Plucinski, E. F. Schwier, K. Shimada, M. Richter, A. Isaeva, F. Reinert. Orbital complexity in intrinsic magnetic topological insulators MnBi4Te7 and MnBi6Te10.Phys. Rev. Lett., 2021, 126(17): 176403
CrossRef
ADS
Google scholar
|
[85] |
X. Wu, J. Li, X. M. Ma, Y. Zhang, Y. Liu, C. S. Zhou, J. Shao, Q. Wang, Y. J. Hao, Y. Feng, E. F. Schwier, S. Kumar, H. Sun, P. Liu, K. Shimada, K. Miyamoto, T. Okuda, K. Wang, M. Xie, C. Chen, Q. Liu, C. Liu, Y. Zhao. Distinct topological surface states on the two terminations of MnBi4Te7.Phys. Rev. X, 2020, 10(3): 031013
CrossRef
ADS
Google scholar
|
[86] |
S. Tian, S. Gao, S. Nie, Y. Qian, C. Gong, Y. Fu, H. Li, W. Fan, P. Zhang, T. Kondo, S. Shin, J. Adell, H. Fedderwitz, H. Ding, Z. Wang, T. Qian, H. Lei. Magnetic topological insulator MnBi6Te10 with a zero-field ferromagnetic state and gapped Dirac surface states.Phys. Rev. B, 2020, 102(3): 035144
CrossRef
ADS
Google scholar
|
[87] |
I. I. Klimovskikh, M. M. Otrokov, D. Estyunin, S. V. Eremeev, S. O. Filnov, A. Koroleva, E. Shevchenko, V. Voroshnin, A. G. Rybkin, I. P. Rusinov, M. Blanco-Rey, M. Hoffmann, Z. S. Aliev, M. B. Babanly, I. R. Amiraslanov, N. A. Abdullayev, V. N. Zverev, A. Kimura, O. E. Tereshchenko, K. A. Kokh, L. Petaccia, G. Di Santo, A. Ernst, P. M. Echenique, N. T. Mamedov, A. M. Shikin, E. V. Chulkov. Tunable 3D/2D magnetism in the (MnBi2Te4)(Bi2Te3)m topological insulators family.npj Quantum Mater., 2020, 5: 54
CrossRef
ADS
Google scholar
|
[88] |
N. H. Jo, L. L. Wang, R. J. Slager, J. Yan, Y. Wu, K. Lee, B. Schrunk, A. Vishwanath, A. Kaminski. Intrinsic axion insulating behavior in antiferromagnetic MnBi6Te10.Phys. Rev. B, 2020, 102(4): 045130
CrossRef
ADS
Google scholar
|
[89] |
C. Hu, L. Ding, K. N. Gordon, B. Ghosh, H. J. Tien, H. Li, A. G. Linn, S. W. Lien, C. Y. Huang, S. Mackey, J. Liu, P. V. S. Reddy, B. Singh, A. Agarwal, A. Bansil, M. Song, D. Li, S. Y. Xu, H. Lin, H. Cao, T. R. Chang, D. Dessau, N. Ni. Realization of an intrinsic ferromagnetic topological state in MnBi8Te13.Sci. Adv., 2020, 6(30): eaba4275
CrossRef
ADS
Google scholar
|
[90] |
T. Hirahara, M. M. Otrokov, T. T. Sasaki, K. Sumida, Y. Tomohiro, S. Kusaka, Y. Okuyama, S. Ichinokura, M. Kobayashi, Y. Takeda, K. Amemiya, T. Shirasawa, S. Ideta, K. Miyamoto, K. Tanaka, S. Kuroda, T. Okuda, K. Hono, S. V. Eremeev, E. V. Chulkov. Fabrication of a novel magnetic topological heterostructure and temperature evolution of its massive Dirac cone.Nat. Commun., 2020, 11(1): 4821
CrossRef
ADS
Google scholar
|
[91] |
J. Wu, F. Liu, M. Sasase, K. Ienaga, Y. Obata, R. Yukawa, K. Horiba, H. Kumigashira, S. Okuma, T. Inoshita, H. Hosono. Natural van der Waals heterostructural single crystals with both magnetic and topological properties.Sci. Adv., 2019, 5(11): eaax9989
CrossRef
ADS
Google scholar
|
[92] |
R. C. Vidal, A. Zeugner, J. I. Facio, R. Ray, M. H. Haghighi, A. U. B. Wolter, L. T. Corredor Bohorquez, F. Caglieris, S. Moser, T. Figgemeier, T. R. F. Peixoto, H. B. Vasili, M. Valvidares, S. Jung, C. Cacho, A. Alfonsov, K. Mehlawat, V. Kataev, C. Hess, M. Richter, B. Büchner, J. van den Brink, M. Ruck, F. Reinert, H. Bentmann, A. Isaeva. Topological electronic structure and intrinsic magnetization in MnBi4Te7: A Bi2Te3 derivative with a periodic Mn sublattice.Phys. Rev. X, 2019, 9(4): 041065
CrossRef
ADS
Google scholar
|
[93] |
Y. Deng, Y. Yu, Z. S. Meng, Z. Guo, Z. Xu, J. Wang, H. C. Xian, Y. Zhang. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4.Science, 2020, 367(6480): 895
CrossRef
ADS
Google scholar
|
[94] |
J. Ge, Y. Liu, J. Li, H. Li, T. Luo, Y. Wu, Y. Xu, J. Wang. High-Chern-number and high-temperature quantum Hall effect without Landau levels.Natl. Sci. Rev., 2020, 7(8): 1280
CrossRef
ADS
Google scholar
|
[95] |
A. Gao, Y. F. Liu, C. Hu, J. X. Qiu, C. Tzschaschel, B. Ghosh, S. C. Ho, D. Berube, R. Chen, H. Sun, Z. Zhang, X. Y. Zhang, Y. X. Wang, N. Wang, Z. Huang, C. Felser, A. Agarwal, T. Ding, H. J. Tien, A. Akey, J. Gardener, B. Singh, K. Watanabe, T. Taniguchi, K. S. Burch, D. C. Bell, B. B. Zhou, W. Gao, H. Z. Lu, A. Bansil, H. Lin, T. R. Chang, L. Fu, Q. Ma, N. Ni, S. Y. Xu. Layer Hall effect in a 2D topological axion antiferromagnet.Nature, 2021, 595(7868): 521
CrossRef
ADS
Google scholar
|
[96] |
S.LiM.Gong S.ChengH. JiangX.C. Xie, Dissipationless layertronics in axion insulator MnBi2Te4, arXiv: 2207.09186 (2022)
|
[97] |
L. Xu, Y. Mao, H. Wang, J. Li, Y. Chen, Y. Xia, Y. Li, D. Pei, J. Zhang, H. Zheng, K. Huang, C. Zhang, S. Cui, A. Liang, W. Xia, H. Su, S. Jung, C. Cacho, M. Wang, G. Li, Y. Xu, Y. Guo, L. Yang, Z. Liu, Y. Chen, M. Jiang. Persistent surface states with diminishing gap in MnBi2Te4/Bi2Te3 superlattice antiferromagnetic topological insulator.Sci. Bull. (Beijing), 2020, 65(24): 2086
CrossRef
ADS
Google scholar
|
[98] |
S. V. Eremeev, I. P. Rusinov, Y. M. Koroteev, A. Y. Vyazovskaya, M. Hoffmann, P. M. Echenique, A. Ernst, M. M. Otrokov, E. V. Chulkov. Topological magnetic materials of the (MnSb2Te4)·(Sb2Te3)n van der Waals compounds family.J. Phys. Chem. Lett., 2021, 12(17): 4268
CrossRef
ADS
Google scholar
|
[99] |
S. V. Eremeev, M. M. Otrokov, E. V. Chulkov. Competing rhombohedral and monoclinic crystal structures in MnPn2Ch4 compounds: An ab-initio study.J. Alloys Compd., 2017, 709: 172
CrossRef
ADS
Google scholar
|
[100] |
T. Murakami, Y. Nambu, T. Koretsune, G. Xiangyu, T. Yamamoto, C. M. Brown, H. Kageyama. Realization of interlayer ferromagnetic interaction in MnSb2Te4 toward the magnetic Weyl semimetal state.Phys. Rev. B, 2019, 100(19): 195103
CrossRef
ADS
Google scholar
|
[101] |
J. Q. Yan, S. Okamoto, M. A. McGuire, A. F. May, R. J. McQueeney, B. C. Sales. Evolution of structural, magnetic, and transport properties in MnBi2−xSbxTe4.Phys. Rev. B, 2019, 100(10): 104409
CrossRef
ADS
Google scholar
|
[102] |
L. Chen, D. Wang, C. Shi, C. Jiang, H. Liu, G. Cui, X. Zhang, X. Li. Electronic structure and magnetism of MnSb2Te4.J. Mater. Sci., 2020, 55(29): 14292
CrossRef
ADS
Google scholar
|
[103] |
Y. Chen, Y. W. Chuang, S. H. Lee, Y. Zhu, K. Honz, Y. Guan, Y. Wang, K. Wang, Z. Mao, J. Zhu, C. Heikes, P. Quarterman, P. Zajdel, J. A. Borchers, W. Ratcliff. Ferromagnetism in van der Waals compound MnSb1.8Bi0.2Te4.Phys. Rev. Mater., 2020, 4(6): 064411
CrossRef
ADS
Google scholar
|
[104] |
G. Shi, M. Zhang, D. Yan, H. Feng, M. Yang, Y. Shi, Y. Li. Anomalous Hall effect in layered ferrimagnet MnSb2Te4.Chin. Phys. Lett., 2020, 37(4): 047301
CrossRef
ADS
Google scholar
|
[105] |
S. Wimmer, J. Sanchez-Barriga, P. Kuppers, A. Ney, E. Schierle, F. Freyse, O. Caha, J. Michalicka, M. Liebmann, D. Primetzhofer, M. Hoffman, A. Ernst, M. M. Otrokov, G. Bihlmayer, E. Weschke, B. Lake, E. V. Chulkov, M. Morgenstern, G. Bauer, G. Springholz, O. Rader. Mn-rich MnSb2Te4: A topological insulator with magnetic gap closing at high Curie temperatures of 45−50 K.Adv. Mater., 2021, 33(42): 2102935
