Noisy intermediate-scale quantum computers

Bin Cheng, Xiu-Hao Deng, Xiu Gu, Yu He, Guangchong Hu, Peihao Huang, Jun Li, Ben-Chuan Lin, Dawei Lu, Yao Lu, Chudan Qiu, Hui Wang, Tao Xin, Shi Yu, Man-Hong Yung, Junkai Zeng, Song Zhang, Youpeng Zhong, Xinhua Peng, Franco Nori, Dapeng Yu

PDF(11392 KB)
PDF(11392 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (2) : 21308. DOI: 10.1007/s11467-022-1249-z
REVIEW ARTICLE

Noisy intermediate-scale quantum computers

Author information +
History +

Abstract

Quantum computers have made extraordinary progress over the past decade, and significant milestones have been achieved along the path of pursuing universal fault-tolerant quantum computers. Quantum advantage, the tipping point heralding the quantum era, has been accomplished along with several waves of breakthroughs. Quantum hardware has become more integrated and architectural compared to its toddler days. The controlling precision of various physical systems is pushed beyond the fault-tolerant threshold. Meanwhile, quantum computation research has established a new norm by embracing industrialization and commercialization. The joint power of governments, private investors, and tech companies has significantly shaped a new vibrant environment that accelerates the development of this field, now at the beginning of the noisy intermediate-scale quantum era. Here, we first discuss the progress achieved in the field of quantum computation by reviewing the most important algorithms and advances in the most promising technical routes, and then summarizing the next-stage challenges. Furthermore, we illustrate our confidence that solid foundations have been built for the fault-tolerant quantum computer and our optimism that the emergence of quantum killer applications essential for human society shall happen in the future.

Graphical abstract

Keywords

quantum computer / quantum algorithm / quantum chip

Cite this article

Download citation ▾
Bin Cheng, Xiu-Hao Deng, Xiu Gu, Yu He, Guangchong Hu, Peihao Huang, Jun Li, Ben-Chuan Lin, Dawei Lu, Yao Lu, Chudan Qiu, Hui Wang, Tao Xin, Shi Yu, Man-Hong Yung, Junkai Zeng, Song Zhang, Youpeng Zhong, Xinhua Peng, Franco Nori, Dapeng Yu. Noisy intermediate-scale quantum computers. Front. Phys., 2023, 18(2): 21308 https://doi.org/10.1007/s11467-022-1249-z

References

[1]
P. Benioff. The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. J. Stat. Phys., 1980, 22(5): 563
CrossRef ADS Google scholar
[2]
R. P. Feynman. Simulating physics with computers. Int. J. Theor. Phys., 1982, 21(6−7): 467
CrossRef ADS Google scholar
[3]
Y.I. Manin, Vychislimoe i nevychislimoe [Computable and Noncomputable], Sov. Radio, 13 (1980) (in Russian)
[4]
P.Shor, Algorithms for quantum computation: Discrete logarithms and factoring, in: Proceedings 35th Annual Symposium on Foundations of Computer Science, IEEE Comput. Soc. Press, Santa Fe, NM, USA, 1994, pp 124–134
[5]
M.A. NielsenI.L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2000
[6]
J. I. Cirac, P. Zoller. Quantum computations with cold trapped ions. Phys. Rev. Lett., 1995, 74(20): 4091
CrossRef ADS Google scholar
[7]
D. G. Cory, A. F. Fahmy, T. F. Havel. Ensemble quantum computing by NMR spectroscopy. Proc. Natl. Acad. Sci. USA, 1997, 94(5): 1634
CrossRef ADS Google scholar
[8]
N. A. Gershenfeld, I. L. Chuang. Bulk spinresonance quantum computation. Science, 1997, 275(5298): 350
CrossRef ADS Google scholar
[9]
D. G. Cory, M. D. Price, T. F. Havel. Nuclear magnetic resonance spectroscopy: An experimentally accessible paradigm for quantum computing. Physica D, 1998, 120(1−2): 82
CrossRef ADS Google scholar
[10]
B. E. Kane. A silicon-based nuclear spin quantum computer. Nature, 1998, 393(6681): 133
CrossRef ADS Google scholar
[11]
D. Loss, D. P. DiVincenzo. Quantum computation with quantum dots. Phys. Rev. A, 1998, 57(1): 120
CrossRef ADS Google scholar
[12]
Y. Nakamura, Y. A. Pashkin, J. S. Tsai. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature, 1999, 398(6730): 786
CrossRef ADS Google scholar
[13]
F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin. . Quantum supremacy using a programmable superconducting processor. Nature, 2019, 574(7779): 505
CrossRef ADS Google scholar
[14]
Y. Wu, W. S. Bao, S. Cao, F. Chen, M. C. Chen. . Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett., 2021, 127(18): 180501
CrossRef ADS Google scholar
[15]
Q. Zhu, S. Cao, F. Chen, M. C. Chen, X. Chen. . Quantum computational advantage via 60-qubit 24-cycle random circuit sampling. Sci. Bull. (Beijing), 2022, 67(3): 240
CrossRef ADS Google scholar
[16]
H. S. Zhong, H. Wang, Y. H. Deng, M. C. Chen, L. C. Peng. . Quantum computational advantage using photons. Science, 2020, 370(6523): 1460
CrossRef ADS Google scholar
[17]
H. S. Zhong, Y. H. Deng, J. Qin, H. Wang, M. C. Chen. . Phase-programmable Gaussian boson sampling using stimulated squeezed light. Phys. Rev. Lett., 2021, 127(18): 180502
CrossRef ADS Google scholar
[18]
L. S. Madsen, F. Laudenbach, M. F. Askarani, F. Rortais, T. Vincent. . Quantum computational advantage with a programmable photonic processor. Nature, 2022, 606(7912): 75
CrossRef ADS Google scholar
[19]
M. W. Johnson, M. H. Amin, S. Gildert, T. Lanting, F. Hamze. . Quantum annealing with manufactured spins. Nature, 2011, 473(7346): 194
CrossRef ADS Google scholar
[20]
S. Krinner, N. Lacroix, A. Remm, A. Di Paolo, E. Genois, C. Leroux, C. Hellings, S. Lazar, F. Swiadek, J. Herrmann, G. J. Norris, C. K. Andersen, M. Müller, A. Blais, C. Eichler, A. Wallraff. Realizing repeated quantum error correction in a distance-three surface code. Nature, 2022, 605(7911): 669
CrossRef ADS Google scholar
[21]
Z. Chen, K. J. Satzinger, J. Atalaya, A. N. Korotkov, A. Dunsworth. . Exponential suppression of bit or phase errors with cyclic error correction. Nature, 2021, 595(7867): 383
CrossRef ADS Google scholar
[22]
C. K. Andersen, A. Remm, S. Lazar, S. Krinner, N. Lacroix, G. J. Norris, M. Gabureac, C. Eichler, A. Wallraff. Repeated quantum error detection in a surface code. Nat. Phys., 2020, 16(8): 875
CrossRef ADS Google scholar
[23]
Y. Zhao, Y. Ye, H. L. Huang, Y. Zhang, D. Wu. . Realization of an error-correcting surface code with superconducting qubits. Phys. Rev. Lett., 2022, 129(3): 030501
CrossRef ADS Google scholar
[24]
J. F. Marques, B. M. Varbanov, M. S. Moreira, H. Ali, N. Muthusubramanian, C. Zachariadis, F. Battistel, M. Beekman, N. Haider, W. Vlothuizen, A. Bruno, B. M. Terhal, L. DiCarlo. Logical-qubit operations in an error-detecting surface code. Nat. Phys., 2022, 18(1): 80
CrossRef ADS Google scholar
[25]
F. van Riggelen, W. I. L. Lawrie, M. Russ, N. W. Hendrickx, A. Sammak, M. Rispler, B. M. Terhal, G. Scappucci, M. Veldhorst. Phase flip code with semiconductor spin qubits. npj Quantum Inf., 2022, 8: 124
CrossRef ADS Google scholar
[26]
K. Takeda, A. Noiri, T. Nakajima, T. Kobayashi, S. Tarucha. Quantum error correction with silicon spin qubits. Nature, 2022, 608(7924): 682
CrossRef ADS Google scholar
[27]
G. Waldherr, Y. Wang, S. Zaiser, M. Jamali, T. Schulte-Herbruggen, H. Abe, T. Ohshima, J. Isoya, J. F. Du, P. Neumann, J. Wrachtrup. Quantum error correction in a solid-state hybrid spin register. Nature, 2014, 506(7487): 204
CrossRef ADS Google scholar
[28]
T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, R. Hanson. Universal control and error correction in multi-qubit spin registers in diamond. Nat. Nanotechnol., 2014, 9(3): 171
CrossRef ADS Google scholar
[29]
M. Abobeih, Y. Wang, J. Randall, S. Loenen, C. Bradley, M. Markham, D. Twitchen, B. Terhal, T. Taminiau. Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature, 2022, 606(7916): 884
CrossRef ADS Google scholar
[30]
I. Buluta, F. Nori. Quantum simulators. Science, 2009, 326(5949): 108
CrossRef ADS Google scholar
[31]
I. M. Georgescu, S. Ashhab, F. Nori. Quantum simulation. Rev. Mod. Phys., 2014, 86(1): 153
CrossRef ADS Google scholar
[32]
J. Argüello-Luengo, A. Gonzalez-Tudela, T. Shi, P. Zoller, J. I. Cirac. Analogue quantum chemistry simulation. Nature, 2019, 574(7777): 215
CrossRef ADS Google scholar
[33]
W. Hofstetter, T. Qin. Quantum simulation of strongly correlated condensed matter systems. J. Phys. At. Mol. Opt. Phys., 2018, 51(8): 082001
CrossRef ADS Google scholar
[34]
R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank. . Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature, 2014, 508(7497): 500
CrossRef ADS Google scholar
[35]
K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-Lea, A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann, T. Menke, W.-K. Mok, S. Sim, L.-C. Kwek, A. Aspuru-Guzik. Noisy intermediate-scale quantum (NISQ) algorithms. Rev. Mod. Phys., 2022, 94: 015004
CrossRef ADS Google scholar
[36]
A. Peruzzo, J. McClean, P. Shadbolt, M. H. Yung, X. Q. Zhou, P. J. Love, A. Aspuru-Guzik, J. L. O’Brien. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun., 2014, 5(1): 4213
CrossRef ADS Google scholar
[37]
K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-Lea, A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann, T. Menke, W. K. Mok, S. Sim, L. C. Kwek, A. Aspuru-Guzik. Noisy intermediatescale quantum algorithms. Rev. Mod. Phys., 2022, 94(1): 015004
CrossRef ADS Google scholar
[38]
A. W. Harrow, A. Hassidim, S. Lloyd. Quantum algorithm for linear systems of equations. Phys. Rev. Lett., 2009, 103(15): 150502
CrossRef ADS Google scholar
[39]
N.H. ChiaA. GilyenT.LiH.H. LinE.Tang C.Wang, Sampling-based sublinear low-rank matrix arithmetic framework for dequantizing quantum machine learning, in: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Association for Computing Machinery, New York, NY, USA, 2020, pp 387–400
[40]
E. R. MacQuarrie, C. Simon, S. Simmons, E. Maine. The emerging commercial landscape of quantum computing. Nat. Rev. Phys., 2020, 2(11): 596
CrossRef ADS Google scholar
[41]
G. Donati. A look at the full stack. Nat. Rev. Phys., 2021, 3(4): 226
CrossRef ADS Google scholar
[42]
Y. Alexeev, D. Bacon, K. R. Brown, R. Calderbank, L. D. Carr. . Quantum computer systems for scientific discovery. PRX Quantum, 2021, 2(1): 017001
CrossRef ADS Google scholar
[43]
D. P. DiVincenzo, D. Bacon, J. Kempe, G. Burkard, K. B. Whaley. Universal quantum computation with the exchange interaction. Nature, 2000, 408(6810): 339
CrossRef ADS Google scholar
[44]
A. Das, B. K. Chakrabarti. Colloquium: Quantum annealing and analog quantum computation. Rev. Mod. Phys., 2008, 80(3): 1061
CrossRef ADS Google scholar
[45]
S. R. Elliott, M. Franz. Colloquium: Majorana fermions in nuclear, particle, and solid-state physics. Rev. Mod. Phys., 2015, 87(1): 137
CrossRef ADS Google scholar
[46]
E. Prada, P. San-Jose, M. W. A. de Moor, A. Geresdi, E. J. H. Lee, J. Klinovaja, D. Loss, J. Nygard, R. Aguado, L. P. Kouwenhoven. From Andreev to Majorana bound states in hybrid superconductor–semiconductor nanowires. Nat. Rev. Phys., 2020, 2(10): 575
CrossRef ADS Google scholar
[47]
D. Deutsch. Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A, 1985, 400(1818): 97
CrossRef ADS Google scholar
[48]
D. Deutsch, R. Jozsa. Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A, 1992, 439(1907): 553
CrossRef ADS Google scholar
[49]
E.BernsteinU. Vazirani, Quantum complexity theory, in: Proceedings of the Twenty-fifth Annual ACM Symposium on Theory of Computing, STOC ’93, Association for Computing Machinery, New York, NY, USA, 1993, pp 11–20
[50]
D.Simon, On the power of quantum computation, in: Proceedings 35th Annual Symposium on Foundations of Computer Science, IEEE Comput. Soc. Press, Santa Fe, NM, USA, 1994, pp 116–123
[51]
R. Cleve, A. Ekert, C. Macchiavello, M. Mosca. Quantum algorithms revisited. Proc. R. Soc. Lond. A, 1998, 454(1969): 339
CrossRef ADS Google scholar
[52]
A.Y. Kitaev, Quantum measurements and the Abelian stabilizer problem, arXiv: quant-ph/9511026 (1995)
[53]
R. Jozsa. Quantum algorithms and the Fourier transform. Proc. R. Soc. Lond. A, 1998, 454(1969): 323
CrossRef ADS Google scholar
[54]
L.K. Grover, A fast quantum mechanical algorithm for database search, in: Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, 1996, pp 212–219
[55]
L. K. Grover. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett., 1997, 79(2): 325
CrossRef ADS Google scholar
[56]
C. H. Bennett, E. Bernstein, G. Brassard, U. Vazirani. Strengths and weaknesses of quantum computing. SIAM J. Comput., 1997, 26(5): 1510
CrossRef ADS Google scholar
[57]
G.BrassardP. Hoyer, An exact quantum polynomial-time algorithm for Simon’s problem, in Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems, IEEE Comput. Soc, Ramat-Gan, Israel, 1997, pp 12–23
[58]
M. Bϕyer, G. Brassard, P. Høyer, A. Tapp. Tight bounds on quantum searching. Fortschr. Phys., 1998, 46(4−5): 493
CrossRef ADS Google scholar
[59]
G.BrassardP. HϕyerM.MoscaA.Tapp, Quantum amplitude amplification and estimation, in: Contemporary Mathematics, Vol. 305, edited by S. J. Lomonaco and H. E. Brandt, American Mathematical Society, Providence, Rhode Island, 2002, pp 53–74
[60]
L. K. Grover. Fixed-point quantum search. Phys. Rev. Lett., 2005, 95(15): 150501
CrossRef ADS Google scholar
[61]
L.K. GroverA. PatelT.Tulsi, Quantum algorithms with fixed points: The case of databas search, arXiv: quant-ph/0603132 (2006)
[62]
T. J. Yoder, G. H. Low, I. L. Chuang. Fixed-point quantum search with an optimal number of queries. Phys. Rev. Lett., 2014, 113(21): 210501
CrossRef ADS Google scholar
[63]
C.DurrP. Hϕyer, A quantum algorithm for finding the minimum, arXiv: quant-ph/9607014 (1996)
[64]
E. Novak. Quantum complexity of integration. J. Complexity, 2001, 17(1): 2
CrossRef ADS Google scholar
[65]
G.BrassardP. HϕyerA.Tapp, Quantum counting, in: International Colloquium on Automata, Languages, and Programming, Springer, 1998, pp 820–831
[66]
C. Dürr, M. Heiligman, P. Hϕyer, M. Mhalla. Quantum query complexity of some graph problems. SIAM J. Comput., 2006, 35(6): 1310
CrossRef ADS Google scholar
[67]
A.AmbainisR. Špalek, Quantum algorithms for matching and network flows, in: Annual Symposium on Theoretical Aspects of Computer Science, Springer, 2006, pp 172–183
[68]
E. Farhi, S. Gutmann. Quantum computation and decision trees. Phys. Rev. A, 1998, 58(2): 915
CrossRef ADS Google scholar
[69]
A. M. Childs, E. Farhi, S. Gutmann. An example of the difference between quantum and classical random walks. Quantum Inf. Process., 2002, 1(1/2): 35
CrossRef ADS Google scholar
[70]
A.M. ChildsR. CleveE.DeottoE.FarhiS.Gutmann D.A. Spielman, Exponential algorithmic speedup by a quantum walk, in: Proceedings of the Thirty-fifth ACM Symposium on Theory of Computing - STOC ’03, ACM Press, San Diego, CA, USA, 2003, p. 59
[71]
Y. Aharonov, L. Davidovich, N. Zagury. Quantum random walks. Phys. Rev. A, 1993, 48(2): 1687
CrossRef ADS Google scholar
[72]
D. A. Meyer. From quantum cellular automata to quantum lattice gases. J. Stat. Phys., 1996, 85(5−6): 551
CrossRef ADS Google scholar
[73]
D. A. Meyer. On the absence of homogeneous scalar unitary cellular automata. Phys. Lett. A, 1996, 223(5): 337
CrossRef ADS Google scholar
[74]
J.Watrous, Quantum simulations of classical random walks and undirected graph connectivity, in: Proceedings of Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat. No. 99CB36317), IEEE Comput. Soc, Atlanta, GA, USA, 1999, pp 180–187
[75]
N.AshwinV. Ashvin, Quantum walk on the line, arXiv: quant-ph/0010117 (2000)
[76]
A.AmbainisE. BachA.NayakA.VishwanathJ.Watrous, One-dimensional quantum walks, in: Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing - STOC ’01, ACM Press, Hersonissos, Greece, 2001, pp 37–49
[77]
D.AharonovA. AmbainisJ.KempeU.Vazirani, Quantum walks on graphs, in: Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing - STOC ’01, ACM Press, Hersonissos, Greece, 2001, pp 50–59
[78]
N. Shenvi, J. Kempe, K. B. Whaley. Quantum random-walk search algorithm. Phys. Rev. A, 2003, 67(5): 052307
CrossRef ADS Google scholar
[79]
A.Ambainis, Quantum walk algorithm for elementdistinctness, in: 45th Annual IEEE Symposium on Foundations of Computer Science, IEEE, Rome, Italy, 2004, pp 22–31
[80]
S.Yaoyun, Quantum lower bounds for the collision and the element distinctness problems, in: Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002, IEEE Comput. Soc, Vancouver, BC, Canada, 2002, pp 513–519
[81]
A.AmbainisJ. KempeA.Rivosh, Coins make quantum walks faster, in: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’05, Society for Industrial and Applied Mathematics, Vancouver, British Columbia, 2005, pp 1099–1108
[82]
M.Szegedy, Quantum speed-up of Markov chain based algorithms, in: 45th Annual IEEE Symposium on Foundations of Computer Science, IEEE, Rome, Italy, 2004, pp 32–41
[83]
F.MagniezA. NayakJ.RolandM.Santha, Search via quantum walk, in: Proceedings of the Thirty-ninth Annual ACM Symposium on Theory of Computing - STOC ’07, ACM Press, San Diego, California, USA, 2007, p. 575
[84]
A. Ambainis. Quantum walks and their algorithmic applications. Int. J. Quant. Inf., 2003, 1(4): 507
CrossRef ADS Google scholar
[85]
M.Santha, Quantum walk based search algorithms, in: Proceedings of the 5th International Conference on Theory and Applications of Models of Computation, TAMC’08, Springer-Verlag, Berlin, Heidelberg, 2008, pp 31–46
[86]
F.MagniezM. SanthaM.Szegedy, Quantum algorithms for the triangle problem, in: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’05, Society for Industrial and Applied Mathematics, USA, 2005, pp 1109–1117
[87]
F. Magniez and A. Nayak, Quantum complexity of testing group commutativity, in: Proceedings of the 32nd International Conference on Automata, Languages and Programming, ICALP’05, Springer-Verlag, Berlin, Heidelberg, 2005, pp 1312–1324
[88]
S. Lloyd. Universal quantum simulators. Science, 1996, 273(5278): 1073
CrossRef ADS Google scholar
[89]
M. Suzuki. Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Phys. Lett. A, 1990, 146(6): 319
CrossRef ADS Google scholar
[90]
M. Suzuki. General theory of fractal path integrals with applications to many-body theories and statistical physics. J. Math. Phys., 1991, 32(2): 400
CrossRef ADS Google scholar
[91]
D.AharonovA. Ta-Shma, Adiabatic quantum state generation and statistical zero knowledge, in: Proceedings of the Thirty-fifth ACM Symposium on Theory of Computing - STOC ’03, ACM Press, San Diego, CA, USA, 2003, p. 20
[92]
D. W. Berry, G. Ahokas, R. Cleve, B. C. Sanders. Efficient quantum algorithms for simulating sparse Hamiltonians. Commun. Math. Phys., 2007, 270(2): 359
CrossRef ADS Google scholar
[93]
A.M. ChildsR. Kothari, Simulating sparse Hamiltonians with star decompositions, in: Theory of Quantum Computation, Communication, and Cryptography, Vol. 6519, Springer, Berlin, Heidelberg, 2011, pp 94–103
[94]
A. M. Childs. On the relationship between continuous and discrete time quantum walk. Commun. Math. Phys., 2010, 294(2): 581
CrossRef ADS Google scholar
[95]
A. M. Childs, D. W. Berry. Black-box Hamiltonian simulation and unitary implementation. Quantum Inf. Comput., 2012, 12(1&2): 29
CrossRef ADS Google scholar
[96]
A. M. Childs, N. Wiebe. Hamiltonian simulation using linear combinations of unitary operations. Quantum Inf. Comput., 2012, 12(11&12): 901
CrossRef ADS Google scholar
[97]
D.W. BerryA. M. ChildsR.CleveR.KothariR.D. Somma, Exponential improvement in precision for simulating sparse Hamiltonians, in: Proceedings of the 46th Annual ACM Symposium on Theory of Computing - STOC ’14, ACM Press, 2014, pp 283–292
[98]
D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, R. D. Somma. Simulating Hamiltonian dynamics with a truncated Taylor series. Phys. Rev. Lett., 2015, 114(9): 090502
CrossRef ADS Google scholar
[99]
D.W. BerryA. M. ChildsR.Kothari, Hamiltonian simulation with nearly optimal dependence on all parameters, in: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, IEEE, Berkeley, CA, USA, 2015, pp 792–809
[100]
G. H. Low, T. J. Yoder, I. L. Chuang. Methodology of resonant equiangular composite quantum gates. Phys. Rev. X, 2016, 6(4): 041067
CrossRef ADS Google scholar
[101]
G. H. Low, I. L. Chuang. Optimal Hamiltonian simulation by quantum signal processing. Phys. Rev. Lett., 2017, 118(1): 010501
CrossRef ADS Google scholar
[102]
G. H. Low, I. L. Chuang. Hamiltonian simulation by qubitization. Quantum, 2019, 3: 163
CrossRef ADS Google scholar
[103]
G.H. LowI. L. Chuang, Hamiltonian simulation by uniform spectral amplification, arXiv: 1707.05391 (2017)
[104]
A.GilyenY. SuG.H. LowN.Wiebe, Quantum singular value transformation and beyond: Exponential improvements for quantum matrix arithmetics, in: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, 2019, pp 193–204
[105]
J. M. Martyn, Z. M. Rossi, A. K. Tan, I. L. Chuang. Grand unification of quantum algorithms. PRX Quantum, 2021, 2(4): 040203
CrossRef ADS Google scholar
[106]
A. M. Childs, Y. Su, M. C. Tran, N. Wiebe, S. Zhu. Theory of Trotter error with commutator scaling. Phys. Rev. X, 2021, 11(1): 011020
CrossRef ADS Google scholar
[107]
S.LloydM. MohseniP.Rebentrost, Quantum algorithms for supervised and unsupervised machine learning, arXiv: 1307.0411 (2013)
[108]
S. Lloyd, M. Mohseni, P. Rebentrost. Quantum principal component analysis. Nat. Phys., 2014, 10(9): 631
CrossRef ADS Google scholar
[109]
P. Rebentrost, M. Mohseni, S. Lloyd. Quantum support vector machine for big data classification. Phys. Rev. Lett., 2014, 113(13): 130503
CrossRef ADS Google scholar
[110]
N. Wiebe, D. Braun, S. Lloyd. Quantum algorithm for data fitting. Phys. Rev. Lett., 2012, 109(5): 050505
CrossRef ADS Google scholar
[111]
J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, S. Lloyd. Quantum machine learning. Nature, 2017, 549(7671): 195
CrossRef ADS Google scholar
[112]
S. Aaronson. Read the fine print. Nat. Phys., 2015, 11(4): 291
CrossRef ADS Google scholar
[113]
E.Tang, A quantum-inspired classical algorithm for recommendation systems, in: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, ACM, Phoenix AZ USA, 2019, pp 217–228
[114]