CrossRef
ADS
Google scholar
|
[106] |
Z. Zang, Y. Zhu, M. Xi, S. Tian, T. Wang, P. Gu, Y. Peng, S. Yang, X. Xu, Y. Li, B. Han, L. Liu, Y. Wang, P. Gao, J. Yang, H. Lei, Y. Huang, Y. Ye. Layer-number-dependent antiferromagnetic and ferromagnetic behavior in MnSb2Te4.Phys. Rev. Lett., 2022, 128(1): 017201
CrossRef
ADS
Google scholar
|
[107] |
S. Huan, S. Zhang, Z. Jiang, H. Su, H. Wang, X. Zhang, Y. Yang, Z. Liu, X. Wang, N. Yu, Z. Zou, D. Shen, J. Liu, Y. Guo. Multiple magnetic topological phases in bulk van der Waals crystal MnSb4Te7.Phys. Rev. Lett., 2021, 126(24): 246601
CrossRef
ADS
Google scholar
|
[108] |
Y. Yin, X. Ma, D. Yan, C. Yi, B. Yue, J. Dai, L. Zhao, X. Yu, Y. Shi, J. T. Wang, F. Hong. Pressure-driven electronic and structural phase transition in intrinsic magnetic topological insulator MnSb2Te4.Phys. Rev. B, 2021, 104(17): 174114
CrossRef
ADS
Google scholar
|
[109] |
J. Y. Lin, Z. J. Chen, W. Q. Xie, X. B. Yang, Y. J. Zhao. Toward ferromagnetic semimetal ground state with multiple Weyl nodes in van der Waals crystal MnSb4Te7.New J. Phys., 2022, 24(4): 043033
CrossRef
ADS
Google scholar
|
[110] |
C. Pei, M. Xi, Q. Wang, W. Shi, J. Wu, L. Gao, Y. Zhao, S. Tian, W. Cao, C. Li, M. Zhang, S. Zhu, Y. Chen, H. Lei, Y. Qi. Pressure-induced superconductivity in magnetic topological insulator candidate MnSb4Te7.Phys. Rev. Mater., 2022, 6(10): L101801
CrossRef
ADS
Google scholar
|
[111] |
X.Zhang, Tunable intrinsic ferromagnetic topological phases in bulk van der Waals crystal MnSb6Te10, arXiv: 2111.04973 (2021)
|
[112] |
X. M. Ma, Y. Zhao, K. Zhang, S. Kumar, R. Lu, J. Li, Q. Yao, J. Shao, F. Hou, X. Wu, M. Zeng, Y. J. Hao, Z. Hao, Y. Wang, X. R. Liu, H. Shen, H. Sun, J. Mei, K. Miyamoto, T. Okuda, M. Arita, E. F. Schwier, K. Shimada, K. Deng, C. Liu, J. Lin, Y. Zhao, C. Chen, Q. Liu, C. Liu. Realization of a tunable surface Dirac gap in Sb-doped MnBi2Te4.Phys. Rev. B, 2021, 103(12): L121112
CrossRef
ADS
Google scholar
|
[113] |
T. Zhu, A. J. Bishop, T. Zhou, M. Zhu, D. J. O’Hara, A. A. Baker, S. Cheng, R. C. Walko, J. J. Repicky, T. Liu, J. A. Gupta, C. M. Jozwiak, E. Rotenberg, J. Hwang, I. Zutic, R. K. Kawakami. Synthesis, magnetic properties, and electronic structure of magnetic topological insulator MnBi2Se4.Nano Lett., 2021, 21(12): 5083
CrossRef
ADS
Google scholar
|
[114] |
M. Q. Arguilla, N. D. Cultrara, Z. J. Baum, S. Jiang, R. D. Ross, J. E. Goldberger. EuSn2As2: an exfoliatable magnetic layered Zintl–Klemm phase.Inorg. Chem. Front., 2017, 4(2): 378
CrossRef
ADS
Google scholar
|
[115] |
F.Kabir, Observation of multiple Dirac states in a magnetic topological material EuMg2Bi2, arXiv: 1912.08645 (2019)
|
[116] |
S. Regmi, M. M. Hosen, B. Ghosh, B. Singh, G. Dhakal, C. Sims, B. Wang, F. Kabir, K. Dimitri, Y. Liu, A. Agarwal, H. Lin, D. Kaczorowski, A. Bansil, M. Neupane. Temperature-dependent electronic structure in a higher-order topological insulator candidate EuIn2As2.Phys. Rev. B, 2020, 102(16): 165153
CrossRef
ADS
Google scholar
|
[117] |
M. Marshall, I. Pletikosić, M. Yahyavi, H. J. Tien, T. R. Chang, H. Cao, W. Xie. Magnetic and electronic structures of antiferromagnetic topological material candidate EuMg2Bi2.J. Appl. Phys., 2021, 129(3): 035106
CrossRef
ADS
Google scholar
|
[118] |
Y. Zhang, K. Deng, X. Zhang, M. Wang, Y. Wang, C. Liu, J. W. Mei, S. Kumar, E. F. Schwier, K. Shimada, C. Chen, B. Shen. In-plane antiferromagnetic moments and magnetic polaron in the axion topological insulator candidate EuIn2As2.Phys. Rev. B, 2020, 101(20): 205126
CrossRef
ADS
Google scholar
|
[119] |
L. Zhao, C. Yi, C. T. Wang, Z. Chi, Y. Yin, X. Ma, J. Dai, P. Yang, B. Yue, J. Cheng, F. Hong, J. T. Wang, Y. Han, Y. Shi, X. Yu. Monoclinic EuSn2As2: A novel high-pressure network structure.Phys. Rev. Lett., 2021, 126(15): 155701
CrossRef
ADS
Google scholar
|
[120] |
S. X. M. Riberolles, T. V. Trevisan, B. Kuthanazhi, T. W. Heitmann, F. Ye, D. C. Johnston, S. L. Bud’ko, D. H. Ryan, P. C. Canfield, A. Kreyssig, A. Vishwanath, R. J. McQueeney, L. Wang, P. P. Orth, B. G. Ueland. Magnetic crystalline-symmetry-protected axion electrodynamics and field-tunable unpinned Dirac cones in EuIn2As2.Nat. Commun., 2021, 12(1): 999
CrossRef
ADS
Google scholar
|
[121] |
H. C. Chen, Z. F. Lou, Y. X. Zhou, Q. Chen, B. J. Xu, S. J. Chen, J. H. Du, J. H. Yang, H. D. Wang, M. H. Fang. Negative magnetoresistance in antiferromagnetic topological insulator EuSn2As2.Chin. Phys. Lett., 2020, 37(4): 047201
CrossRef
ADS
Google scholar
|
[122] |
H. Li, W. Gao, Z. Chen, W. Chu, Y. Nie, S. Ma, Y. Han, M. Wu, T. Li, Q. Niu, W. Ning, X. Zhu, M. Tian. Magnetic properties of the layered magnetic topological insulator EuSn2As2.Phys. Rev. B, 2021, 104(5): 054435
CrossRef
ADS
Google scholar
|
[123] |
H. Sun, C. Chen, Y. Hou, W. Wang, Y. Gong, M. Huo, L. Li, J. Yu, W. Cai, N. Liu, R. Wu, D. X. Yao, M. Wang. Magnetism variation of the compressed antiferromagnetic topological insulator EuSn2As2.Sci. China Phys. Mech. Astron., 2021, 64(11): 118211
CrossRef
ADS
Google scholar
|
[124] |
A. M. Goforth, P. Klavins, J. C. Fettinger, S. M. Kauzlarich. Magnetic properties and negative colossal magnetoresistance of the rare earth Zintl phase EuIn2As2.Inorg. Chem., 2008, 47(23): 11048
CrossRef
ADS
Google scholar
|
[125] |
T.TolinskiD. Kaczorowski, Magnetic properties of the putative higher-order topological insulator EuIn2As2, SciPost Physics Proceedings, doi: 10.21468/SciPostPhysProc (2022)
|
[126] |
Y. Xu, Z. Song, Z. Wang, H. Weng, X. Dai. Higher-order topology of the axion insulator EuIn2As2.Phys. Rev. Lett., 2019, 122(25): 256402
CrossRef
ADS
Google scholar
|
[127] |
M. Gong, D. Sar, J. Friedman, D. Kaczorowski, S. Abdel Razek, W. C. Lee, P. Aynajian. Surface state evolution induced by magnetic order in axion insulator candidate EuIn2As2.Phys. Rev. B, 2022, 106(12): 125156
CrossRef
ADS
Google scholar
|
[128] |
P. Rosa, Y. Xu, M. Rahn, J. Souza, S. Kushwaha, L. Veiga, A. Bombardi, S. Thomas, M. Janoschek, E. Bauer, M. Chan, Z. Wang, J. Thompson, N. Harrison, P. Pagliuso, A. Bernevig, F. Ronning. Colossal magnetoresistance in a nonsymmorphic antiferromagnetic insulator.npj Quantum Mater., 2020, 5: 52
CrossRef
ADS
Google scholar
|
[129] |
N. Varnava, T. Berry, T. M. McQueen, D. Vanderbilt. Engineering magnetic topological insulators in Eu5M2X6 Zintl compounds.Phys. Rev. B, 2022, 105(23): 235128
CrossRef
ADS
Google scholar
|
[130] |
H. Wang, N. Mao, X. Hu, Y. Dai, B. Huang, C. Niu. A magnetic topological insulator in two-dimensional EuCd2Bi2: giant gap with robust topology against magnetic transitions.Mater. Horiz., 2021, 8(3): 956
CrossRef
ADS
Google scholar
|
[131] |
J. Liu, S. Meng, J. T. Sun. Spin-orientation-dependent topological states in two-dimensional antiferromagnetic NiTl2S4 monolayers.Nano Lett., 2019, 19(5): 3321