I.KerenidisA. Prakash, Quantum recommendation systems, in: 8th Innovations in Theoretical Computer Science Conference (ITCS 2017), Schloss Dagstuhl-Leibniz−Zentrum fuer Informatik, 2017
[115]
E. Tang. Quantum principal component analysis only achieves an exponential speedup because of its state preparation assumptions. Phys. Rev. Lett., 2021, 127(6): 060503
CrossRef ADS Google scholar
[116]
A.GilyenS. LloydE.Tang, Quantum-inspired low-rank stochastic regression with logarithmic dependence on the dimension, arXiv: 1811.04909 (2018)
[117]
N.H. ChiaH. H. LinC.Wang, Quantum-inspired sublinear classical algorithms for solving low-rank linear systems, arXiv: 1811.04852 (2018)
[118]
N.H. ChiaT. LiH.H. LinC.Wang, Quantuminspired classical sublinear-time algorithm for solving low-rank semidefinite programming via sampling approaches, arXiv: 1901.03254 (2019)
[119]
D. S. Abrams, S. Lloyd. Simulation of many-body Fermi systems on a universal quantum computer. Phys. Rev. Lett., 1997, 79(13): 2586
CrossRef ADS Google scholar
[120]
D. S. Abrams, S. Lloyd. Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors. Phys. Rev. Lett., 1999, 83(24): 5162
CrossRef ADS Google scholar
[121]
J. Preskill. Quantum computing in the NISQ era and beyond. Quantum, 2018, 2: 79
CrossRef ADS Google scholar
[122]
E.FarhiJ. GoldstoneS.GutmannM.Sipser, Quantum computation by adiabatic evolution, arXiv: quant-ph/0001106 (2000)
[123]
E.FarhiJ. GoldstoneS.Gutmann, A quantum approximate optimization algorithm, arXiv: 1411.4028 (2014)
[124]
E.FarhiH. Neven, Classification with quantum neural networks on near term processors, arXiv: 1802.06002 (2018)
[125]
V. Havlíček, A. D. Corcoles, K. Temme, A. W. Harrow, A. Kandala, J. M. Chow, J. M. Gambetta. Supervised learning with quantum-enhanced feature spaces. Nature, 2019, 567(7747): 209
CrossRef ADS Google scholar
[126]
S. Lloyd, C. Weedbrook. Quantum generative adversarial learning. Phys. Rev. Lett., 2018, 121(4): 040502
CrossRef ADS Google scholar
[127]
P. L. Dallaire-Demers, N. Killoran. Quantum generative adversarial networks. Phys. Rev. A, 2018, 98(1): 012324
CrossRef ADS Google scholar
[128]
Y. Wu, W. S. Bao, S. Cao, F. Chen, M. C. Chen. . Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett., 2021, 127(18): 180501
CrossRef ADS Google scholar
[129]
H. S. Zhong, H. Wang, Y. H. Deng, M. C. Chen, L. C. Peng. . Quantum computational advantage using photons. Science, 2020, 370(6523): 1460
CrossRef ADS Google scholar
[130]
B. Bauer, S. Bravyi, M. Motta, G. K. L. Chan. Quantum algorithms for quantum chemistry and quantum materials science. Chem. Rev., 2020, 120(22): 12685
CrossRef ADS Google scholar
[131]
P. S. Emani, J. Warrell, A. Anticevic, S. Bekiranov, M. Gandal. . Quantum computing at the frontiers of biological sciences. Nat. Methods, 2021, 18(7): 701
CrossRef ADS Google scholar
[132]
A. Khoshaman, W. Vinci, B. Denis, E. Andriyash, H. Sadeghi, M. H. Amin. Quantum variational autoencoder. Quantum Sci. Technol., 2018, 4(1): 014001
CrossRef ADS Google scholar
[133]
K. Temme, S. Bravyi, J. M. Gambetta. Error mitigation for short-depth quantum circuits. Phys. Rev. Lett., 2017, 119(18): 180509
CrossRef ADS Google scholar
[134]
Y. Li, S. C. Benjamin. Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X, 2017, 7(2): 021050
CrossRef ADS Google scholar
[135]
S. Endo, Z. Cai, S. C. Benjamin, X. Yuan. Hybrid quantum-classical algorithms and quantum error mitigation. J. Phys. Soc. Jpn., 2021, 90(3): 032001
CrossRef ADS Google scholar
[136]
S. Endo, S. C. Benjamin, Y. Li. Practical quantum error mitigation for near-future applications. Phys. Rev. X, 2018, 8(3): 031027
CrossRef ADS Google scholar
[137]
A. Strikis, D. Qin, Y. Chen, S. C. Benjamin, Y. Li. Learning-based quantum error mitigation. PRX Quantum, 2021, 2(4): 040330
CrossRef ADS Google scholar
[138]
I. Buluta, S. Ashhab, F. Nori. Natural and artificial atoms for quantum computation. Rep. Prog. Phys., 2011, 74(10): 104401
CrossRef ADS Google scholar
[139]
L. Hu, S. H. Wu, W. Cai, Y. Ma, X. Mu, Y. Xu, H. Wang, Y. Song, D. L. Deng, C. L. Zou, L. Sun. Quantum generative adversarial learning in a superconducting quantum circuit. Sci. Adv., 2019, 5(1): eaav2761
CrossRef ADS Google scholar
[140]
M. P. Harrigan, K. J. Sung, M. Neeley, K. J. Satzinger, F. Arute. . Quantum approximate optimization of nonplanar graph problems on a planar superconducting processor. Nat. Phys., 2021, 17(3): 332
CrossRef ADS Google scholar
[141]
S.BravyiO. DialJ.M. GambettaD.GilZ.Nazario, The future of quantum computing with superconducting qubits featured, J. Appl. Phys. 132, 160902 (2022)
[142]
A. A. Houck, H. E. Tureci, J. Koch. On-chip quantum simulation with superconducting circuits. Nat. Phys., 2012, 8(4): 292
CrossRef ADS Google scholar
[143]
P. D. Nation, J. R. Johansson, M. P. Blencowe, F. Nori. Colloquium: Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits. Rev. Mod. Phys., 2012, 84(1): 1
CrossRef ADS Google scholar
[144]
R. Barends, L. Lamata, J. Kelly, L. Garcia-Alvarez, A. G. Fowler. . Digital quantum simulation of fermionic models with a superconducting circuit. Nat. Commun., 2015, 6(1): 7654
CrossRef ADS Google scholar
[145]
Y. Salathé, M. Mondal, M. Oppliger, J. Heinsoo, P. Kurpiers, A. Potočnik, A. Mezzacapo, U. Las Heras, L. Lamata, E. Solano, S. Filipp, A. Wallraff. Digital quantum simulation of spin models with circuit quantum electrodynamics. Phys. Rev. X, 2015, 5(2): 021027
CrossRef ADS Google scholar
[146]
N. K. Langford, R. Sagastizabal, M. Kounalakis, C. Dickel, A. Bruno, F. Luthi, D. J. Thoen, A. Endo, L. DiCarlo. Experimentally simulating the dynamics of quantum light and matter at deep-strong coupling. Nat. Commun., 2017, 8(1): 1715
CrossRef ADS Google scholar
[147]
D. W. Wang, C. Song, W. Feng, H. Cai, D. Xu, H. Deng, H. Li, D. Zheng, X. Zhu, H. Wang, S. Y. Zhu, M. O. Scully. Synthesis of antisymmetric spin exchange interaction and chiral spin clusters in superconducting circuits. Nat. Phys., 2019, 15(4): 382
CrossRef ADS Google scholar
[148]
A. J. Kollár, M. Fitzpatrick, A. A. Houck. Hyperbolic lattices in circuit quantum electrodynamics. Nature, 2019, 571(7763): 45
CrossRef ADS Google scholar
[149]
C. S. Wang, J. C. Curtis, B. J. Lester, Y. Zhang, Y. Y. Gao, J. Freeze, V. S. Batista, P. H. Vaccaro, I. L. Chuang, L. Frunzio, L. Jiang, S. M. Girvin, R. J. Schoelkopf. Efficient multiphoton sampling of molecular vibronic spectra on a superconducting bosonic processor. Phys. Rev. X, 2020, 10(2): 021060
CrossRef ADS Google scholar
[150]
M. Gong, S. Wang, C. Zha, M. C. Chen, H. L. Huang. . Quantum walks on a programmable two-dimensional 62-qubit superconducting processor. Science, 2021, 372(6545): 948
CrossRef ADS Google scholar
[151]
A. D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting. . Coherent quantum annealing in a programmable 2000 qubit Ising chain. Nat. Phys., 2022, 18(11): 1324
CrossRef ADS Google scholar
[152]
P. J. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean. . Scalable quantum simulation of molecular energies. Phys. Rev. X, 2016, 6(3): 031007
CrossRef ADS Google scholar
[153]
A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, J. M. Gambetta. Hardware efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 2017, 549(7671): 242
CrossRef ADS Google scholar
[154]
J. I. Colless, V. V. Ramasesh, D. Dahlen, M. S. Blok, M. E. Kimchi-Schwartz, J. R. McClean, J. Carter, W. A. De Jong, I. Siddiqi. Computation of molecular spectra on a quantum processor with an error-resilient algorithm. Phys. Rev. X, 2018, 8(1): 011021
CrossRef ADS Google scholar
[155]
F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin. . Hartree−Fock on a superconducting qubit quantum computer. Science, 2020, 369(6507): 1084
CrossRef ADS Google scholar
[156]
P. Roushan, C. Neill, J. Tangpanitanon, V. M. Bastidas, A. Megrant. . Spectroscopic signatures of localization with interacting photons in superconducting qubits. Science, 2017, 358(6367): 1175
CrossRef ADS Google scholar
[157]
R. Ma, B. Saxberg, C. Owens, N. Leung, Y. Lu, J. Simon, D. I. Schuster. A dissipatively stabilized Mott insulator of photons. Nature, 2019, 566(7742):
CrossRef ADS Google scholar
[158]
K. Xu, Z. H. Sun, W. Liu, Y. R. Zhang, H. Li, H. Dong, W. Ren, P. Zhang, F. Nori, D. Zheng, H. Fan, H. Wang. Probing dynamical phase transitions with a superconducting quantum simulator. Sci. Adv., 2020, 6(25): eaba4935
CrossRef ADS Google scholar
[159]
Q. Guo, C. Cheng, Z. H. Sun, Z. Song, H. Li, Z. Wang, W. Ren, H. Dong, D. Zheng, Y. R. Zhang, R. Mondaini, H. Fan, H. Wang. Observation of energy-resolved many-body localization. Nat. Phys., 2021, 17(2): 234
CrossRef ADS Google scholar
[160]
X. Mi, M. Ippoliti, C. Quintana, A. Greene, Z. Chen. . Time-crystalline eigenstate order on a quantum processor. Nature, 2022, 601(7894): 531
CrossRef ADS Google scholar
[161]
X. Zhang, W. Jiang, J. Deng, K. Wang, J. Chen, P. Zhang, W. Ren, H. Dong, S. Xu, Y. Gao, F. Jin, X. Zhu, Q. Guo, H. Li, C. Song, A. V. Gorshkov, T. Iadecola, F. Liu, Z. X. Gong, Z. Wang, D. L. Deng, H. Wang. Digital quantum simulation of Floquet symmetry-protected topological phases. Nature, 2022, 607(7919): 468
CrossRef ADS Google scholar
[162]
P. Forn-Díaz, J. J. Garcia-Ripoll, B. Peropadre, J. L. Orgiazzi, M. A. Yurtalan, R. Belyansky, C. M. Wilson, A. Lupascu. Ultrastrong coupling of a single artificial atom to an electromagnetic continuum in the nonperturbative regime. Nat. Phys., 2017, 13(1): 39
CrossRef ADS Google scholar
[163]
F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi, S. Saito, K. Semba. Superconducting qubit–oscillator circuit beyond the ultrastrong-coupling regime. Nat. Phys., 2017, 13(1): 44
CrossRef ADS Google scholar
[164]
S. J. Bosman, M. F. Gely, V. Singh, A. Bruno, D. Bothner, G. A. Steele. Multi-mode ultra-strong coupling in circuit quantum electrodynamics. npj Quantum Inf., 2017, 3: 46
CrossRef ADS Google scholar
[165]
A. Frisk Kockum, A. Miranowicz, S. De Liberato, S. Savasta, F. Nori. Ultrastrong coupling between light and matter. Nat. Rev. Phys., 2019, 1(1): 19
CrossRef ADS Google scholar
[166]
W. Wang, Y. Wu, Y. Ma, W. Cai, L. Hu, X. Mu, Y. Xu, Z. J. Chen, H. Wang, Y. P. Song, H. Yuan, C. L. Zou, L. M. Duan, L. Sun. Heisenberg-limited singlemode quantum metrology in a superconducting circuit. Nat. Commun., 2019, 10(1): 4382
CrossRef ADS Google scholar
[167]
K. Xu, Y. R. Zhang, Z. H. Sun, H. Li, P. Song, Z. Xiang, K. Huang, H. Li, Y. H. Shi, C. T. Chen, X. Song, D. Zheng, F. Nori, H. Wang, H. Fan. Metrological characterization of non-Gaussian entangled states of superconducting qubits. Phys. Rev. Lett., 2022, 128(15): 150501
CrossRef ADS Google scholar
[168]
A. Potočnik, A. Bargerbos, F. A. Y. N. Schroder, S. A. Khan, M. C. Collodo, S. Gasparinetti, Y. Salathe, C. Creatore, C. Eichler, H. E. Türeci, A. W. Chin, A. Wallraff. Studying light-harvesting models with superconducting circuits. Nat. Commun., 2018, 9(1): 904
CrossRef ADS Google scholar
[169]
J. Q. You, F. Nori. Atomic physics and quantum optics using superconducting circuits. Nature, 2011, 474(7353): 589
CrossRef ADS Google scholar
[170]
H. Paik, D. I. Schuster, L. S. Bishop, G. Kirchmair, G. Catelani, A. P. Sears, B. R. Johnson, M. J. Reagor, L. Frunzio, L. I. Glazman, S. M. Girvin, M. H. Devoret, R. J. Schoelkopf. Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Phys. Rev. Lett., 2011, 107(24): 240501
CrossRef ADS Google scholar
[171]
R. Barends, J. Kelly, A. Megrant, D. Sank, E. Jeffrey, Y. Chen, Y. Yin, B. Chiaro, J. Mutus, C. Neill, P. O’Malley, P. Roushan, J. Wenner, T. C. White, A. N. Cleland, J. M. Martinis. Coherent Josephson qubit suitable for scalable quantum integrated circuits. Phys. Rev. Lett., 2013, 111(8): 080502
CrossRef ADS Google scholar
[172]
Y. Zhong, H. S. Chang, A. Bienfait, E. Dumur, M. H. Chou, C. R. Conner, J. Grebel, R. G. Povey, H. Yan, D. I. Schuster, A. N. Cleland. Deterministic multi-qubit entanglement in a quantum network. Nature, 2021, 590(7847): 571
CrossRef ADS Google scholar
[173]
M. H. Devoret, J. M. Martinis. Implementing qubits with superconducting integrated circuits. Quantum Inf. Process., 2004, 3(1−5): 163
CrossRef ADS Google scholar
[174]
J. Q. You, F. Nori. Superconducting circuits and quantum information. Phys. Today, 2005, 58(11): 42
CrossRef ADS Google scholar
[175]
J. Clarke, F. K. Wilhelm. Superconducting quantum bits. Nature, 2008, 453(7198): 1031
CrossRef ADS Google scholar
[176]
R. J. Schoelkopf, S. M. Girvin. Wiring up quantum systems. Nature, 2008, 451(7179): 664
CrossRef ADS Google scholar
[177]
Z. L. Xiang, S. Ashhab, J. Q. You, F. Nori. Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems. Rev. Mod. Phys., 2013, 85(2): 623
CrossRef ADS Google scholar
[178]
S.M. Girvin, Circuit QED: Superconducting Qubits Coupled to Microwave Photons, Oxford University Press, 2014
[179]
U. Vool, M. Devoret. Introduction to quantum electromagnetic circuits. Int. J. Circuit Theory Appl., 2017, 45(7): 897
CrossRef ADS Google scholar
[180]
X. Gu, A. F. Kockum, A. Miranowicz, Y. Liu, F. Nori. Microwave photonics with superconducting quantum circuits. Phys. Rep., 2017, 718−719: 1
CrossRef ADS Google scholar
[181]
J. M. Gambetta, J. M. Chow, M. Steffen. Building logical qubits in a superconducting quantum computing system. npj Quantum Inf., 2017, 3: 2
CrossRef ADS Google scholar
[182]
G. Wendin. Quantum information processing with superconducting circuits: A review. Rep. Prog. Phys., 2017, 80(10): 106001
CrossRef ADS Google scholar
[183]
P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, W. D. Oliver. A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev., 2019, 6(2): 021318
CrossRef ADS Google scholar
[184]
A.F. KockumF. Nori, Quantum bits with Josephson junctions, in: Fundamentals and Frontiers of the Josephson Effect, edited by F. Tafuri, Springer International Publishing, Cham, 2019, pp 703–741
[185]
M. Kjaergaard, M. E. Schwartz, J. Braumuller, P. Krantz, J. I. J. Wang, S. Gustavsson, W. D. Oliver. Superconducting qubits: Current state of play. Annu. Rev. Condens. Matter Phys., 2020, 11(1): 369
CrossRef ADS Google scholar
[186]
H. L. Huang, D. Wu, D. Fan, X. Zhu. Superconducting quantum computing: A review. Sci. China Inf. Sci., 2020, 63(8): 180501
CrossRef ADS Google scholar
[187]
A. Blais, A. L. Grimsmo, S. Girvin, A. Wallraff. Circuit quantum electrodynamics. Rev. Mod. Phys., 2021, 93(2): 025005
CrossRef ADS Google scholar
[188]
S. E. Rasmussen, K. S. Christensen, S. P. Pedersen, L. B. Kristensen, T. Bækkegaard. N. J. S. Loft, and N. T. Zinner, Superconducting circuit companion — An introduction with worked examples. PRX Quantum, 2021, 2(4): 040204
CrossRef ADS Google scholar
[189]
N. P. De Leon, K. M. Itoh, D. Kim, K. K. Mehta, T. E. Northup, H. Paik, B. S. Palmer, N. Samarth, S. Sangtawesin, D. W. Steuerman. Materials challenges and opportunities for quantum computing hardware. Science, 2021, 372(6539): eabb2823
CrossRef ADS Google scholar
[190]
S. Kwon, A. Tomonaga, G. L. Bhai, S. J. Devitt, J.-S. Tsai. Gate-based superconducting quantum computing. J. Appl. Phys., 2021, 129(4): 041102
CrossRef ADS Google scholar
[191]
M.H. Devoret, Quantum Fluctuations in Electrical Circuits, Les Houches Session LXIII, Oxford University Press, 1997
[192]
M.Tinkham, Introduction to Superconductivity, Courier Corporation, 2004
[193]
V. Bouchiat, D. Vion, P. Joyez, D. Esteve, M. H. Devoret. Quantum coherence with a single Cooper pair. Phys. Scr., 1998, T76(1): 165
CrossRef ADS Google scholar
[194]
T. P. Orlando, J. E. Mooij, L. Tian, C. H. van der Wal, L. S. Levitov, S. Lloyd, J. J. Mazo. Superconducting persistent-current qubit. Phys. Rev. B, 1999, 60(22): 15398
CrossRef ADS Google scholar
[195]
J. E. Mooij, T. P. Orlando, L. Levitov, L. Tian, C. H. van der Wal, S. Lloyd. Josephson persistent-current qubit. Science, 1999, 285(5430): 1036
CrossRef ADS Google scholar
[196]
J. M. Martinis. Superconducting phase qubits. Quantum Inf. Process., 2009, 8(2−3): 81
CrossRef ADS Google scholar
[197]
C. H. van der Wal, A. C. J. ter Haar, F. K. Wilhelm, R. N. Schouten, C. J. P. M. Harmans, T. P. Orlando, S. Lloyd, J. E. Mooij. Quantum superposition of macroscopic persistent-current states. Science, 2000, 290(5492): 773
CrossRef ADS Google scholar
[198]
J. R. Friedman, V. Patel, W. Chen, S. K. Tolpygo, J. E. Lukens. Quantum superposition of distinct macroscopic states. Nature, 2000, 406(6791): 43
CrossRef ADS Google scholar
[199]
J. M. Martinis, S. Nam, J. Aumentado, C. Urbina. Rabi oscillations in a large Josephson-junction qubit. Phys. Rev. Lett., 2002, 89(11): 117901
CrossRef ADS Google scholar
[200]
Y. Yu, S. Han, X. Chu, S. I. Chu, Z. Wang. Coherent temporal oscillations of macroscopic quantum states in a Josephson junction. Science, 2002, 296(5569): 889
CrossRef ADS Google scholar
[201]
T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, J. S. Tsai. Demonstration of conditional gate operation using superconducting charge qubits. Nature, 2003, 425(6961): 941
CrossRef ADS Google scholar
[202]
I. Chiorescu, Y. Nakamura, C. J. P. M. Harmans, J. E. Mooij. Coherent quantum dynamics of a superconducting flux qubit. Science, 2003, 299(5614): 1869
CrossRef ADS Google scholar
[203]
A. J. Berkley, H. Xu, R. C. Ramos, M. A. Gubrud, F. W. Strauch, P. R. Johnson, J. R. Anderson, A. J. Dragt, C. J. Lobb, F. C. Wellstood. Entangled macroscopic quantum states in two superconducting qubits. Science, 2003, 300(5625): 1548
CrossRef ADS Google scholar
[204]
A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, R. J. Schoelkopf. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature, 2004, 431(7005): 162
CrossRef ADS Google scholar
[205]
W. D. Oliver, Y. Yu, J. C. Lee, K. K. Berggren, L. S. Levitov, T. P. Orlando. Mach−Zehnder interferometry in a strongly driven superconducting qubit. Science, 2005, 310(5754): 1653
CrossRef ADS Google scholar
[206]
M. Steffen, M. Ansmann, R. C. Bialczak, N. Katz, E. Lucero, R. McDermott, M. Neeley, E. M. Weig, A. N. Cleland, J. M. Martinis. Measurement of the entanglement of two superconducting qubits via state tomography. Science, 2006, 313(5792): 1423
CrossRef ADS Google scholar
[207]
D. I. Schuster, A. A. Houck, J. A. Schreier, A. Wallraff, J. M. Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M. H. Devoret, S. M. Girvin, R. J. Schoelkopf. Resolving photon number states in a superconducting circuit. Nature, 2007, 445(7127): 515
CrossRef ADS Google scholar
[208]
M. A. Sillanpää, J. I. Park, R. W. Simmonds. Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature, 2007, 449(7161): 438
CrossRef ADS Google scholar
[209]
J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, R. J. Schoelkopf. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A, 2007, 76(4): 042319
CrossRef ADS Google scholar
[210]
J. Q. You, X. Hu, S. Ashhab, F. Nori. Low-decoherence flux qubit. Phys. Rev. B, 2007, 75(14): 140515
CrossRef ADS Google scholar
[211]
J. A. Schreier, A. A. Houck, J. Koch, D. I. Schuster, B. R. Johnson, J. M. Chow, J. M. Gambetta, J. Majer, L. Frunzio, M. H. Devoret, S. M. Girvin, R. J. Schoelkopf. Suppressing charge noise decoherence in superconducting charge qubits. Phys. Rev. B, 2008, 77(18): 180502
CrossRef ADS Google scholar
[212]
J. Braumüller, M. Sandberg, M. R. Vissers, A. Schneider, S. Schlor, L. Grunhaupt, H. Rotzinger, M. Marthaler, A. Lukashenko, A. Dieter, A. V. Ustinov, M. Weides, D. P. Pappas. Concentric transmon qubit featuring fast tunability and an anisotropic magnetic dipole moment. Appl. Phys. Lett., 2016, 108(3): 032601
CrossRef ADS Google scholar
[213]
M. Hutchings, J. Hertzberg, Y. Liu, N. Bronn, G. Keefe, M. Brink, J. M. Chow, B. Plourde. Tunable superconducting qubits with flux-independent coherence. Phys. Rev. Appl., 2017, 8(4): 044003
CrossRef ADS Google scholar
[214]
V. E. Manucharyan, J. Koch, L. I. Glazman, M. H. Devoret. Fluxonium: Single Cooper-pair circuit free of charge offsets. Science, 2009, 326(5949): 113
CrossRef ADS Google scholar
[215]
L. B. Nguyen, Y. H. Lin, A. Somoroff, R. Mencia, N. Grabon, V. E. Manucharyan. High-coherence fluxonium qubit. Phys. Rev. X, 2019, 9(4): 041041
CrossRef ADS Google scholar
[216]
H. Zhang, S. Chakram, T. Roy, N. Earnest, Y. Lu, Z. Huang, D. Weiss, J. Koch, D. I. Schuster. Universal fast-flux control of a coherent, low-frequency qubit. Phys. Rev. X, 2021, 11(1): 011010
CrossRef ADS Google scholar
[217]
F. Bao, H. Deng, D. Ding, R. Gao, X. Gao. . Fluxonium: An alternative qubit platform for high-fidelity operations. Phys. Rev. Lett., 2022, 129(1): 010502
CrossRef ADS Google scholar
[218]
M. Steffen, S. Kumar, D. P. DiVincenzo, J. R. Rozen, G. A. Keefe, M. B. Rothwell, M. B. Ketchen. High-coherence hybrid superconducting qubit. Phys. Rev. Lett., 2010, 105(10): 100502
CrossRef ADS Google scholar
[219]
F. Yan, S. Gustavsson, A. Kamal, J. Birenbaum, A. P. Sears. . The flux qubit revisited to enhance coherence and reproducibility. Nat. Commun., 2016, 7(1): 12964
CrossRef ADS Google scholar
[220]
J. Ku, X. Xu, M. Brink, D. C. McKay, J. B. Hertzberg, M. H. Ansari, B. Plourde. Suppression of unwanted ZZ interactions in a hybrid two-qubit system. Phys. Rev. Lett., 2020, 125(20): 200504
CrossRef ADS Google scholar
[221]
F.YanY. SungP.KrantzA.KamalD.K. Kim J.L. YoderT. P. OrlandoS.GustavssonW.D. Oliver, Engineering framework for optimizing superconducting qubit designs, arXiv: 2006.04130 (2020)
[222]
A. Gyenis, P. S. Mundada, A. Di Paolo, T. M. Hazard, X. You, D. I. Schuster, J. Koch, A. Blais, A. A. Houck. Experimental realization of a protected superconducting circuit derived from the 0−π qubit. PRX Quantum, 2021, 2(1): 010339
CrossRef ADS Google scholar
[223]
J. Q. You, F. Nori. Quantum information processing with superconducting qubits in a microwave field. Phys. Rev. B, 2003, 68: 064509
CrossRef ADS Google scholar
[224]
A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, R. J. Schoelkopf. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A, 2004, 69(6): 062320
CrossRef ADS Google scholar
[225]
M. D. Reed, B. R. Johnson, A. A. Houck, L. Di-Carlo, J. M. Chow, D. I. Schuster, L. Frunzio, R. J. Schoelkopf. Fast reset and suppressing spontaneous emission of a superconducting qubit. Appl. Phys. Lett., 2010, 96(20): 203110