CrossRef
ADS
Google scholar
|
[132] |
P. Tang, Q. Zhou, G. Xu, S. C. Zhang. Dirac fermions in an antiferromagnetic semimetal.Nat. Phys., 2016, 12(12): 1100
CrossRef
ADS
Google scholar
|
[133] |
J. Wang. Antiferromagnetic Dirac semimetals in two dimensions.Phys. Rev. B, 2017, 95(11): 115138
CrossRef
ADS
Google scholar
|
[134] |
S. M. Young, B. J. Wieder. Filling-enforced magnetic Dirac semimetals in two dimensions.Phys. Rev. Lett., 2017, 118(18): 186401
CrossRef
ADS
Google scholar
|
[135] |
S. Li, Y. Liu, Z. M. Yu, Y. Jiao, S. Guan, X. L. Sheng, Y. Yao, S. A. Yang. Two-dimensional antiferromagnetic Dirac fermions in monolayer TaCoTe2.Phys. Rev. B, 2019, 100(20): 205102
CrossRef
ADS
Google scholar
|
[136] |
N. Morali, R. Batabyal, P. K. Nag, E. Liu, Q. Xu, Y. Sun, B. Yan, C. Felser, N. Avraham, H. Beidenkopf. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2.Science, 2019, 365(6459): 1286
CrossRef
ADS
Google scholar
|
[137] |
D. F. Liu, A. J. Liang, E. K. Liu, Q. N. Xu, Y. W. Li, C. Chen, D. Pei, W. J. Shi, S. K. Mo, P. Dudin, T. Kim, C. Cacho, G. Li, Y. Sun, L. X. Yang, Z. K. Liu, S. S. P. Parkin, C. Felser, Y. L. Chen. Magnetic Weyl semimetal phase in a Kagomé crystal.Science, 2019, 365(6459): 1282
CrossRef
ADS
Google scholar
|
[138] |
K. Kuroda, T. Tomita, M. T. Suzuki, C. Bareille, A. A. Nugroho, P. Goswami, M. Ochi, M. Ikhlas, M. Nakayama, S. Akebi, R. Noguchi, R. Ishii, N. Inami, K. Ono, H. Kumigashira, A. Varykhalov, T. Muro, T. Koretsune, R. Arita, S. Shin, T. Kondo, S. Nakatsuji. Evidence for magnetic Weyl fermions in a correlated metal.Nat. Mater., 2017, 16(11): 1090
CrossRef
ADS
Google scholar
|
[139] |
A. K. Nayak, J. E. Fischer, Y. Sun, B. Yan, J. Karel, A. C. Komarek, C. Shekhar, N. Kumar, W. Schnelle, J. Kübler, C. Felser, S. S. P. Parkin. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge.Sci. Adv., 2016, 2(4): e1501870
CrossRef
ADS
Google scholar
|
[140] |
S. Nakatsuji, N. Kiyohara, T. Higo. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature.Nature, 2015, 527(7577): 212
CrossRef
ADS
Google scholar
|
[141] |
B. Q. Lv, N. Xu, H. M. Weng, J. Z. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, C. E. Matt, F. Bisti, V. N. Strocov, J. Mesot, Z. Fang, X. Dai, T. Qian, M. Shi, H. Ding. Observation of Weyl nodes in TaAs.Nat. Phys., 2015, 11(9): 724
CrossRef
ADS
Google scholar
|
[142] |
J. Z. Ma, J. B. He, Y. F. Xu, B. Q. Lv, D. Chen, W. L. Zhu, S. Zhang, L. Y. Kong, X. Gao, L. Y. Rong, Y. B. Huang, P. Richard, C. Y. Xi, E. S. Choi, Y. Shao, Y. L. Wang, H. J. Gao, X. Dai, C. Fang, H. M. Weng, G. F. Chen, T. Qian, H. Ding. Three-component fermions with surface Fermi arcs in tungsten carbide.Nat. Phys., 2018, 14(4): 349
CrossRef
ADS
Google scholar
|
[143] |
S. Y. Xu, N. Alidoust, I. Belopolski, Z. Yuan, G. Bian, T. R. Chang, H. Zheng, V. N. Strocov, D. S. Sanchez, G. Chang, C. Zhang, D. Mou, Y. Wu, L. Huang, C. C. Lee, S. M. Huang, B. K. Wang, A. Bansil, H. T. Jeng, T. Neupert, A. Kaminski, H. Lin, S. Jia, M. Zahid Hasan. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide.Nat. Phys., 2015, 11(9): 748
CrossRef
ADS
Google scholar
|
[144] |
L. X. Yang, Z. K. Liu, Y. Sun, H. Peng, H. F. Yang, T. Zhang, B. Zhou, Y. Zhang, Y. F. Guo, M. Rahn, D. Prabhakaran, Z. Hussain, S. K. Mo, C. Felser, B. Yan, Y. L. Chen. Weyl semimetal phase in the non-centrosymmetric compound TaAs.Nat. Phys., 2015, 11(9): 728
CrossRef
ADS
Google scholar
|
[145] |
Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, Y. L. Chen, Discovery of a three-dimensional topological Dirac semimetal. Na3Bi.Science, 2014, 343(6173): 864
CrossRef
ADS
Google scholar
|
[146] |
Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S. K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, Y. L. Chen. A stable three-dimensional topological Dirac semimetal Cd3As2.Nat. Mater., 2014, 13(7): 677
CrossRef
ADS
Google scholar
|
[147] |
M. Neupane, S. Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T. R. Chang, H. T. Jeng, H. Lin, A. Bansil, F. Chou, M. Z. Hasan. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2.Nat. Commun., 2014, 5(1): 3786
CrossRef
ADS
Google scholar
|
[148] |
G. Xu, H. Weng, Z. Wang, X. Dai, Z. Fang. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4.Phys. Rev. Lett., 2011, 107(18): 186806
CrossRef
ADS
Google scholar
|
[149] |
S. H. Do, K. Kaneko, R. Kajimoto, K. Kamazawa, M. B. Stone, J. Y. Y. Lin, S. Itoh, T. Masuda, G. D. Samolyuk, E. Dagotto, W. R. Meier, B. C. Sales, H. Miao, A. D. Christianson. Damped Dirac magnon in the metallic Kagomé antiferromagnet FeSn.Phys. Rev. B, 2022, 105(18): L180403
CrossRef
ADS
Google scholar
|
[150] |
Z. Lin, C. Wang, P. Wang, S. Yi, L. Li, Q. Zhang, Y. Wang, Z. Wang, H. Huang, Y. Sun, Y. Huang, D. Shen, D. Feng, Z. Sun, J. H. Cho, C. Zeng, Z. Zhang. Dirac fermions in antiferromagnetic FeSn Kagomé lattices with combined space inversion and time-reversal symmetry.Phys. Rev. B, 2020, 102(15): 155103
CrossRef
ADS
Google scholar
|
[151] |
M. Kang, L. Ye, S. Fang, J. S. You, A. Levitan, M. Han, J. I. Facio, C. Jozwiak, A. Bostwick, E. Rotenberg, M. K. Chan, R. D. McDonald, D. Graf, K. Kaznatcheev, E. Vescovo, D. C. Bell, E. Kaxiras, J. van den Brink, M. Richter, M. Prasad Ghimire, J. G. Checkelsky, R. Comin. Dirac fermions and flat bands in the ideal Kagomé metal FeSn.Nat. Mater., 2020, 19(2): 163
CrossRef
ADS
Google scholar
|
[152] |
M. Han, H. Inoue, S. Fang, C. John, L. Ye, M. K. Chan, D. Graf, T. Suzuki, M. P. Ghimire, W. J. Cho, E. Kaxiras, J. G. Checkelsky. Evidence of two-dimensional flat band at the surface of antiferromagnetic Kagomé metal FeSn.Nat. Commun., 2021, 12(1): 5345
CrossRef
ADS
Google scholar
|
[153] |
S. H. Lee, Y. Kim, B. Cho, J. Park, M. S. Kim, K. Park, H. Jeon, M. Jung, K. Park, J. D. Lee, J. Seo. Spin-polarized and possible pseudospin-polarized scanning tunneling microscopy in Kagomé metal FeSn.Commun. Phys., 2022, 5(1): 235
CrossRef
ADS
Google scholar
|
[154] |
B. C. Sales, J. Yan, W. R. Meier, A. D. Christianson, S. Okamoto, M. A. McGuire. Electronic, magnetic, and thermodynamic properties of the Kagomé layer compound FeSn.Phys. Rev. Mater., 2019, 3(11): 114203
CrossRef
ADS
Google scholar
|
[155] |
C. Liu, C. J. Yi, X. Y. Wang, J. L. Shen, T. Xie, L. Yang, T. Fennel, U. Stuhr, S. L. Li, H. M. Weng, Y. G. Shi, E. K. Liu, H. Q. Luo. Anisotropic magnetoelastic response in the magnetic Weyl semimetal Co3Sn2S2.Sci. China Phys. Mech. Astron., 2021, 64(5): 257511
CrossRef
ADS
Google scholar
|
[156] |
D. F. Liu, E. K. Liu, Q. N. Xu, J. L. Shen, Y. W. Li, D. Pei, A. J. Liang, P. Dudin, T. K. Kim, C. Cacho, Y. F. Xu, Y. Sun, L. X. Yang, Z. K. Liu, C. Felser, S. S. P. Parkin, Y. L. Chen. Direct observation of the spin–orbit coupling effect in magnetic Weyl semimetal Co3Sn2S2.npj Quantum Mater., 2022, 7: 11
CrossRef
ADS
Google scholar
|
[157] |
M. Kanagaraj, J. Ning, L. He. Topological Co3Sn2S2 magnetic Weyl semimetal: From fundamental understanding to diverse fields of study.Reviews in Physics, 2022, 8: 100072
CrossRef
ADS
Google scholar
|
[158] |
I. Belopolski, T. A. Cochran, X. Liu, Z. J. Cheng, X. P. Yang, Z. Guguchia, S. S. Tsirkin, J. X. Yin, P. Vir, G. S. Thakur, S. S. Zhang, J. Zhang, K. Kaznatcheev, G. Cheng, G. Chang, D. Multer, N. Shumiya, M. Litskevich, E. Vescovo, T. K. Kim, C. Cacho, N. Yao, C. Felser, T. Neupert, M. Z. Hasan. Signatures of Weyl fermion annihilation in a correlated Kagomé magnet.Phys. Rev. Lett., 2021, 127(25): 256403
CrossRef
ADS
Google scholar
|
[159] |
G. Li, Q. Xu, W. Shi, C. Fu, L. Jiao, M. E. Kamminga, M. Yu, H. Tüysüz, N. Kumar, V. Süß, R. Saha, A. K. Srivastava, S. Wirth, G. Auffermann, J. Gooth, S. Parkin, Y. Sun, E. Liu, C. Felser. Surface states in bulk single crystal of topological semimetal Co3Sn2S2 toward water oxidation.Sci. Adv., 2019, 5(8): eaaw9867
CrossRef
ADS
Google scholar
|
[160] |
Q. Xu, E. Liu, W. Shi, L. Muechler, J. Gayles, C. Felser, Y. Sun. Topological surface Fermi arcs in the magnetic Weyl semimetal Co3Sn2S2.Phys. Rev. B, 2018, 97(23): 235416
CrossRef
ADS
Google scholar
|
[161] |
Q. Wang, Y. Xu, R. Lou, Z. Liu, M. Li, Y. Huang, D. Shen, H. Weng, S. Wang, H. Lei. Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions.Nat. Commun., 2018, 9(1): 3681
CrossRef
ADS
Google scholar
|
[162] |
M. Tanaka, Y. Fujishiro, M. Mogi, Y. Kaneko, T. Yokosawa, N. Kanazawa, S. Minami, T. Koretsune, R. Arita, S. Tarucha, M. Yamamoto, Y. Tokura. Topological Kagomé magnet Co3Sn2S2 thin flakes with high electron mobility and large anomalous Hall effect.Nano Lett., 2020, 20(10): 7476
CrossRef
ADS
Google scholar
|
[163] |
H. Reichlova, T. Janda, J. Godinho, A. Markou, D. Kriegner, R. Schlitz, J. Zelezny, Z. Soban, M. Bejarano, H. Schultheiss, P. Nemec, T. Jungwirth, C. Felser, J. Wunderlich, S. T. B. Goennenwein. Imaging and writing magnetic domains in the non-collinear antiferromagnet Mn3Sn.Nat. Commun., 2019, 10(1): 5459
CrossRef
ADS
Google scholar
|
[164] |
T. Chen, T. Tomita, S. Minami, M. Fu, T. Koretsune, M. Kitatani, I. Muhammad, D. Nishio-Hamane, R. Ishii, F. Ishii, R. Arita, S. Nakatsuji,Anomalous transport due to Weyl fermions in the chiral antiferromagnets Mn3X, X = Sn. Ge.Nat. Commun., 2021, 12(1): 572
CrossRef
ADS
Google scholar
|
[165] |
J. R. Soh, F. de Juan, N. Qureshi, H. Jacobsen, H. Y. Wang, Y. F. Guo, A. T. Boothroyd. Ground-state magnetic structure of Mn3Ge.Phys. Rev. B, 2020, 101(14): 140411
CrossRef
ADS
Google scholar
|
[166] |
J. Liu, L. Balents. Anomalous Hall effect and topological defects in antiferromagnetic Weyl semimetals: Mn3Sn/Ge.Phys. Rev. Lett., 2017, 119(8): 087202
CrossRef
ADS
Google scholar
|
[167] |
H. Yang, Y. Sun, Y. Zhang, W. J. Shi, S. S. P. Parkin, B. Yan. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn.New J. Phys., 2017, 19(1): 015008
CrossRef
ADS
Google scholar
|
[168] |
N. Kiyohara, T. Tomita, S. Nakatsuji. Giant anomalous Hall effect in the chiral antiferromagnet Mn3Ge.Phys. Rev. Appl., 2016, 5(6): 064009
CrossRef
ADS
Google scholar
|
[169] |
T. Higo, D. Qu, Y. Li, C. L. Chien, Y. Otani, S. Nakatsuji. Anomalous Hall effect in thin films of the Weyl antiferromagnet Mn3Sn.Appl. Phys. Lett., 2018, 113(20): 202402
CrossRef
ADS
Google scholar
|
[170] |
T. Matsuda, N. Kanda, T. Higo, N. P. Armitage, S. Nakatsuji, R. Matsunaga. Room-temperature terahertz anomalous Hall effect in Weyl antiferromagnet Mn3Sn thin films.Nat. Commun., 2020, 11(1): 909
CrossRef
ADS
Google scholar
|
[171] |
J. M. Taylor, A. Markou, E. Lesne, P. K. Sivakumar, C. Luo, F. Radu, P. Werner, C. Felser, S. S. P. Parkin. Anomalous and topological Hall effects in epitaxial thin films of the noncollinear antiferromagnet Mn3Sn.Phys. Rev. B, 2020, 101(9): 094404
CrossRef
ADS
Google scholar
|
[172] |
M. Ikhlas, T. Tomita, T. Koretsune, M. T. Suzuki, D. Nishio-Hamane, R. Arita, Y. Otani, S. Nakatsuji. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet.Nat. Phys., 2017, 13(11): 1085
CrossRef
ADS
Google scholar
|
[173] |
C. Wuttke, F. Caglieris, S. Sykora, F. Scaravaggi, A. U. B. Wolter, K. Manna, V. Süss, C. Shekhar, C. Felser, B. Büchner, C. Hess. Berry curvature unravelled by the anomalous Nernst effect in Mn3Ge.Phys. Rev. B, 2019, 100(8): 085111
CrossRef
ADS
Google scholar
|
[174] |
X. Li, C. Collignon, L. Xu, H. Zuo, A. Cavanna, U. Gennser, D. Mailly, B. Fauque, L. Balents, Z. Zhu, K. Behnia. Chiral domain walls of Mn3Sn and their memory.Nat. Commun., 2019, 10(1): 3021
CrossRef
ADS
Google scholar
|
[175] |
P. K. Rout, P. V. P. Madduri, S. K. Manna, A. K. Nayak. Field-induced topological Hall effect in the noncoplanar triangular antiferromagnetic geometry of Mn3Sn.Phys. Rev. B, 2019, 99(9): 094430
CrossRef
ADS
Google scholar
|
[176] |
L. Xu, X. Li, L. Ding, K. Behnia, Z. Zhu. Planar Hall effect caused by the memory of antiferromagnetic domain walls in Mn3Ge.Appl. Phys. Lett., 2020, 117(22): 222403
CrossRef
ADS
Google scholar
|
[177] |
M. Kimata, H. Chen, K. Kondou, S. Sugimoto, P. K. Muduli, M. Ikhlas, Y. Omori, T. Tomita, A. H. MacDonald, S. Nakatsuji, Y. Otani. Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet.Nature, 2019, 565(7741): 627
CrossRef
ADS
Google scholar
|
[178] |
P. Li, J. Koo, W. Ning, J. Li, L. Miao, L. Min, Y. Zhu, Y. Wang, N. Alem, C. X. Liu, Z. Mao, B. Yan. Giant room temperature anomalous Hall effect and tunable topology in a ferromagnetic topological semimetal Co2MnAl.Nat. Commun., 2020, 11(1): 3476
CrossRef
ADS
Google scholar
|
[179] |
G. Chang, S. Y. Xu, X. Zhou, S. M. Huang, B. Singh, B. Wang, I. Belopolski, J. Yin, S. Zhang, A. Bansil, H. Lin, M. Z. Hasan. Topological Hopf and chain link semimetal states and their application to Co2MnGa.Phys. Rev. Lett., 2017, 119(15): 156401
CrossRef
ADS
Google scholar
|
[180] |
I. Belopolski, G. Chang, T. A. Cochran, Z. J. Cheng, X. P. Yang, C. Hugelmeyer, K. Manna, J. X. Yin, G. Cheng, D. Multer, M. Litskevich, N. Shumiya, S. S. Zhang, C. Shekhar, N. B. M. Schroter, A. Chikina, C. Polley, B. Thiagarajan, M. Leandersson, J. Adell, S. M. Huang, N. Yao, V. N. Strocov, C. Felser, M. Z. Hasan. Observation of a linked-loop quantum state in a topological magnet.Nature, 2022, 604(7907): 647
CrossRef
ADS
Google scholar
|
[181] |
Z. Wang, M. G. Vergniory, S. Kushwaha, M. Hirschberger, E. V. Chulkov, A. Ernst, N. P. Ong, R. J. Cava, B. A. Bernevig. Time-reversal-breaking Weyl fermions in magnetic Heusler alloys.Phys. Rev. Lett., 2016, 117(23): 236401
CrossRef
ADS
Google scholar
|
[182] |
G. Chang, S. Y. Xu, H. Zheng, B. Singh, C. H. Hsu, G. Bian, N. Alidoust, I. Belopolski, D. S. Sanchez, S. Zhang, H. Lin, M. Z. Hasan, Room-temperature magnetic topological Weyl fermion, nodal line semimetal states in half-metallic Heusler Co2TiX (X=Si. Ge, or Sn).Sci. Rep., 2016, 6(1): 38839