CrossRef ADS Google scholar
[226]
E. Jeffrey, D. Sank, J. Mutus, T. White, J. Kelly, R. Barends, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. Megrant, P. J. J. O’Malley, C. Neill, P. Roushan, A. Vainsencher, J. Wenner, A. N. Cleland, J. M. Martinis. Fast accurate state measurement with superconducting qubits. Phys. Rev. Lett., 2014, 112(19): 190504
CrossRef ADS Google scholar
[227]
N. T. Bronn, Y. Liu, J. B. Hertzberg, A. D. Corcoles, A. A. Houck, J. M. Gambetta, J. M. Chow. Broadband filters for abatement of spontaneous emission in circuit quantum electrodynamics. Appl. Phys. Lett., 2015, 107(17): 172601
CrossRef ADS Google scholar
[228]
T. Walter, P. Kurpiers, S. Gasparinetti, P. Magnard, A. Potočnik, Y. Salathe, M. Pechal, M. Mondal, M. Oppliger, C. Eichler, A. Wallraff. Rapid high-fidelity single-shot dispersive readout of superconducting qubits. Phys. Rev. Appl., 2017, 7(5): 054020
CrossRef ADS Google scholar
[229]
B. Yurke, L. R. Corruccini, P. G. Kaminsky, L. W. Rupp, A. D. Smith, A. H. Silver, R. W. Simon, E. A. Whittaker. Observation of parametric amplification and deamplification in a Josephson parametric amplifier. Phys. Rev. A, 1989, 39(5): 2519
CrossRef ADS Google scholar
[230]
R. Vijay, M. H. Devoret, I. Siddiqi. The Josephson bifurcation amplifier. Rev. Sci. Instrum., 2009, 80(11): 111101
CrossRef ADS Google scholar
[231]
A. Roy, M. Devoret. Introduction to parametric amplification of quantum signals with Josephson circuits. C. R. Phys., 2016, 17(7): 740
CrossRef ADS Google scholar
[232]
I. Siddiqi, R. Vijay, F. Pierre, C. M. Wilson, M. Metcalfe, C. Rigetti, L. Frunzio, M. H. Devoret. RF-driven Josephson bifurcation amplifier for quantum measurement. Phys. Rev. Lett., 2004, 93(20): 207002
CrossRef ADS Google scholar
[233]
M. A. Castellanos-Beltran, K. D. Irwin, G. C. Hilton, L. R. Vale, K. W. Lehnert. Amplification and squeezing of quantum noise with a tunable Josephson metamaterial. Nat. Phys., 2008, 4(12): 929
CrossRef ADS Google scholar
[234]
T. Yamamoto, K. Inomata, M. Watanabe, K. Matsuba, T. Miyazaki, W. D. Oliver, Y. Nakamura, J. S. Tsai. Flux-driven Josephson parametric amplifier. Appl. Phys. Lett., 2008, 93(4): 042510
CrossRef ADS Google scholar
[235]
J. R. Johansson, G. Johansson, C. M. Wilson, F. Nori. Dynamical Casimir effect in a superconducting coplanar waveguide. Phys. Rev. Lett., 2009, 103(14): 147003
CrossRef ADS Google scholar
[236]
N. Bergeal, F. Schackert, M. Metcalfe, R. Vijay, V. E. Manucharyan, L. Frunzio, D. E. Prober, R. J. Schoelkopf, S. M. Girvin, M. H. Devoret. Phase-preserving amplification near the quantum limit with a Josephson ring modulator. Nature, 2010, 465(7294): 64
CrossRef ADS Google scholar
[237]
C. Macklin, K. O’Brien, D. Hover, M. E. Schwartz, V. Bolkhovsky, X. Zhang, W. D. Oliver, I. Siddiqi. A near-quantum-limited Josephson traveling-wave parametric amplifier. Science, 2015, 350(6258): 307
CrossRef ADS Google scholar
[238]
Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends. . Multiplexed dispersive readout of superconducting phase qubits. Appl. Phys. Lett., 2012, 101(18): 182601
CrossRef ADS Google scholar
[239]
S. S. Elder, C. S. Wang, P. Reinhold, C. T. Hann, K. S. Chou, B. J. Lester, S. Rosenblum, L. Frunzio, L. Jiang, R. J. Schoelkopf. High-fidelity measurement of qubits encoded in multilevel superconducting circuits. Phys. Rev. X, 2020, 10(1): 011001
CrossRef ADS Google scholar
[240]
A. Opremcak, I. V. Pechenezhskiy, C. Howington, B. G. Christensen, M. A. Beck. . Measurement of a superconducting qubit with a microwave photon counter. Science, 2018, 361(6408): 1239
CrossRef ADS Google scholar
[241]
D. Ristè, J. G. van Leeuwen, H. S. Ku, K. W. Lehnert, L. DiCarlo. Initialization by measurement of a superconducting quantum bit circuit. Phys. Rev. Lett., 2012, 109(5): 050507
CrossRef ADS Google scholar
[242]
K. Geerlings, Z. Leghtas, I. M. Pop, S. Shankar, L. Frunzio, R. J. Schoelkopf, M. Mirrahimi, M. H. Devoret. Demonstrating a driven reset protocol for a superconducting qubit. Phys. Rev. Lett., 2013, 110(12): 120501
CrossRef ADS Google scholar
[243]
P. Magnard, P. Kurpiers, B. Royer, T. Walter, J. C. Besse, S. Gasparinetti, M. Pechal, J. Heinsoo, S. Storz, A. Blais, A. Wallraff. Fast and unconditional all-microwave reset of a superconducting qubit. Phys. Rev. Lett., 2018, 121(6): 060502
CrossRef ADS Google scholar
[244]
M. McEwen, D. Kafri, Z. Chen, J. Atalaya, K. Satzinger. . Removing leakage-induced correlated errors in superconducting quantum error correction. Nat. Commun., 2021, 12(1): 1761
CrossRef ADS Google scholar
[245]
Y. Zhou, Z. Zhang, Z. Yin, S. Huai, X. Gu, X. Xu, J. Allcock, F. Liu, G. Xi, Q. Yu, H. Zhang, M. Zhang, H. Li, X. Song, Z. Wang, D. Zheng, S. An, Y. Zheng, S. Zhang. Rapid and unconditional parametric reset protocol for tunable superconducting qubits. Nat. Commun., 2021, 12(1): 5924
CrossRef ADS Google scholar
[246]
F. Motzoi, J. M. Gambetta, P. Rebentrost, F. K. Wilhelm. Simple pulses for elimination of leakage in weakly nonlinear qubits. Phys. Rev. Lett., 2009, 103(11): 110501
CrossRef ADS Google scholar
[247]
J. M. Gambetta, F. Motzoi, S. T. Merkel, F. K. Wilhelm. Analytic control methods for high-fidelity unitary operations in a weakly nonlinear oscillator. Phys. Rev. A, 2011, 83(1): 012308
CrossRef ADS Google scholar
[248]
D. C. McKay, C. J. Wood, S. Sheldon, J. M. Chow, J. M. Gambetta. Efficient Z gates for quantum computing. Phys. Rev. A, 2017, 96(2): 022330
CrossRef ADS Google scholar
[249]
E. Leonard, M. A. Beck, J. Nelson, B. Christensen, T. Thorbeck. . Digital coherent control of a superconducting qubit. Phys. Rev. Appl., 2019, 11(1): 014009
CrossRef ADS Google scholar
[250]
J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, R. J. Schoelkopf. Coupling superconducting qubits via a cavity bus. Nature, 2007, 449(7161): 443
CrossRef ADS Google scholar
[251]
R. C. Bialczak, M. Ansmann, M. Hofheinz, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, H. Wang, J. Wenner, M. Steffen, A. N. Cleland, J. M. Martinis. Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits. Nat. Phys., 2010, 6(6): 409
CrossRef ADS Google scholar
[252]
F. W. Strauch, P. R. Johnson, A. J. Dragt, C. J. Lobb, J. R. Anderson, F. C. Wellstood. Quantum logic gates for coupled superconducting phase qubits. Phys. Rev. Lett., 2003, 91(16): 167005
CrossRef ADS Google scholar
[253]
L. DiCarlo, J. M. Chow, J. M. Gambetta, L. S. Bishop, B. R. Johnson, D. I. Schuster, J. Majer, A. Blais, L. Frunzio, S. M. Girvin, R. J. Schoelkopf. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature, 2009, 460(7252): 240
CrossRef ADS Google scholar
[254]
J. M. Martinis, M. R. Geller. Fast adiabatic qubit gates using only σz control. Phys. Rev. A, 2014, 90(2): 022307
CrossRef ADS Google scholar
[255]
R. Barends, C. Quintana, A. Petukhov, Y. Chen, D. Kafri. . Diabatic gates for frequency-tunable superconducting qubits. Phys. Rev. Lett., 2019, 123(21): 210501
CrossRef ADS Google scholar
[256]
S. Li, A. D. Castellano, S. Wang, Y. Wu, M. Gong. . Realisation of highfidelity nonadiabatic CZ gates with superconducting qubits. npj Quantum Inf., 2019, 5: 84
CrossRef ADS Google scholar
[257]
M. Rol, F. Battistel, F. Malinowski, C. Bultink, B. Tarasinski, R. Vollmer, N. Haider, N. Muthusubramanian, A. Bruno, B. M. Terhal, L. DiCarlo. Fast, high-fidelity conditionalphase gate exploiting leakage interference in weakly anharmonic superconducting qubits. Phys. Rev. Lett., 2019, 123(12): 120502
CrossRef ADS Google scholar
[258]
J. M. Chow, A. D. Corcoles, J. M. Gambetta, C. Rigetti, B. R. Johnson, J. A. Smolin, J. R. Rozen, G. A. Keefe, M. B. Rothwell, M. B. Ketchen, M. Steffen. Simple all-microwave entangling gate for fixed-frequency superconducting qubits. Phys. Rev. Lett., 2011, 107(8): 080502
CrossRef ADS Google scholar
[259]
S. Sheldon, E. Magesan, J. M. Chow, J. M. Gambetta. Procedure for systematically tuning up cross-talk in the cross-resonance gate. Phys. Rev. A, 2016, 93(6): 060302
CrossRef ADS Google scholar
[260]
H. Paik, A. Mezzacapo, M. Sandberg, D. McClure, B. Abdo, A. Corcoles, O. Dial, D. Bogorin, B. Plourde, M. Steffen, A. W. Cross, J. M. Gambetta, J. M. Chow. Experimental demonstration of a resonatorinduced phase gate in a multiqubit circuit-QED system. Phys. Rev. Lett., 2016, 117(25): 250502
CrossRef ADS Google scholar
[261]
D. C. McKay, S. Filipp, A. Mezzacapo, E. Magesan, J. M. Chow, J. M. Gambetta. Universal gate for fixed-frequency qubits via a tunable bus. Phys. Rev. Appl., 2016, 6(6): 064007
CrossRef ADS Google scholar
[262]
S. A. Caldwell, N. Didier, C. A. Ryan, E. A. Sete, A. Hudson. . Parametrically activated entangling gates using transmon qubits. Phys. Rev. Appl., 2018, 10(3): 034050
CrossRef ADS Google scholar
[263]
C. Song, K. Xu, H. Li, Y. R. Zhang, X. Zhang, W. Liu, Q. Guo, Z. Wang, W. Ren, J. Hao, H. Feng, H. Fan, D. Zheng, D. W. Wang, H. Wang, S. Y. Zhu. Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits. Science, 2019, 365(6453): 574
CrossRef ADS Google scholar
[264]
T. Hime, P. A. Reichardt, B. L. T. Plourde, T. L. Robertson, C. E. Wu, A. V. Ustinov, J. Clarke. Solid-state qubits with current-controlled coupling. Science, 2006, 314(5804): 1427
CrossRef ADS Google scholar
[265]
A. O. Niskanen, K. Harrabi, F. Yoshihara, Y. Nakamura, S. Lloyd, J. S. Tsai. Quantum coherent tunable coupling of superconducting qubits. Science, 2007, 316(5825): 723
CrossRef ADS Google scholar
[266]
S. H. W. van der Ploeg, A. Izmalkov, A. M. van den Brink, U. Hubner, M. Grajcar, E. Il’ichev, H. G. Meyer, A. M. Zagoskin. Controllable coupling of superconducting flux qubits. Phys. Rev. Lett., 2007, 98(5): 057004
CrossRef ADS Google scholar
[267]
R. Harris, A. J. Berkley, M. W. Johnson, P. Bunyk, S. Govorkov, M. C. Thom, S. Uchaikin, A. B. Wilson, J. Chung, E. Holtham, J. D. Biamonte, A. Y. Smirnov, M. H. S. Amin, A. M. van den Brink. Sign- and magnitude-tunable coupler for superconducting flux qubits. Phys. Rev. Lett., 2007, 98(17): 177001
CrossRef ADS Google scholar
[268]
T. Yamamoto, M. Watanabe, J. Q. You, Y. A. Pashkin, O. Astafiev, Y. Nakamura, F. Nori, J. S. Tsai. Spectroscopy of superconducting charge qubits coupled by a Josephson inductance. Phys. Rev. B, 2008, 77(6): 064505
CrossRef ADS Google scholar
[269]
Y. Chen, C. Neill, P. Roushan, N. Leung, M. Fang. . Qubit architecture with high coherence and fast tunable coupling. Phys. Rev. Lett., 2014, 113(22): 220502
CrossRef ADS Google scholar
[270]
S. J. Weber, G. O. Samach, D. Hover, S. Gustavsson, D. K. Kim, A. Melville, D. Rosenberg, A. P. Sears, F. Yan, J. L. Yoder, W. D. Oliver, A. J. Kerman. Coherent coupled qubits for quantum annealing. Phys. Rev. Appl., 2017, 8(1): 014004
CrossRef ADS Google scholar
[271]
Y. Lu, S. Chakram, N. Leung, N. Earnest, R. Naik, Z. Huang, P. Groszkowski, E. Kapit, J. Koch, D. I. Schuster. Universal stabilization of a parametrically coupled qubit. Phys. Rev. Lett., 2017, 119(15): 150502
CrossRef ADS Google scholar
[272]
F. Yan, P. Krantz, Y. Sung, M. Kjaergaard, D. L. Campbell, T. P. Orlando, S. Gustavsson, W. D. Oliver. Tunable coupling scheme for implementing highfidelity two-qubit gates. Phys. Rev. Appl., 2018, 10(5): 054062
CrossRef ADS Google scholar
[273]
P. Mundada, G. Zhang, T. Hazard, A. Houck. Suppression of qubit crosstalk in a tunable coupling superconducting circuit. Phys. Rev. Appl., 2019, 12(5): 054023
CrossRef ADS Google scholar
[274]
V. Negîrneac, H. Ali, N. Muthusubramanian, F. Battistel, R. Sagastizabal, M. S. Moreira, J. F. Marques, W. J. Vlothuizen, M. Beekman, C. Zachariadis, N. Haider, A. Bruno, L. DiCarlo. High-fidelity controlled-z gate with maximal intermediate leakage operating at the speed limit in a superconducting quantum processor. Phys. Rev. Lett., 2021, 126(22): 220502
CrossRef ADS Google scholar
[275]
B. Foxen, C. Neill, A. Dunsworth, P. Roushan, B. Chiaro. . Demonstrating a continuous set of two-qubit gates for near-term quantum algorithms. Phys. Rev. Lett., 2020, 125(12): 120504
CrossRef ADS Google scholar
[276]
X. Li, T. Cai, H. Yan, Z. Wang, X. Pan, Y. Ma, W. Cai, J. Han, Z. Hua, X. Han, Y. Wu, H. Zhang, H. Wang, Y. Song, L. Duan, L. Sun. Tunable coupler for realizing a controlled-phase gate with dynamically decoupled regime in a superconducting circuit. Phys. Rev. Appl., 2020, 14(2): 024070
CrossRef ADS Google scholar
[277]
M. C. Collodo, J. Herrmann, N. Lacroix, C. K. Andersen, A. Remm, S. Lazar, J. C. Besse, T. Walter, A. Wallraff, C. Eichler. Implementation of conditional phase gates based on tunable ZZ interactions. Phys. Rev. Lett., 2020, 125(24): 240502
CrossRef ADS Google scholar
[278]
Y. Xu, J. Chu, J. Yuan, J. Qiu, Y. Zhou, L. Zhang, X. Tan, Y. Yu, S. Liu, J. Li, F. Yan, D. Yu. High-fidelity, highscalability two-qubit gate scheme for superconducting qubits. Phys. Rev. Lett., 2020, 125(24): 240503
CrossRef ADS Google scholar
[279]
Y. Sung, L. Ding, J. Braumuller, A. Vepsalainen, B. Kannan. . Realization of high-fidelity CZ and ZZ-free iswap gates with a tunable coupler. Phys. Rev. X, 2021, 11(2): 021058
CrossRef ADS Google scholar
[280]
J. Stehlik, D. Zajac, D. Underwood, T. Phung, J. Blair, S. Carnevale, D. Klaus, G. Keefe, A. Carniol, M. Kumph, M. Steffen, O. E. Dial. Tunable coupling architecture for fixed-frequency transmon superconducting qubits. Phys. Rev. Lett., 2021, 127(8): 080505
CrossRef ADS Google scholar
[281]
C. C. Bultink, B. Tarasinski, N. Haandbæk, S. Poletto, N. Haider, D. J. Michalak, A. Bruno, L. DiCarlo. General method for extracting the quantum efficiency of dispersive qubit readout in circuit QED. Appl. Phys. Lett., 2018, 112(9): 092601
CrossRef ADS Google scholar
[282]
A. P. M. Place, L. V. H. Rodgers, P. Mundada, B. M. Smitham, M. Fitzpatrick. . New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds. Nat. Commun., 2021, 12(1): 1779
CrossRef ADS Google scholar
[283]
A.SomoroffQ. FicheuxR.A. MenciaH.XiongR.V. KuzminV.E. Manucharyan, Millisecond coherence in a superconducting qubit, arXiv: 2103.08578 (2021)
[284]
C. Wang, X. Li, H. Xu, Z. Li, J. Wang. . Towards practical quantum computers: Transmon qubit with a lifetime approaching 0.5 milliseconds. npj Quantum Inf., 2022, 8: 3
CrossRef ADS Google scholar
[285]
C. Müller, J. H. Cole, J. Lisenfeld. Towards understanding two-level-systems in amorphous solids: Insights from quantum circuits. Rep. Prog. Phys., 2019, 82(12): 124501
CrossRef ADS Google scholar
[286]
P. Klimov, J. Kelly, Z. Chen, M. Neeley, A. Megrant. . Fluctuations of energy-relaxation times in superconducting qubits. Phys. Rev. Lett., 2018, 121(9): 090502
CrossRef ADS Google scholar
[287]
S. Schlör, J. Lisenfeld, C. Muller, A. Bilmes, A. Schneider, D. P. Pappas, A. V. Ustinov, M. Weides. Correlating decoherence in transmon qubits: Low frequency noise by single fluctuators. Phys. Rev. Lett., 2019, 123(19): 190502
CrossRef ADS Google scholar
[288]
J. J. Burnett, A. Bengtsson, M. Scigliuzzo, D. Niepce, M. Kudra, P. Delsing, J. Bylander. Decoherence benchmarking of superconducting qubits. npj Quantum Inf., 2019, 5: 54
CrossRef ADS Google scholar
[289]
T. Proctor, M. Revelle, E. Nielsen, K. Rudinger, D. Lobser, P. Maunz, R. Blume-Kohout, K. Young. Detecting and tracking drift in quantum information processors. Nat. Commun., 2020, 11(1): 5396
CrossRef ADS Google scholar
[290]
S. E. de Graaf, L. Faoro, L. B. Ioffe, S. Mahashabde, J. J. Burnett, T. Lindstrom, S. E. Kubatkin, A. V. Danilov, A. Y. Tzalenchuk. Two-level systems in superconducting quantum devices due to trapped quasiparticles. Sci. Adv., 2020, 6(51): eabc5055
CrossRef ADS Google scholar
[291]
D. Suter, G. A. Alvarez. Colloquium: Protecting quantum information against environmental noise. Rev. Mod. Phys., 2016, 88(4): 041001
CrossRef ADS Google scholar
[292]
E. Paladino, Y. Galperin, G. Falci, B. Altshuler. 1/f noise: Implications for solid-state quantum information. Rev. Mod. Phys., 2014, 86(2): 361
CrossRef ADS Google scholar
[293]
J. Bylander, S. Gustavsson, F. Yan, F. Yoshihara, K. Harrabi, G. Fitch, D. G. Cory, Y. Nakamura, J. S. Tsai, W. D. Oliver. Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nat. Phys., 2011, 7(7): 565
CrossRef ADS Google scholar
[294]
F. Yan, J. Bylander, S. Gustavsson, F. Yoshihara, K. Harrabi, D. G. Cory, T. P. Orlando, Y. Nakamura, J. S. Tsai, W. D. Oliver. Spectroscopy of lowfrequency noise and its temperature dependence in a superconducting qubit. Phys. Rev. B, 2012, 85(17): 174521
CrossRef ADS Google scholar
[295]
F. Yan, S. Gustavsson, J. Bylander, X. Jin, F. Yoshihara, D. G. Cory, Y. Nakamura, T. P. Orlando, W. D. Oliver. Rotating-frame relaxation as a noise spectrum analyser of a superconducting qubit undergoing driven evolution. Nat. Commun., 2013, 4(1): 2337
CrossRef ADS Google scholar
[296]
F. Yoshihara, Y. Nakamura, F. Yan, S. Gustavsson, J. Bylander, W. D. Oliver, J. S. Tsai. Flux qubit noise spectroscopy using Rabi oscillations under strong driving conditions. Phys. Rev. B, 2014, 89(2): 020503
CrossRef ADS Google scholar
[297]
C. Quintana, Y. Chen, D. Sank, A. Petukhov, T. White. . Observation of classical-quantum crossover of 1/f flux noise and its paramagnetic temperature dependence. Phys. Rev. Lett., 2017, 118(5): 057702
CrossRef ADS Google scholar
[298]
Y. Sung, F. Beaudoin, L. M. Norris, F. Yan, D. K. Kim, J. Y. Qiu, U. von Lupke, J. L. Yoder, T. P. Orlando, S. Gustavsson, L. Viola, W. D. Oliver. Non-Gaussian noise spectroscopy with a superconducting qubit sensor. Nat. Commun., 2019, 10(1): 3715
CrossRef ADS Google scholar
[299]
F. T. Chong, D. Franklin, M. Martonosi. Programming languages and compiler design for realistic quantum hardware. Nature, 2017, 549(7671): 180
CrossRef ADS Google scholar
[300]
D. M. Abrams, N. Didier, B. R. Johnson, M. P. Silva, C. A. Ryan. Implementation of XY entangling gates with a single calibrated pulse. Nat. Electron., 2020, 3(12): 744
CrossRef ADS Google scholar
[301]
X. Gu, J. Fernandez-Pendas, P. Vikstal, T. Abad, C. Warren, A. Bengtsson, G. Tancredi, V. Shumeiko, J. Bylander, G. Johansson, A. F. Kockum. Fast multiqubit gates through simultaneous two-qubit gates. PRX Quantum, 2021, 2(4): 040348
CrossRef ADS Google scholar
[302]
C. Song, S. B. Zheng, P. Zhang, K. Xu, L. Zhang, Q. Guo, W. Liu, D. Xu, H. Deng, K. Huang, D. Zheng, X. Zhu, H. Wang. Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit. Nat. Commun., 2017, 8(1): 1061
CrossRef ADS Google scholar
[303]
Y. Kim, A. Morvan, L. B. Nguyen, R. K. Naik, C. Junger, L. Chen, J. M. Kreikebaum, D. I. Santiago, I. Siddiqi. High-fidelity three-qubit iToffoli gate for fixed-frequency superconducting qubits. Nat. Phys., 2022, 18(7): 783
CrossRef ADS Google scholar
[304]
J.ChuX. HeY.ZhouJ.YuanL.Zhang, ., Scalable algorithm simplification using quantum AND logic, arXiv: 2112.14922 (2021)
[305]
A. G. Fowler, M. Mariantoni, J. M. Martinis, A. N. Cleland. Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A, 2012, 86(3): 032324
CrossRef ADS Google scholar
[306]
A. Cleland. An introduction to the surface code. SciPost Phys. Lect. Notes, 2022, 49: 49
CrossRef ADS Google scholar
[307]
S. Krinner, N. Lacroix, A. Remm, A. Di Paolo, E. Genois, C. Leroux, C. Hellings, S. Lazar, F. Swiadek, J. Herrmann, G. J. Norris, C. K. Andersen, M. Müller, A. Blais, C. Eichler, A. Wallraff. Realizing repeated quantum error correction in a distance-three surface code. Nature, 2022, 605(7911): 669
CrossRef ADS Google scholar
[308]
Y. Zhao, Y. Ye, H. L. Huang, Y. Zhang, D. Wu. . Realization of an error-correcting surface code with superconducting qubits. Phys. Rev. Lett., 2022, 129(3): 030501
CrossRef ADS Google scholar
[309]
R.AcharyaI. AleinerR.AllenT.I. AndersenM.Ansmann, ., Suppressing quantum errors by scaling a surface code logical qubit, arXiv: 2207.06431 (2022)
[310]
A. P. Vepsäläinen, A. H. Karamlou, J. L. Orrell, A. S. Dogra, B. Loer, F. Vasconcelos, D. K. Kim, A. J. Melville, B. M. Niedzielski, J. L. Yoder, S. Gustavsson, J. A. Formaggio, B. A. VanDevender, W. D. Oliver. Impact of ionizing radiation on superconducting qubit coherence. Nature, 2020, 584(7822): 551
CrossRef ADS Google scholar
[311]
M. McEwen, L. Faoro, K. Arya, A. Dunsworth, T. Huang. . Resolving catastrophic error bursts from cosmic rays in large arrays of superconducting qubits. Nat. Phys., 2022, 18(1): 107
CrossRef ADS Google scholar
[312]
C. D. Wilen, S. Abdullah, N. A. Kurinsky, C. Stanford, L. Cardani, G. D’Imperio, C. Tomei, L. Faoro, L. B. Ioffe, C. H. Liu, A. Opremcak, B. G. Christensen, J. L. DuBois, R. McDermott. Correlated charge noise and relaxation errors in superconducting qubits. Nature, 2021, 594(7863): 369
CrossRef ADS Google scholar
[313]
B. M. Terhal, J. Conrad, C. Vuillot. Towards scalable bosonic quantum error correction. Quantum Sci. Technol., 2020, 5(4): 043001
CrossRef ADS Google scholar
[314]
A. Joshi, K. Noh, Y. Y. Gao. Quantum information processing with bosonic qubits in circuit QED. Quantum Sci. Technol., 2021, 6(3): 033001
CrossRef ADS Google scholar
[315]
W. Cai, Y. Ma, W. Wang, C. L. Zou, L. Sun. Bosonic quantum error correction codes in superconducting quantum circuits. Fundam. Res., 2021, 1(1): 50
CrossRef ADS Google scholar
[316]
C. Wang, Y. Y. Gao, P. Reinhold, R. W. Heeres, N. Ofek, K. Chou, C. Axline, M. Reagor, J. Blumoff, K. M. Sliwa, L. Frunzio, S. M. Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret, R. J. Schoelkopf. A Schrodinger cat living in two boxes. Science, 2016, 352(6289): 1087
CrossRef ADS Google scholar
[317]
N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas, B. Vlastakis, Y. Liu, L. Frunzio, S. M. Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret, R. J. Schoelkopf. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature, 2016, 536(7617): 441
CrossRef ADS Google scholar
[318]
S. Puri, L. St-Jean, J. A. Gross, A. Grimm, N. E. Frattini, P. S. Iyer, A. Krishna, S. Touzard, L. Jiang, A. Blais, S. T. Flammia, S. M. Girvin. Bias-preserving gates with stabilized cat qubits. Sci. Adv., 2020, 6(34): eaay5901
CrossRef ADS Google scholar
[319]