CrossRef
ADS
Google scholar
|
[183] |
R. Y. Umetsu, K. Kobayashi, A. Fujita, R. Kainuma, K. Ishida. Magnetic properties and stability of L21 and B2 phases in the Co2MnAl Heusler alloy.J. Appl. Phys., 2008, 103(7): 07D718
CrossRef
ADS
Google scholar
|
[184] |
A. W. Carbonari, R. N. Saxena, W. Jr Pendl, J. Mestnik Filho, R. N. Attili, M. Olzon-Dionysio, S. D. de Souza, Magnetic hyperfine field in the Heusler alloys Co2YZ (Y = V, Nb Z = Al. Ga).J. Magn. Magn. Mater., 1996, 163(3): 313
CrossRef
ADS
Google scholar
|
[185] |
Z. Yan, R. Bi, H. Shen, L. Lu, S. C. Zhang, Z. Wang. Nodal-link semimetals.Phys. Rev. B, 2017, 96(4): 041103
CrossRef
ADS
Google scholar
|
[186] |
M. Ezawa, Topological semimetals carrying arbitrary Hopf numbers: Fermi surface topologies of a Hopf link. Solomon’s knot, trefoil knot, and other linked nodal varieties.Phys. Rev. B, 2017, 96(4): 041202
CrossRef
ADS
Google scholar
|
[187] |
P. Y. Chang, C. H. Yee. Weyl-link semimetals.Phys. Rev. B, 2017, 96(8): 081114
CrossRef
ADS
Google scholar
|
[188] |
K. Sumida, Y. Sakuraba, K. Masuda, T. Kono, M. Kakoki, K. Goto, W. Zhou, K. Miyamoto, Y. Miura, T. Okuda, A. Kimura. Spin-polarized Weyl cones and giant anomalous Nernst effect in ferromagnetic Heusler films.Commun. Mater., 2020, 1(1): 89
CrossRef
ADS
Google scholar
|
[189] |
Q. Wu, A. A. Soluyanov, T. Bzdusek. Non-Abelian band topology in noninteracting metals.Science, 2019, 365(6459): 1273
CrossRef
ADS
Google scholar
|
[190] |
I. Belopolski, K. Manna, D. S. Sanchez, G. Chang, B. Ernst, J. Yin, S. S. Zhang, T. Cochran, N. Shumiya, H. Zheng, B. Singh, G. Bian, D. Multer, M. Litskevich, X. Zhou, S. M. Huang, B. Wang, T. R. Chang, S. Y. Xu, A. Bansil, C. Felser, H. Lin, M. Z. Hasan. Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet.Science, 2019, 365(6459): 1278
CrossRef
ADS
Google scholar
|
[191] |
C. Zhong, Y. Chen, Z. M. Yu, Y. Xie, H. Wang, S. A. Yang, S. Zhang. Three-dimensional pentagon carbon with a genesis of emergent fermions.Nat. Commun., 2017, 8(1): 15641
CrossRef
ADS
Google scholar
|
[192] |
A. Bouhon, Q. S. Wu, R. J. Slager, H. Weng, O. V. Yazyev, T. Bzdušek. Non-Abelian reciprocal braiding of Weyl points and its manifestation in ZrTe.Nat. Phys., 2020, 16(11): 1137
CrossRef
ADS
Google scholar
|
[193] |
J. Yuan, X. Shi, H. Su, X. Zhang, X. Wang, N. Yu, Z. Zou, W. Zhao, J. Liu, Y. Guo. Magnetization tunable Weyl states in EuB6.Phys. Rev. B, 2022, 106(5): 054411
CrossRef
ADS
Google scholar
|
[194] |
S. Y. Gao, S. Xu, H. Li, C. J. Yi, S. M. Nie, Z. C. Rao, H. Wang, Q. X. Hu, X. Z. Chen, W. H. Fan, J. R. Huang, Y. B. Huang, N. Pryds, M. Shi, Z. J. Wang, Y. G. Shi, T. L. Xia, T. Qian, H. Ding. Time-reversal symmetry breaking driven topological phase transition in EuB6.Phys. Rev. X, 2021, 11(2): 021016
CrossRef
ADS
Google scholar
|
[195] |
S. Nie, Y. Sun, F. B. Prinz, Z. Wang, H. Weng, Z. Fang, X. Dai. Magnetic semimetals and quantized anomalous Hall effect in EuB6.Phys. Rev. Lett., 2020, 124(7): 076403
CrossRef
ADS
Google scholar
|
[196] |
X. Zhang, S. von Molnar, Z. Fisk, P. Xiong. Spin-dependent electronic states of the ferromagnetic semimetal EuB6.Phys. Rev. Lett., 2008, 100(16): 167001
CrossRef
ADS
Google scholar
|
[197] |
J. Kim, W. Ku, C. C. Lee, D. S. Ellis, B. K. Cho, A. H. Said, Y. Shvyd’ko, Y. J. Kim. Spin-split conduction band in EuB6 and tuning of half-metallicity with external stimuli.Phys. Rev. B, 2013, 87(15): 155104
CrossRef
ADS
Google scholar
|
[198] |
S. Süllow, I. Prasad, M. C. Aronson, J. L. Sarrao, Z. Fisk, D. Hristova, A. H. Lacerda, M. F. Hundley, A. Vigliante, D. Gibbs. Structure and magnetic order of EuB6.Phys. Rev. B, 1998, 57(10): 5860
CrossRef
ADS
Google scholar
|
[199] |
M. L. Brooks, T. Lancaster, S. J. Blundell, W. Hayes, F. L. Pratt, Z. Fisk. Magnetic phase separation in EuB6 detected by muon spin rotation.Phys. Rev. B, 2004, 70(2): 020401
CrossRef
ADS
Google scholar
|
[200] |
L. Degiorgi, E. Felder, H. R. Ott, J. L. Sarrao, Z. Fisk. Low-temperature anomalies and ferromagnetism of EuB6.Phys. Rev. Lett., 1997, 79(25): 5134
CrossRef
ADS
Google scholar
|
[201] |
C. N. Guy, S. von Molnar, J. Etourneau, Z. Fisk. Charge transport and pressure dependence of Tc of single crystal, ferromagnetic EuB6.Solid State Commun., 1980, 33(10): 1055
CrossRef
ADS
Google scholar
|
[202] |
P. Nyhus, S. Yoon, M. Kauffman, S. L. Cooper, Z. Fisk, J. Sarrao. Spectroscopic study of bound magnetic polaron formation and the metal-semiconductor transition in EuB6.Phys. Rev. B, 1997, 56(5): 2717
CrossRef
ADS
Google scholar
|
[203] |
G. Beaudin, L. M. Fournier, A. D. Bianchi, M. Nicklas, M. Kenzelmann, M. Laver, W. Witczak-Krempa. Possible quantum nematic phase in a colossal magnetoresistance material.Phys. Rev. B, 2022, 105(3): 035104
CrossRef
ADS
Google scholar
|
[204] |
W. L. Liu, X. Zhang, S. M. Nie, Z. T. Liu, X. Y. Sun, H. Y. Wang, J. Y. Ding, Q. Jiang, L. Sun, F. H. Xue, Z. Huang, H. Su, Y. C. Yang, Z. C. Jiang, X. L. Lu, J. Yuan, S. Cho, J. S. Liu, Z. H. Liu, M. Ye, S. L. Zhang, H. M. Weng, Z. Liu, Y. F. Guo, Z. J. Wang, D. W. Shen. Spontaneous ferromagnetism induced topological transition in EuB6.Phys. Rev. Lett., 2022, 129(16): 166402
CrossRef
ADS
Google scholar
|
[205] |
Q. Zeng, C. Yi, J. Shen, B. Wang, H. Wei, Y. Shi, E. Liu. Berry curvature induced antisymmetric in-plane magneto-transport in magnetic Weyl EuB6.Appl. Phys. Lett., 2022, 121(16): 162405
CrossRef
ADS
Google scholar
|
[206] |
B. Chen, J. H. Yang, H. D. Wang, M. Imai, H. Ohta, C. Michioka, K. Yoshimura, M. H. Fang. Magnetic properties of layered itinerant electron ferromagnet Fe3GeTe2.J. Phys. Soc. Jpn., 2013, 82(12): 124711
CrossRef
ADS
Google scholar
|
[207] |
Y. Zhang, H. Lu, X. Zhu, S. Tan, W. Feng, Q. Liu, W. Zhang, Q. Chen, Y. Liu, X. Luo, D. Xie, L. Luo, Z. Zhang, X. Lai, Emergence of Kondo lattice behavior in a van der Waals itinerant ferromagnet. Fe3GeTe2.Sci. Adv., 2018, 4(1): eaao6791
CrossRef
ADS
Google scholar
|
[208] |
Y. Deng, Y. Yu, Y. Song, J. Zhang, N. Z. Wang, Z. Sun, Y. Yi, Y. Z. Wu, S. Wu, J. Zhu, J. Wang, X. H. Chen, Y. Zhang. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2.Nature, 2018, 563(7729): 94
CrossRef
ADS
Google scholar
|
[209] |
X. Lin, J. Ni. Layer-dependent intrinsic anomalous Hall effect in Fe3GeTe2.Phys. Rev. B, 2019, 100(8): 085403
CrossRef
ADS
Google scholar
|
[210] |
K. Kim, J. Seo, E. Lee, K. T. Ko, B. S. Kim, B. G. Jang, J. M. Ok, J. Lee, Y. J. Jo, W. Kang, J. H. Shim, C. Kim, H. W. Yeom, B. Il Min, B. J. Yang, J. S. Kim. Large anomalous Hall current induced by topological nodal lines in a ferromagnetic van der Waals semimetal.Nat. Mater., 2018, 17(9): 794
CrossRef
ADS
Google scholar
|
[211] |
H. J. Deiseroth, K. Aleksandrov, C. Reiner, L. Kienle, R. K. Kremer. Fe3GeTe2 and Ni3GeTe2 – two new layered transition‐metal compounds: Crystal structures, HRTEM investigations, and magnetic and electrical properties.Eur. J. Inorg. Chem., 2006, 2006(8): 1561
CrossRef
ADS
Google scholar
|
[212] |
J. Yi, H. Zhuang, Q. Zou, Z. Wu, G. Cao, S. Tang, S. A. Calder, P. R. C. Kent, D. Mandrus, Z. Gai. Competing antiferromagnetism in a quasi-2D itinerant ferromagnet: Fe3GeTe2.2D Mater., 2016, 4: 011005
CrossRef
ADS
Google scholar
|
[213] |
Y. Wang, C. Xian, J. Wang, B. Liu, L. Ling, L. Zhang, L. Cao, Z. Qu, Y. Xiong. Anisotropic anomalous Hall effect in triangular itinerant ferromagnet Fe3GeTe2.Phys. Rev. B, 2017, 96(13): 134428
CrossRef
ADS
Google scholar
|
[214] |
J. Ke, M. Yang, W. Xia, H. Zhu, C. Liu, R. Chen, C. Dong, W. Liu, M. Shi, Y. Guo, J. Wang. Magnetic and magneto-transport studies of two-dimensional ferromagnetic compound Fe3GeTe2.J. Phys.: Condens. Matter, 2020, 32(40): 405805
CrossRef
ADS
Google scholar
|
[215] |
H. Feng, Y. Li, Y. Shi, H. Y. Xie, Y. Li, Y. Xu. Resistance anomaly and linear magnetoresistance in thin flakes of itinerant ferromagnet Fe3GeTe2.Chin. Phys. Lett., 2022, 39(7): 077501
CrossRef
ADS
Google scholar
|
[216] |
J. Xu, W. A. Phelan, C. L. Chien. Large anomalous Nernst effect in a van der Waals ferromagnet Fe3GeTe2.Nano Lett., 2019, 19(11): 8250
CrossRef
ADS
Google scholar
|
[217] |
Z. Fei, B. Huang, P. Malinowski, W. Wang, T. Song, J. Sanchez, W. Yao, D. Xiao, X. Zhu, A. F. May, W. Wu, D. H. Cobden, J. H. Chu, X. Xu. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2.Nat. Mater., 2018, 17(9): 778
CrossRef
ADS
Google scholar
|
[218] |
Q. Li, M. Yang, C. Gong, R. V. Chopdekar, A. T. N’Diaye, J. Turner, G. Chen, A. Scholl, P. Shafer, E. Arenholz, A. K. Schmid, S. Wang, K. Liu, N. Gao, A. S. Admasu, S. W. Cheong, C. Hwang, J. Li, F. Wang, X. Zhang, Z. Qiu. Patterning-induced ferromagnetism of Fe3GeTe2 van der Waals materials beyond room temperature.Nano Lett., 2018, 18(9): 5974
CrossRef
ADS
Google scholar
|
[219] |
C. Tan, J. Lee, S. G. Jung, T. Park, S. Albarakati, J. Partridge, M. R. Field, D. G. McCulloch, L. Wang, C. Lee. Hard magnetic properties in nanoflake van der Waals Fe3GeTe2.Nat. Commun., 2018, 9(1): 1554
CrossRef
ADS
Google scholar
|
[220] |
X. Wang, J. Tang, X. Xia, C. He, J. Zhang, Y. Liu, C. Wan, C. Fang, C. Guo, W. Yang, Y. Guang, X. Zhang, H. Xu, J. Wei, M. Liao, X. Lu, J. Feng, X. Li, Y. Peng, H. Wei, R. Yang, D. Shi, X. Zhang, Z. Han, Z. Zhang, G. Zhang, G. Yu, X. Han. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2.Sci. Adv., 2019, 5(8): eaaw8904
CrossRef
ADS
Google scholar
|
[221] |
S. Y. Park, D. S. Kim, Y. Liu, J. Hwang, Y. Kim, W. Kim, J. Y. Kim, C. Petrovic, C. Hwang, S. K. Mo, H. J. Kim, B. C. Min, H. C. Koo, J. Chang, C. Jang, J. W. Choi, H. Ryu. Controlling the magnetic anisotropy of the van der Waals ferromagnet Fe3GeTe2 through hole doping.Nano Lett., 2020, 20(1): 95
CrossRef
ADS
Google scholar
|
[222] |
H. Wang, Y. Liu, P. Wu, W. Hou, Y. Jiang, X. Li, C. Pandey, D. Chen, Q. Yang, H. Wang, D. Wei, N. Lei, W. Kang, L. Wen, T. Nie, W. Zhao, K. L. Wang. Above room-temperature ferromagnetism in wafer-scale two-dimensional van der Waals Fe3GeTe2 tailored by a topological insulator.ACS Nano, 2020, 14(8): 10045
CrossRef
ADS
Google scholar
|
[223] |
I. K. Park, C. Gong, K. Kim, G. Lee. Controlling interlayer magnetic coupling in the two-dimensional magnet Fe3GeTe2.Phys. Rev. B, 2022, 105(1): 014406
CrossRef
ADS
Google scholar
|
[224] |
H. P. Wang, D. S. Wu, Y. G. Shi, N. L. Wang. Anisotropic transport and optical spectroscopy study on antiferromagnetic triangular lattice EuCd2As2: An interplay between magnetism and charge transport properties.Phys. Rev. B, 2016, 94(4): 045112
CrossRef
ADS
Google scholar
|
[225] |
M. C. Rahn, J. R. Soh, S. Francoual, L. S. I. Veiga, J. Strempfer, J. Mardegan, D. Y. Yan, Y. F. Guo, Y. G. Shi, A. T. Boothroyd. Coupling of magnetic order and charge transport in the candidate Dirac semimetal EuCd2As2.Phys. Rev. B, 2018, 97(21): 214422
CrossRef
ADS
Google scholar
|
[226] |
K. M. Taddei, L. Yin, L. D. Sanjeewa, Y. Li, J. Xing, C. dela Cruz, D. Phelan, A. S. Sefat, D. S. Parker. Single pair of Weyl nodes in the spin-canted structure of EuCd2As2.Phys. Rev. B, 2022, 105(14): L140401
CrossRef
ADS
Google scholar
|
[227] |
J. Ma, H. Wang, S. Nie, C. Yi, Y. Xu, H. Li, J. Jandke, W. Wulfhekel, Y. Huang, D. West, P. Richard, A. Chikina, V. N. Strocov, J. Mesot, H. Weng, S. Zhang, Y. Shi, T. Qian, M. Shi, H. Ding. Emergence of nontrivial low-energy Dirac fermions in antiferromagnetic EuCd2As2.Adv. Mater., 2020, 32(14): 1907565
CrossRef
ADS
Google scholar
|
[228] |
X. Cao, J. X. Yu, P. Leng, C. Yi, X. Chen, Y. Yang, S. Liu, L. Kong, Z. Li, X. Dong, Y. Shi, M. Bibes, R. Peng, J. Zang, F. Xiu. Giant nonlinear anomalous Hall effect induced by spin-dependent band structure evolution.Phys. Rev. Res., 2022, 4(2): 023100
CrossRef
ADS
Google scholar
|
[229] |
I. Schellenberg, U. Pfannenschmidt, M. Eul, C. Schwickert, R. Pöttgen, A121Sb and 151Eu Mössbauer spectroscopic investigation of EuCd2X2 (X = P. Sb) and YbCd2Sb2.Z. Anorg. Allg. Chem., 2011, 637(12): 1863
CrossRef
ADS
Google scholar
|
[230] |
L. L. Wang, N. H. Jo, B. Kuthanazhi, Y. Wu, R. J. McQueeney, A. Kaminski, P. C. Canfield. Single pair of Weyl fermions in the half-metallic semimetal EuCd2As2.Phys. Rev. B, 2019, 99(24): 245147
CrossRef
ADS
Google scholar
|
[231] |
J. R. Soh, C. Donnerer, K. M. Hughes, E. Schierle, E. Weschke, D. Prabhakaran, A. T. Boothroyd. Magnetic and electronic structure of the layered rare-earth pnictide EuCd2Sb2.Phys. Rev. B, 2018, 98(6): 064419
CrossRef
ADS
Google scholar
|
[232] |
J. Krishna, T. Nautiyal, T. Maitra. First-principles study of electronic structure, transport, and optical properties of EuCd2As2.Phys. Rev. B, 2018, 98(12): 125110
CrossRef
ADS
Google scholar
|
[233] |
Y. Sun, Y. Li, S. Li, C. Yi, H. Deng, X. Du, L. Liu, C. Zhu, Y. Li, Z. Wang, H. Mao, Y. Shi, R. Wu. Experimental evidence for field-induced metamagnetic transition of EuCd2As2.J. Rare Earths, 2022, 40(10): 1606
CrossRef
ADS
Google scholar
|
[234] |
G. Hua, S. Nie, Z. Song, R. Yu, G. Xu, K. Yao. Dirac semimetal in type-IV magnetic space groups.Phys. Rev. B, 2018, 98(20): 201116
CrossRef
ADS
Google scholar
|
[235] |
F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S. P. Parkin, B. A. Bernevig, T. Neupert. Higher-order topological insulators.Sci. Adv., 2018, 4(6): eaat0346
CrossRef
ADS
Google scholar
|
[236] |
J. R. Soh, F. de Juan, M. G. Vergniory, N. B. M. Schröter, M. C. Rahn, D. Y. Yan, J. Jiang, M. Bristow, P. A. Reiss, J. N. Blandy, Y. F. Guo, Y. G. Shi, T. K. Kim, A. McCollam, S. H. Simon, Y. Chen, A. I. Coldea, A. T. Boothroyd. Ideal Weyl semimetal induced by magnetic exchange.Phys. Rev. B, 2019, 100(20): 201102
CrossRef
ADS
Google scholar
|
[237] |
L. A. Fenner, A. A. Dee, A. S. Wills. Non-collinearity and spin frustration in the itinerant Kagomé ferromagnet Fe3Sn2.J. Phys.: Condens. Matter, 2009, 21(45): 452202