A. Grimm, N. E. Frattini, S. Puri, S. O. Mundhada, S. Touzard, M. Mirrahimi, S. M. Girvin, S. Shankar, M. H. Devoret. Stabilization and operation of a Kerr-cat qubit. Nature, 2020, 584(7820): 205
CrossRef ADS Google scholar
[320]
J. M. Gertler, B. Baker, J. Li, S. Shirol, J. Koch, C. Wang. Protecting a bosonic qubit with autonomous quantum error correction. Nature, 2021, 590(7845): 243
CrossRef ADS Google scholar
[321]
M. H. Michael, M. Silveri, R. T. Brierley, V. V. Albert, J. Salmilehto, L. Jiang, S. M. Girvin. New class of quantum error-correcting codes for a bosonic mode. Phys. Rev. X, 2016, 6(3): 031006
CrossRef ADS Google scholar
[322]
L. Hu, Y. Ma, W. Cai, X. Mu, Y. Xu, W. Wang, Y. Wu, H. Wang, Y. P. Song, C. L. Zou, S. M. Girvin, L. M. Duan, L. Sun. Quantum error correction and universal gate set operation on a binomial bosonic logical qubit. Nat. Phys., 2019, 15(5): 503
CrossRef ADS Google scholar
[323]
D. Gottesman, A. Kitaev, J. Preskill. Encoding a qubit in an oscillator. Phys. Rev. A, 2001, 64(1): 012310
CrossRef ADS Google scholar
[324]
A. L. Grimsmo, S. Puri. Quantum error correction with the Gottesman−Kitaev−Preskill code. PRX Quantum, 2021, 2(2): 020101
CrossRef ADS Google scholar
[325]
P. Campagne-Ibarcq, A. Eickbusch, S. Touzard, E. Zalys-Geller, N. E. Frattini, V. V. Sivak, P. Reinhold, S. Puri, S. Shankar, R. J. Schoelkopf, L. Frunzio, M. Mirrahimi, M. H. Devoret. Quantum error correction of a qubit encoded in grid states of an oscillator. Nature, 2020, 584(7821): 368
CrossRef ADS Google scholar
[326]
B. de Neeve, T. L. Nguyen, T. Behrle, J. P. Home. Error correction of a logical grid state qubit by dissipative pumping. Nat. Phys., 2022, 18(3): 296
CrossRef ADS Google scholar
[327]
B. Royer, S. Singh, S. M. Girvin. Stabilization of finite-energy Gottesman−Kitaev−Preskill states. Phys. Rev. Lett., 2020, 125(26): 260509
CrossRef ADS Google scholar
[328]
J. I. J. Wang, M. A. Yamoah, Q. Li, A. H. Karamlou, T. Dinh. . Hexagonal boron nitride as a lowloss dielectric for superconducting quantum circuits and qubits. Nat. Mater., 2022, 21(4): 398
CrossRef ADS Google scholar
[329]
H. Mamin, E. Huang, S. Carnevale, C. Rettner, N. Arellano, M. Sherwood, C. Kurter, B. Trimm, M. Sandberg, R. M. Shelby, M. A. Mueed, B. A. Madon, A. Pushp, M. Steffen, D. Rugar. Merged-element transmons: Design and qubit performance. Phys. Rev. Appl., 2021, 16(2): 024023
CrossRef ADS Google scholar
[330]
R. Zhao, S. Park, T. Zhao, M. Bal, C. McRae, J. Long, D. Pappas. Merged-element transmon. Phys. Rev. Appl., 2020, 14(6): 064006
CrossRef ADS Google scholar
[331]
D. Rosenberg, D. Kim, R. Das, D. Yost, S. Gustavsson. . 3D integrated superconducting qubits. npj Quantum Inf., 2017, 3: 42
CrossRef ADS Google scholar
[332]
B. Foxen, J. Y. Mutus, E. Lucero, R. Graff, A. Megrant. . Qubit compatible superconducting interconnects. Quantum Sci. Technol., 2018, 3(1): 014005
CrossRef ADS Google scholar
[333]
J. Rahamim, T. Behrle, M. J. Peterer, A. Patterson, P. A. Spring, T. Tsunoda, R. Manenti, G. Tancredi, P. J. Leek. Double-sided coaxial circuit QED with outof-plane wiring. Appl. Phys. Lett., 2017, 110(22): 222602
CrossRef ADS Google scholar
[334]
C. R. Conner, A. Bienfait, H. S. Chang, M. H. Chou, E. Dumur, J. Grebel, G. A. Peairs, R. G. Povey, H. Yan, Y. P. Zhong, A. N. Cleland. Superconducting qubits in a flip-chip architecture. Appl. Phys. Lett., 2021, 118(23): 232602
CrossRef ADS Google scholar
[335]
S. Kosen, H. X. Li, M. Rommel, D. Shiri, C. Warren. . Building blocks of a flip-chip integrated superconducting quantum processor. Quantum Sci. Technol., 2022, 7(3): 035018
CrossRef ADS Google scholar
[336]
M.VahidpourW. O’BrienJ.T. WhylandJ.AngelesJ.Marshall, ., Superconducting throughsilicon vias for quantum integrated circuits, arXiv: 1708.02226 (2017)
[337]
D. R. W. Yost, M. E. Schwartz, J. Mallek, D. Rosenberg, C. Stull. . Solid-state qubits integrated with superconducting through-silicon vias. npj Quantum Inf., 2020, 6: 59
CrossRef ADS Google scholar
[338]
K. Grigoras, N. Yurttagul, J. P. Kaikkonen, E. Mannila, P. Eskelinen. . Qubit-compatible substrates with superconducting through-silicon vias. IEEE Trans. Quantum Eng., 2022, 3: 5100310
CrossRef ADS Google scholar
[339]
S. Asaad, C. Dickel, N. K. Langford, S. Poletto, A. Bruno, M. A. Rol, D. Deurloo, L. DiCarlo. Independent, extensible control of same-frequency superconducting qubits by selective broadcasting. npj Quantum Inf., 2016, 2: 16029
CrossRef ADS Google scholar
[340]
R. Manenti, E. A. Sete, A. Q. Chen, S. Kulshreshtha, J. H. Yeh, F. Oruc, A. Bestwick, M. Field, K. Jackson, S. Poletto. Full control of superconducting qubits with combined on-chip microwave and flux lines. Appl. Phys. Lett., 2021, 119(14): 144001
CrossRef ADS Google scholar
[341]
D. Awschalom, K. K. Berggren, H. Bernien, S. Bhave, L. D. Carr. . Development of quantum interconnects (QuICs) for next-generation information technologies. PRX Quantum, 2021, 2(1): 017002
CrossRef ADS Google scholar
[342]
L. Jiang, J. M. Taylor, A. S. Sorensen, M. D. Lukin. Distributed quantum computation based on small quantum registers. Phys. Rev. A, 2007, 76(6): 062323
CrossRef ADS Google scholar
[343]
H. J. Kimble. The quantum internet. Nature, 2008, 453(7198): 1023
CrossRef ADS Google scholar
[344]
K. S. Chou, J. Z. Blumoff, C. S. Wang, P. C. Reinhold, C. J. Axline, Y. Y. Gao, L. Frunzio, M. H. Devoret, L. Jiang, R. J. Schoelkopf. Deterministic teleportation of a quantum gate between two logical qubits. Nature, 2018, 561(7723): 368
CrossRef ADS Google scholar
[345]
N.LaRacuenteK.N. SmithP.Imany K.L. SilvermanF.T. Chong, Short-range microwave networks to scale superconducting quantum computation, arXiv: 2201.08825 (2022)
[346]
P. Kurpiers, P. Magnard, T. Walter, B. Royer, M. Pechal, J. Heinsoo, Y. Salathe, A. Akin, S. Storz, J. C. Besse, S. Gasparinetti, A. Blais, A. Wallraff. Deterministic quantum state transfer and remote entanglement using microwave photons. Nature, 2018, 558(7709): 264
CrossRef ADS Google scholar
[347]
C. J. Axline, L. D. Burkhart, W. Pfaff, M. Zhang, K. Chou, P. Campagne-Ibarcq, P. Reinhold, L. Frunzio, S. M. Girvin, L. Jiang, M. H. Devoret, R. J. Schoelkopf. On-demand quantum state transfer and entanglement between remote microwave cavity memories. Nat. Phys., 2018, 14(7): 705
CrossRef ADS Google scholar
[348]
P. Campagne-Ibarcq, E. Zalys-Geller, A. Narla, S. Shankar, P. Reinhold, L. Burkhart, C. Axline, W. Pfaff, L. Frunzio, R. J. Schoelkopf, M. H. Devoret. Deterministic remote entanglement of superconducting circuits through microwave two-photon transitions. Phys. Rev. Lett., 2018, 120(20): 200501
CrossRef ADS Google scholar
[349]
N. Leung, Y. Lu, S. Chakram, R. K. Naik, N. Earnest, R. Ma, K. Jacobs, A. N. Cleland, D. I. Schuster. Deterministic bidirectional communication and remote entanglement generation between superconducting qubits. npj Quantum Inf., 2019, 5: 18
CrossRef ADS Google scholar
[350]
P. Magnard, S. Storz, P. Kurpiers, J. Schar, F. Marxer, J. Lutolf, T. Walter, J. C. Besse, M. Gabureac, K. Reuer, A. Akin, B. Royer, A. Blais, A. Wallraff. Microwave quantum link between superconducting circuits housed in spatially separated cryogenic systems. Phys. Rev. Lett., 2020, 125(26): 260502
CrossRef ADS Google scholar
[351]
L. D. Burkhart, J. D. Teoh, Y. Zhang, C. J. Axline, L. Frunzio, M. Devoret, L. Jiang, S. Girvin, R. Schoelkopf. Error-detected state transfer and entanglement in a superconducting quantum network. PRX Quantum, 2021, 2(3): 030321
CrossRef ADS Google scholar
[352]
A. Gold, J. P. Paquette, A. Stockklauser, M. J. Reagor, M. S. Alam. . Entanglement across separate silicon dies in a modular superconducting qubit device. npj Quantum Inf., 2021, 7: 142
CrossRef ADS Google scholar
[353]
J. M. Kreikebaum, K. P. O’Brien, A. Morvan, I. Siddiqi. Improving wafer-scale Josephson junction resistance variation in superconducting quantum coherent circuits. Supercond. Sci. Technol., 2020, 33(6): 06LT02
CrossRef ADS Google scholar
[354]
J. B. Hertzberg, E. J. Zhang, S. Rosenblatt, E. Magesan, J. A. Smolin. . Laser-annealing Josephson junctions for yielding scaled-up superconducting quantum processors. npj Quantum Inf., 2021, 7: 129
CrossRef ADS Google scholar
[355]
E. J. Zhang, S. Srinivasan, N. Sundaresan, D. F. Bogorin, Y. Martin. . High-performance superconducting quantum processors via laser annealing of transmon qubits. Sci. Adv., 2022, 8(19): eabi6690
CrossRef ADS Google scholar
[356]
H.KimC. JungerA.MorvanE.S. BarnardW.P. Livingston, ., Effects of laser-annealing on fixedfrequency superconducting qubits, arXiv: 2206.03099 (2022)
[357]
S. Krinner, S. Storz, P. Kurpiers, P. Magnard, J. Heinsoo, R. Keller, J. Lutolf, C. Eichler, A. Wallraff. Engineering cryogenic setups for 100-qubit scale superconducting circuit systems. EPJ Quantum Technol., 2019, 6(1): 2
CrossRef ADS Google scholar
[358]
J. C. Bardin, E. Jeffrey, E. Lucero, T. Huang, S. Das. . Design and characterization of a 28-nm bulk-CMOS cryogenic quantum controller dissipating less than 2 mW at 3 K. IEEE J. Solid-State Circuits, 2019, 54(11): 3043
CrossRef ADS Google scholar
[359]
B.PatraJ. P. G. van DijkS.SubramanianA.CornaX.Xue, ., 19.1 A scalable cryo-CMOS 2-to-20 GHz digitally intensive controller for 4×32 frequency multiplexed spin qubits/transmons in 22 nm FinFET technology for quantum computers, in: IEEE Int. Solid-State Circuits Conf., 2020, pp 304–306
[360]
S. J. Pauka, K. Das, R. Kalra, A. Moini, Y. Yang, M. Trainer, A. Bousquet, C. Cantaloube, N. Dick, G. C. Gardner, M. J. Manfra, D. J. Reilly. A cryogenic CMOS chip for generating control signals for multiple qubits. Nat. Electron., 2021, 4(1): 64
CrossRef ADS Google scholar
[361]
E. A. Sete, A. Q. Chen, R. Manenti, S. Kulshreshtha, S. Poletto. Floating tunable coupler for scalable quantum computing architectures. Phys. Rev. Appl., 2021, 15(6): 064063
CrossRef ADS Google scholar
[362]
A. Dunsworth, R. Barends, Y. Chen, Z. Chen, B. Chiaro. . A method for building low loss multi-layer wiring for superconducting microwave devices. Appl. Phys. Lett., 2018, 112(6): 063502
CrossRef ADS Google scholar
[363]
P. Zhao, P. Xu, D. Lan, J. Chu, X. Tan, H. Yu, Y. Yu. High-contrast ZZ interaction using superconducting qubits with opposite-sign anharmonicity. Phys. Rev. Lett., 2020, 125(20): 200503
CrossRef ADS Google scholar
[364]
A. Kandala, K. Wei, S. Srinivasan, E. Magesan, S. Carnevale, G. Keefe, D. Klaus, O. Dial, D. McKay. Demonstration of a high-fidelity cnot gate for fixed-frequency transmons with engineered ZZ suppression. Phys. Rev. Lett., 2021, 127(13): 130501
CrossRef ADS Google scholar
[365]
S. Huang, B. Lienhard, G. Calusine, A. Vepsalainen, J. Braumuller, D. K. Kim, A. J. Melville, B. M. Niedzielski, J. L. Yoder, B. Kannan, T. P. Orlando, S. Gustavsson, W. D. Oliver. Microwave package design for superconducting quantum processors. PRX Quantum, 2021, 2(2): 020306
CrossRef ADS Google scholar
[366]
W. Nuerbolati, Z. Han, J. Chu, Y. Zhou, X. Tan, Y. Yu, S. Liu, F. Yan. Canceling microwave crosstalk with fixed-frequency qubits. Appl. Phys. Lett., 2022, 120(17): 174001