CrossRef
ADS
Google scholar
|
[238] |
L. Ye, M. Kang, J. Liu, F. von Cube, C. R. Wicker, T. Suzuki, C. Jozwiak, A. Bostwick, E. Rotenberg, D. C. Bell, L. Fu, R. Comin, J. G. Checkelsky. Massive Dirac fermions in a ferromagnetic Kagomé metal.Nature, 2018, 555(7698): 638
CrossRef
ADS
Google scholar
|
[239] |
B. Malaman, B. Roques, A. Courtois, J. Protas. Structure cristalline du stannure de fer Fe3Sn2.Acta Crystallogr. B, 1976, 32(5): 1348
CrossRef
ADS
Google scholar
|
[240] |
G. L. Caer, B. Malaman, B. Roques. Mossbauer effect study of Fe3Sn2.J. Phys. F Met. Phys., 1978, 8(2): 323
CrossRef
ADS
Google scholar
|
[241] |
B. Malaman, D. Fruchart, G. L. Caer. Magnetic properties of Fe3Sn2 (II): Neutron diffraction study (and Mossbauer effect).J. Phys. F Met. Phys., 1978, 8(11): 2389
CrossRef
ADS
Google scholar
|
[242] |
G. Le Caer, B. Malaman, L. Haggstrom, T. Ericsson. Magnetic properties of Fe3Sn2 (III): A 119Sn Mossbauer study.J. Phys. F Met. Phys., 1979, 9(9): 1905
CrossRef
ADS
Google scholar
|
[243] |
Z. Lin, J. H. Choi, Q. Zhang, W. Qin, S. Yi, P. Wang, L. Li, Y. Wang, H. Zhang, Z. Sun, L. Wei, S. Zhang, T. Guo, Q. Lu, J. H. Cho, C. Zeng, Z. Zhang. Flatbands and emergent ferromagnetic ordering in Fe3Sn2 Kagomé lattices.Phys. Rev. Lett., 2018, 121(9): 096401
CrossRef
ADS
Google scholar
|
[244] |
J. X. Yin, S. S. Zhang, H. Li, K. Jiang, G. Chang, B. Zhang, B. Lian, C. Xiang, I. Belopolski, H. Zheng, T. A. Cochran, S. Y. Xu, G. Bian, K. Liu, T. R. Chang, H. Lin, Z. Y. Lu, Z. Wang, S. Jia, W. Wang, M. Z. Hasan. Giant and anisotropic many-body spin−orbit tunability in a strongly correlated Kagomé magnet.Nature, 2018, 562(7725): 91
CrossRef
ADS
Google scholar
|
[245] |
Q. Wang, S. Sun, X. Zhang, F. Pang, H. Lei. Anomalous Hall effect in a ferromagnetic Fe3Sn2 single crystal with a geometrically frustrated Fe bilayer Kagomé lattice.Phys. Rev. B, 2016, 94(7): 075135
CrossRef
ADS
Google scholar
|
[246] |
Z. P. Hou, B. Ding, H. Li, G. Z. Xu, W. H. Wang, G. H. Wu. Observation of new-type magnetic skymrions with extremerely high temperature stability and fabrication of skyrmion-based race-track memory device.Acta Phys. Sin., 2018, 67(13): 137509
CrossRef
ADS
Google scholar
|
[247] |
H. Li, B. Ding, J. Chen, Z. Li, Z. Hou, E. Liu, H. Zhang, X. Xi, G. Wu, W. Wang. Large topological Hall effect in a geometrically frustrated Kagomé magnet Fe3Sn2.Appl. Phys. Lett., 2019, 114(19): 192408
CrossRef
ADS
Google scholar
|
[248] |
C. D. O’Neill, A. S. Wills, A. D. Huxley. Possible topological contribution to the anomalous Hall effect of the noncollinear ferromagnet Fe3Sn2.Phys. Rev. B, 2019, 100(17): 174420
CrossRef
ADS
Google scholar
|
[249] |
Q. Wang, Q. Yin, H. Lei. Giant topological Hall effect of ferromagnetic Kagomé metal Fe3Sn2.Chin. Phys. B, 2020, 29(1): 017101
CrossRef
ADS
Google scholar
|
[250] |
Z. Hou, W. Ren, B. Ding, G. Xu, Y. Wang, B. Yang, Q. Zhang, Y. Zhang, E. Liu, F. Xu, W. Wang, G. Wu, X. Zhang, B. Shen, Z. Zhang. Observation of various and spontaneous magnetic skyrmionic bubbles at room temperature in a frustrated Kagomé magnet with uniaxial magnetic anisotropy.Adv. Mater., 2017, 29(29): 1701144
CrossRef
ADS
Google scholar
|
[251] |
Z. Hou, Q. Zhang, G. Xu, C. Gong, B. Ding, Y. Wang, H. Li, E. Liu, F. Xu, H. Zhang, Y. Yao, G. Wu, X. X. Zhang, W. Wang. Creation of single chain of nanoscale skyrmion bubbles with record-high temperature stability in a geometrically confined nanostripe.Nano Lett., 2018, 18(2): 1274
CrossRef
ADS
Google scholar
|
[252] |
L. Gao, S. Shen, Q. Wang, W. Shi, Y. Zhao, C. Li, W. Cao, C. Pei, J. Y. Ge, G. Li, J. Li, Y. Chen, S. Yan, Y. Qi, Anomalous Hall effect in ferrimagnetic metal RMn6Sn6 (R = Tb. Ho) with clean Mn Kagomé lattice.Appl. Phys. Lett., 2021, 119(9): 092405
CrossRef
ADS
Google scholar
|
[253] |
J. X. Yin, W. Ma, T. A. Cochran, X. Xu, S. S. Zhang, H. J. Tien, N. Shumiya, G. Cheng, K. Jiang, B. Lian, Z. Song, G. Chang, I. Belopolski, D. Multer, M. Litskevich, Z. J. Cheng, X. P. Yang, B. Swidler, H. Zhou, H. Lin, T. Neupert, Z. Wang, N. Yao, T. R. Chang, S. Jia, M. Zahid Hasan. Quantum-limit Chern topological magnetism in TbMn6Sn6.Nature, 2020, 583(7817): 533
CrossRef
ADS
Google scholar
|
[254] |
D. Chen, C. Le, C. Fu, H. Lin, W. Schnelle, Y. Sun, C. Felser. Large anomalous Hall effect in the Kagomé ferromagnet LiMn6Sn6.Phys. Rev. B, 2021, 103(14): 144410
CrossRef
ADS
Google scholar
|
[255] |
B. C. El Idrissi, G. Venturini, B. Malaman. Crystal structures of RFe6Sn6 (R = Sc, Y, Gd−Tm, Lu) rare-earth iron stannides.Mater. Res. Bull., 1991, 26(12): 1331
CrossRef
ADS
Google scholar
|
[256] |
G. Venturini, B. C. E. Idrissi, B. Malaman, Magnetic properties of RMn6Sn6 (R = Sc. Lu) compounds with HfFe6Ge6 type structure.J. Magn. Magn. Mater., 1991, 94(1−2): 35
CrossRef
ADS
Google scholar
|
[257] |
N. J. Ghimire, R. L. Dally, L. Poudel, D. C. Jones, D. Michel, N. T. Magar, M. Bleuel, M. A. McGuire, J. S. Jiang, J. F. Mitchell, J. W. Lynn, I. I. Mazin. Competing magnetic phases and fluctuation-driven scalar spin chirality in the Kagomé metal YMn6Sn6.Sci. Adv., 2020, 6(51): eabe2680
CrossRef
ADS
Google scholar
|
[258] |
W. Ma, X. Xu, J. X. Yin, H. Yang, H. Zhou, Z. J. Cheng, Y. Huang, Z. Qu, F. Wang, M. Z. Hasan, S. Jia, Rareearth engineering in RMn6Sn6 (R = Gd−Tm. Lu) topological Kagomé magnets.Phys. Rev. Lett., 2021, 126(24): 246602
CrossRef
ADS
Google scholar
|
[259] |
M. Li, Q. Wang, G. Wang, Z. Yuan, W. Song, R. Lou, Z. Liu, Y. Huang, Z. Liu, H. Lei, Z. Yin, S. Wang. Dirac cone, flat band and saddle point in Kagomé magnet YMn6Sn6.Nat. Commun., 2021, 12(1): 3129
CrossRef
ADS
Google scholar
|
[260] |
X. Gu, C. Chen, W. S. Wei, L. L. Gao, J. Y. Liu, X. Du, D. Pei, J. S. Zhou, R. Z. Xu, Z. X. Yin, W. X. Zhao, Y. D. Li, C. Jozwiak, A. Bostwick, E. Rotenberg, D. Backes, L. S. I. Veiga, S. Dhesi, T. Hesjedal, G. van der Laan, H. F. Du, W. J. Jiang, Y. P. Qi, G. Li, W. J. Shi, Z. K. Liu, Y. L. Chen, L. X. Yang, Robust Kagomé electronic structure in the topological quantum magnets XMn6Sn6 (X=Dy. Gd, Y).Phys. Rev. B, 2022, 105(15): 155108
CrossRef
ADS
Google scholar
|
[261] |
S. Roychowdhury, A. M. Ochs, S. N. Guin, K. Samanta, J. Noky, C. Shekhar, M. G. Vergniory, J. E. Goldberger, C. Felser. Large room temperature anomalous transverse thermoelectric effect in Kagomé antiferromagnet YMn6Sn6.Adv. Mater., 2022, 34(40): e2201350
CrossRef
ADS
Google scholar
|
[262] |
G. Dhakal, F. Cheenicode Kabeer, A. K. Pathak, F. Kabir, N. Poudel, R. Filippone, J. Casey, A. Pradhan Sakhya, S. Regmi, C. Sims, K. Dimitri, P. Manfrinetti, K. Gofryk, P. M. Oppeneer, M. Neupane. Anisotropically large anomalous and topological Hall effect in a Kagomé magnet.Phys. Rev. B, 2021, 104(16): L161115
CrossRef
ADS
Google scholar
|
[263] |