CrossRef ADS Google scholar
[367]
B. K. Mitchell, R. K. Naik, A. Morvan, A. Hashim, J. M. Kreikebaum, B. Marinelli, W. Lavrijsen, K. Nowrouzi, D. I. Santiago, I. Siddiqi. Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Phys. Rev. Lett., 2021, 127(20): 200502
CrossRef ADS Google scholar
[368]
T. Q. Cai, X. Y. Han, Y. K. Wu, Y. L. Ma, J. H. Wang, Z. L. Wang, H. Y. Zhang, H. Y. Wang, Y. P. Song, L. M. Duan. Impact of spectators on a two-qubit gate in a tunable coupling superconducting circuit. Phys. Rev. Lett., 2021, 127(6): 060505
CrossRef ADS Google scholar
[369]
D.ZajacJ. StehlikD.UnderwoodT.PhungJ.Blair, ., Spectator errors in tunable coupling architectures, arXiv: 2108.11221 (2021)
[370]
K. Wei, E. Magesan, I. Lauer, S. Srinivasan, D. Bogorin. . Hamiltonian engineering with multicolor drives for fast entangling gates and quantum crosstalk cancellation. Phys. Rev. Lett., 2022, 129(6): 060501
CrossRef ADS Google scholar
[371]
Z. Ni, S. Li, L. Zhang, J. Chu, J. Niu, T. Yan, X. Deng, L. Hu, J. Li, Y. Zhong, S. Liu, F. Yan, Y. Xu, D. Yu. Scalable method for eliminating residual ZZ interaction between superconducting qubits. Phys. Rev. Lett., 2022, 129(4): 040502
CrossRef ADS Google scholar
[372]
T. Harty, D. Allcock, C. J. Ballance, L. Guidoni, H. Janacek, N. Linke, D. Stacey, D. Lucas. High-fidelity preparation, gates, memory, and readout of a trapped-ion quantum bit. Phys. Rev. Lett., 2014, 113(22): 220501
CrossRef ADS Google scholar
[373]
Y. Wang, M. Um, J. Zhang, S. An, M. Lyu, J. N. Zhang, L. M. Duan, D. Yum, K. Kim. Single-qubit quantum memory exceeding ten-minute coherence time. Nat. Photonics, 2017, 11(10): 646
CrossRef ADS Google scholar
[374]
P. Wang, C. Y. Luan, M. Qiao, M. Um, J. Zhang, Y. Wang, X. Yuan, M. Gu, J. Zhang, K. Kim. Single ion qubit with estimated coherence time exceeding one hour. Nat. Commun., 2021, 12(1): 233
CrossRef ADS Google scholar
[375]
R. Noek, G. Vrijsen, D. Gaultney, E. Mount, T. Kim, P. Maunz, J. Kim. High speed, high fidelity detection of an atomic hyperfine qubit. Opt. Lett., 2013, 38(22): 4735
CrossRef ADS Google scholar
[376]
S. Crain, C. Cahall, G. Vrijsen, E. E. Wollman, M. D. Shaw, V. B. Verma, S. W. Nam, J. Kim. High-speed low-crosstalk detection of a 171Yb+ qubit using superconducting nanowire single photon detectors. Commun. Phys., 2019, 2(1): 97
CrossRef ADS Google scholar
[377]
J. P. Gaebler, T. R. Tan, Y. Lin, Y. Wan, R. Bowler, A. C. Keith, S. Glancy, K. Coakley, E. Knill, D. Leibfried, D. J. Wineland. High-fidelity universal gate set for 9Be+ ion qubits. Phys. Rev. Lett., 2016, 117(6): 060505
CrossRef ADS Google scholar
[378]
C. Ballance, T. Harty, N. Linke, M. Sepiol, D. Lucas. High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys. Rev. Lett., 2016, 117(6): 060504
CrossRef ADS Google scholar
[379]
C. R. Clark, H. N. Tinkey, B. C. Sawyer, A. M. Meier, K. A. Burkhardt, C. M. Seck, C. M. Shappert, N. D. Guise, C. E. Volin, S. D. Fallek, H. T. Hayden, W. G. Rellergert, K. R. Brown. High-fidelity Bell-state preparation with 40Ca+ optical qubits. Phys. Rev. Lett., 2021, 127(13): 130505
CrossRef ADS Google scholar
[380]
K. Wright, K. M. Beck, S. Debnath, J. Amini, Y. Nam. . Benchmarking an 11-qubit quantum computer. Nat. Commun., 2019, 10(1): 5464
CrossRef ADS Google scholar
[381]
I. Pogorelov, T. Feldker, C. D. Marciniak, L. Postler, G. Jacob, O. Krieglsteiner, V. Podlesnic, M. Meth, V. Negnevitsky, M. Stadler, B. Höfer, C. Wächter, K. Lakhmanskiy, R. Blatt, P. Schindler, T. Monz. Compact ion-trap quantum computing demonstrator. PRX Quantum, 2021, 2(2): 020343
CrossRef ADS Google scholar
[382]
T. Monz, D. Nigg, E. A. Martinez, M. F. Brandl, P. Schindler, R. Rines, S. X. Wang, I. L. Chuang, R. Blatt. Realization of a scalable Shor algorithm. Science, 2016, 351(6277): 1068
CrossRef ADS Google scholar
[383]
C. Figgatt, D. Maslov, K. A. Landsman, N. M. Linke, S. Debnath, C. Monroe. Complete 3-qubit Grover search on a programmable quantum computer. Nat. Commun., 2017, 8(1): 1918
CrossRef ADS Google scholar
[384]
K. Kim, M. S. Chang, S. Korenblit, R. Islam, E. E. Edwards, J. K. Freericks, G. D. Lin, L. M. Duan, C. Monroe. Quantum simulation of frustrated ising spins with trapped ions. Nature, 2010, 465(7298): 590
CrossRef ADS Google scholar
[385]
P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R. Blatt, C. F. Roos. Quasiparticle engineering and entanglement propagation in a quantum many-body system. Nature, 2014, 511(7508): 202
CrossRef ADS Google scholar
[386]
P. Richerme, Z. X. Gong, A. Lee, C. Senko, J. Smith, M. Foss-Feig, S. Michalakis, A. V. Gorshkov, C. Monroe. Non-local propagation of correlations in quantum systems with long-range interactions. Nature, 2014, 511(7508): 198
CrossRef ADS Google scholar
[387]
C. Senko, J. Smith, P. Richerme, A. Lee, W. Campbell, C. Monroe. Coherent imaging spectroscopy of a quantum many-body spin system. Science, 2014, 345(6195): 430
CrossRef ADS Google scholar
[388]
M. Gärttner, J. G. Bohnet, A. Safavi-Naini, M. L. Wall, J. J. Bollinger, A. M. Rey. Measuring out-oftime-order correlations and multiple quantum spectra in a trapped-ion quantum magnet. Nat. Phys., 2017, 13(8): 781
CrossRef ADS Google scholar
[389]
J. Zhang, P. W. Hess, A. Kyprianidis, P. Becker, A. Lee, J. Smith, G. Pagano, I. D. Potirniche, A. C. Potter, A. Vishwanath, N. Y. Yao, C. Monroe. Observation of a discrete time crystal. Nature, 2017, 543(7644): 217
CrossRef ADS Google scholar
[390]
T. Brydges, A. Elben, P. Jurcevic, B. Vermersch, C. Maier, B. P. Lanyon, P. Zoller, R. Blatt, C. F. Roos. Probing Renyi entanglement entropy via randomized measurements. Science, 2019, 364(6437): 260
CrossRef ADS Google scholar
[391]
C. Maier, T. Brydges, P. Jurcevic, N. Trautmann, C. Hempel, B. P. Lanyon, P. Hauke, R. Blatt, C. F. Roos. Environment-assisted quantum transport in a 10-qubit network. Phys. Rev. Lett., 2019, 122(5): 050501
CrossRef ADS Google scholar
[392]
C. Monroe, W. C. Campbell, L. M. Duan, Z. X. Gong, A. V. Gorshkov, P. Hess, R. Islam, K. Kim, N. M. Linke, G. Pagano, P. Richerme, C. Senko, N. Y. Yao. Programmable quantum simulations of spin systems with trapped ions. Rev. Mod. Phys., 2021, 93(2): 025001
CrossRef ADS Google scholar
[393]
R. Srinivas, S. Burd, H. Knaack, R. Sutherland, A. Kwiatkowski, S. Glancy, E. Knill, D. Wineland, D. Leibfried, A. C. Wilson, D. T. C. Allcock, D. H. Slichter. High-fidelity laser-free universal control of trapped ion qubits. Nature, 2021, 597(7875): 209
CrossRef ADS Google scholar
[394]
H. Kaufmann, T. Ruster, C. T. Schmiegelow, M. A. Luda, V. Kaushal, J. Schulz, D. Von Lindenfels, F. Schmidt-Kaler, U. Poschinger. Scalable creation of long-lived multipartite entanglement. Phys. Rev. Lett., 2017, 119(15): 150503
CrossRef ADS Google scholar
[395]
T. Manovitz, Y. Shapira, L. Gazit, N. Akerman, R. Ozeri. Trapped-ion quantum computer with robust entangling gates and quantum coherent feedback. PRX Quantum, 2022, 3: 010347
CrossRef ADS Google scholar
[396]
M. Dietrich, N. Kurz, T. Noel, G. Shu, B. Blinov. Hyperfine and optical barium ion qubits. Phys. Rev. A, 2010, 81(5): 052328
CrossRef ADS Google scholar
[397]
D. Hucul, J. E. Christensen, E. R. Hudson, W. C. Campbell. Spectroscopy of a synthetic trapped ion qubit. Phys. Rev. Lett., 2017, 119(10): 100501
CrossRef ADS Google scholar
[398]
S. Weidt, J. Randall, S. Webster, K. Lake, A. Webb, I. Cohen, T. Navickas, B. Lekitsch, A. Retzker, W. Hensinger. Trapped-ion quantum logic with global radiation fields. Phys. Rev. Lett., 2016, 117(22): 220501
CrossRef ADS Google scholar
[399]
Y. Lu, S. Zhang, K. Zhang, W. Chen, Y. Shen, J. Zhang, J. N. Zhang, K. Kim. Global entangling gates on arbitrary ion qubits. Nature, 2019, 572(7769): 363
CrossRef ADS Google scholar
[400]
Y. Wang, S. Crain, C. Fang, B. Zhang, S. Huang, Q. Liang, P. H. Leung, K. R. Brown, J. Kim. High-fidelity two-qubit gates using a microelectromechanicalsystem-based beam steering system for individual qubit addressing. Phys. Rev. Lett., 2020, 125(15): 150505
CrossRef ADS Google scholar
[401]
A. Myerson, D. Szwer, S. Webster, D. Allcock, M. Curtis, G. Imreh, J. Sherman, D. Stacey, A. Steane, D. Lucas. High-fidelity readout of trapped-ion qubits. Phys. Rev. Lett., 2008, 100(20): 200502
CrossRef ADS Google scholar
[402]
S. Wölk, C. Piltz, T. Sriarunothai, C. Wunderlich. State selective detection of hyperfine qubits. J. Phys. At. Mol. Opt. Phys., 2015, 48(7): 075101
CrossRef ADS Google scholar
[403]
A. Seif, K. A. Landsman, N. M. Linke, C. Figgatt, C. Monroe, M. Hafezi. Machine learning assisted readout of trapped-ion qubits. J. Phys. At. Mol. Opt. Phys., 2018, 51(17): 174006
CrossRef ADS Google scholar
[404]
Z. H. Ding, J. M. Cui, Y. F. Huang, C. F. Li, T. Tu, G. C. Guo. Fast high-fidelity readout of a single trapped-ion qubit via machine-learning methods. Phys. Rev. Appl., 2019, 12(1): 014038
CrossRef ADS Google scholar
[405]
K. R. Brown, J. Kim, C. Monroe. Co-designing a scalable quantum computer with trapped atomic ions. npj Quantum Inf., 2016, 2: 16034
CrossRef ADS Google scholar
[406]
R. J. Niffenegger, J. Stuart, C. Sorace-Agaskar, D. Kharas, S. Bramhavar, C. D. Bruzewicz, W. Loh, R. T. Maxson, R. McConnell, D. Reens, G. N. West, J. M. Sage, J. Chiaverini. Integrated multi-wavelength control of an ion qubit. Nature, 2020, 586(7830): 538
CrossRef ADS Google scholar
[407]
S. L. Todaro, V. Verma, K. C. McCormick, D. Allcock, R. Mirin, D. J. Wineland, S. W. Nam, A. C. Wilson, D. Leibfried, D. Slichter. State readout of a trapped ion qubit using a trap-integrated superconducting photon detector. Phys. Rev. Lett., 2021, 126(1): 010501
CrossRef ADS Google scholar
[408]
W. Setzer, M. Ivory, O. Slobodyan, J. Van Der Wall, L. Parazzoli, D. Stick, M. Gehl, M. Blain, R. Kay, H. J. McGuinness. Fluorescence detection of a trapped ion with a monolithically integrated single-photon-counting avalanche diode. Appl. Phys. Lett., 2021, 119(15): 154002
CrossRef ADS Google scholar
[409]
D. Reens, M. Collins, J. Ciampi, D. Kharas, B. F. Aull, K. Donlon, C. D. Bruzewicz, B. Felton, J. Stuart, R. J. Niffenegger, P. Rich, D. Braje, K. K. Ryu, J. Chiaverini, R. McConnell. High-fidelity ion state detection using trap-integrated avalanche photodiodes. Phys. Rev. Lett., 2022, 129(10): 100502
CrossRef ADS Google scholar
[410]
A. Bermudez, X. Xu, R. Nigmatullin, J. O’Gorman, V. Negnevitsky, P. Schindler, T. Monz, U. Poschinger, C. Hempel, J. Home, F. Schmidt-Kaler, M. Biercuk, R. Blatt, S. Benjamin, M. Müller. Assessing the progress of trapped-ion processors towards fault-tolerant quantum computation. Phys. Rev. X, 2017, 7(4): 041061
CrossRef ADS Google scholar
[411]
A. Sørensen, K. Molmer. Quantum computation with ions in thermal motion. Phys. Rev. Lett., 1999, 82(9): 1971
CrossRef ADS Google scholar
[412]
A. Sørensen, K. Molmer. Entanglement and quantum computation with ions in thermal motion. Phys. Rev. A, 2000, 62(2): 022311
CrossRef ADS Google scholar
[413]
D. Jonathan, M. B. Plenio. Light-shift-induced quantum gates for ions in thermal motion