Q. Wang, K. J. Neubauer, C. Duan, Q. Yin, S. Fujitsu, H. Hosono, F. Ye, R. Zhang, S. Chi, K. Krycka, H. Lei, P. Dai. Field-induced topological Hall effect and double-fan spin structure with a c-axis component in the metallic Kagomé antiferromagnetic compound YMn6Sn6.Phys. Rev. B, 2021, 103: 014416
CrossRef
ADS
Google scholar
|
[264] |
F. Kabir, R. Filippone, G. Dhakal, Y. Lee, N. Poudel, J. Casey, A. P. Sakhya, S. Regmi, R. Smith, P. Manfrinetti, L. Ke, K. Gofryk, M. Neupane, A. K. Pathak. Unusual magnetic and transport properties in HoMn6Sn6 Kagomé magnet.Phys. Rev. Mater., 2022, 6(6): 064404
CrossRef
ADS
Google scholar
|
[265] |
J. Lee, E. Mun, 0 magnetic property of single crystals RV6Sn6 (R=Y. Lu).Phys. Rev. Mater., 2022, 6(8): 083401
CrossRef
ADS
Google scholar
|
[266] |
S. Peng, Y. Han, G. Pokharel, J. Shen, Z. Li, M. Hashimoto, D. Lu, B. R. Ortiz, Y. Luo, H. Li, M. Guo, B. Wang, S. Cui, Z. Sun, Z. Qiao, S. D. Wilson, J. He, RealizingKagomé band structure in two-dimensional Kagomé surface states of RV6Sn6 (R=Gd. Ho).Phys. Rev. Lett., 2021, 127(26): 266401
CrossRef
ADS
Google scholar
|
[267] |
Y. Hu, X. Wu, Y. Yang, S. Gao, N. C. Plumb, A. P. Schnyder, W. Xie, J. Ma, M. Shi. Tunable topological Dirac surface states and van Hove singularities in Kagomé metal GdV6Sn6.Sci. Adv., 2022, 8: eadd2024
CrossRef
ADS
Google scholar
|
[268] |
E. Cheng, W. Xia, X. Shi, H. Fang, C. Wang, C. Xi, S. Xu, D. C. Peets, L. Wang, H. Su, L. Pi, W. Ren, X. Wang, N. Yu, Y. Chen, W. Zhao, Z. Liu, Y. Guo, S. Li. Magnetism-induced topological transition in EuAs3.Nat. Commun., 2021, 12(1): 6970
CrossRef
ADS
Google scholar
|
[269] |
W. Bauhofer, M. Wittmann, H. G. v Schnering, Structure properties of CaAs3. BaAs3 and EuAs3.J. Phys. Chem. Solids, 1981, 42(8): 687
CrossRef
ADS
Google scholar
|
[270] |
T. Chattopadhyay, H. G. v. Schnering, P. J. Brown. Neutron diffraction study of the magnetic ordering in EuAs3.J. Magn. Magn. Mater., 1982, 28(3): 247
CrossRef
ADS
Google scholar
|
[271] |
T. Chattopadhyay, P. J. Brown. Field-induced transverse-sine-wave-to-longitudinal-sine-wave transition in EuAs3.Phys. Rev. B, 1988, 38(1): 795
CrossRef
ADS
Google scholar
|
[272] |
T. Chatterji, K. D. Liß, T. Tschentscher, B. Janossy, J. Strempfer, T. Brückel. High-energy non-resonant X-ray magnetic scattering from EuAs3.Solid State Commun., 2004, 131(11): 713
CrossRef
ADS
Google scholar
|
[273] |
T. Chatterji, W. Henggeler. μSR investigation of the magnetic ordering in EuAs3.Solid State Commun., 2004, 132(9): 617
CrossRef
ADS
Google scholar
|
[274] |
W. Bauhofer, K. A. McEwen. Anisotropic magnetoresistance of the semimetallic antiferromagnet EuAs3.Phys. Rev. B, 1991, 43(16): 13450
CrossRef
ADS
Google scholar
|
[275] |
L. Elcoro, B. J. Wieder, Z. Song, Y. Xu, B. Bradlyn, B. A. Bernevig. Magnetic topological quantum chemistry.Nat. Commun., 2021, 12(1): 5965
CrossRef
ADS
Google scholar
|
[276] |
Y. Xu, L. Elcoro, Z. D. Song, B. J. Wieder, M. G. Vergniory, N. Regnault, Y. Chen, C. Felser, B. A. Bernevig. High-throughput calculations of magnetic topological materials.Nature, 2020, 586(7831): 702
CrossRef
ADS
Google scholar
|
[277] |
W. Haruki, P. H. Chun, V. Ashvin. Structure and topology of band structures in the 1651 magnetic space groups.Sci. Adv., 2018, 4: eaat8685
CrossRef
ADS
Google scholar
|
[278] |
J. Gao, Z. Guo, H. Weng, Z. Wang, Magnetic band representations. Fu−Kane-like symmetry indicators, and magnetic topological materials.Phys. Rev. B, 2022, 106(3): 035150
CrossRef
ADS
Google scholar
|
[279] |
K. Choudhary, K. F. Garrity, N. J. Ghimire, N. Anand, F. Tavazza. High-throughput search for magnetic topological materials using spin−orbit spillage, machine learning, and experiments.Phys. Rev. B, 2021, 103(15): 155131
CrossRef
ADS
Google scholar
|
[280] |
A. Bouhon, G. F. Lange, R. J. Slager. Topological correspondence between magnetic space group representations and subdimensions.Phys. Rev. B, 2021, 103(24): 245127
CrossRef
ADS
Google scholar
|
[281] |
J. Gooth, B. Bradlyn, S. Honnali, C. Schindler, N. Kumar, J. Noky, Y. Qi, C. Shekhar, Y. Sun, Z. Wang, B. A. Bernevig, C. Felser. Axionic charge-density wave in the Weyl semimetal (TaSe4)2I.Nature, 2019, 575(7782): 315
CrossRef
ADS
Google scholar
|
[282] |
L. Šmejkal, A. H. MacDonald, J. Sinova, S. Nakatsuji, T. Jungwirth. Anomalous Hall antiferromagnets.Nat. Rev. Mater., 2022, 7(6): 482
CrossRef
ADS
Google scholar
|
[283] |
L. Šmejkal, J. Sinova, T. Jungwirth. Emerging research landscape of altermagnetism.Phys. Rev. X, 2022, 12(4): 040501
CrossRef
ADS
Google scholar
|
[284] |
L. Šmejkal, J. Sinova, T. Jungwirth. Beyond conventional ferromagnetism and antiferromagnetism: A phase with nonrelativistic spin and crystal rotation symmetry.Phys. Rev. X, 2022, 12(3): 031042
CrossRef
ADS
Google scholar
|
[285] |
N. J. Ghimire, A. S. Botana, J. S. Jiang, J. Zhang, Y. S. Chen, J. F. Mitchell. Large anomalous Hall effect in the chiral-lattice antiferromagnet CoNb3S6.Nat. Commun., 2018, 9(1): 3280
CrossRef
ADS
Google scholar
|
[286] |
L. Šmejkal, A. B. Hellenes, R. González-Hernández, J. Sinova, T. Jungwirth. Giant and tunneling magnetoresistance in unconventional collinear antiferromagnets with nonrelativistic spin−momentum coupling.Phys. Rev. X, 2022, 12(1): 011028
CrossRef
ADS
Google scholar
|
[287] |
Z. Feng, X. Zhou, L. Šmejkal, L. Wu, Z. Zhu, H. Guo, R. González-Hernández, X. Wang, H. Yan, P. Qin, X. Zhang, H. Wu, H. Chen, Z. Meng, L. Liu, Z. Xia, J. Sinova, T. Jungwirth, Z. Liu. An anomalous Hall effect in altermagnetic ruthenium dioxide.Nat. Electron., 2022, 5(11): 735
CrossRef
ADS
Google scholar
|
[288] |
B. Schrunk, Y. Kushnirenko, B. Kuthanazhi, J. Ahn, L. L. Wang, E. O’Leary, K. Lee, A. Eaton, A. Fedorov, R. Lou, V. Voroshnin, O. J. Clark, J. Sanchez-Barriga, S. L. Bud’ko, R. J. Slager, P. C. Canfield, A. Kaminski. Emergence of Fermi arcs due to magnetic splitting in an antiferromagnet.Nature, 2022, 603(7902): 610
CrossRef
ADS
Google scholar
|
[289] |
S. Karube, T. Tanaka, D. Sugawara, N. Kadoguchi, M. Kohda, J. Nitta. Observation of spin-splitter torque in collinear antiferromagnetic RuO2.Phys. Rev. Lett., 2022, 129(13): 137201
CrossRef
ADS
Google scholar
|
[290] |
H. Bai, L. Han, X. Y. Feng, Y. J. Zhou, R. X. Su, Q. Wang, L. Y. Liao, W. X. Zhu, X. Z. Chen, F. Pan, X. L. Fan, C. Song. Observation of spin splitting torque in a collinear antiferromagnet RuO2.Phys. Rev. Lett., 2022, 128(19): 197202
CrossRef
ADS
Google scholar
|
[291] |
D. F. Shao, S. H. Zhang, M. Li, C. B. Eom, E. Y. Tsymbal. Spin-neutral currents for spintronics.Nat. Commun., 2021, 12(1): 7061
CrossRef
ADS
Google scholar
|
[292] |
R. González-Hernández, L. Smejkal, K. Vyborny, Y. Yahagi, J. Sinova, T. Jungwirth, J. Zelezny. Efficient electrical spin splitter based on nonrelativistic collinear antiferromagnetism.Phys. Rev. Lett., 2021, 126(12): 127701
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |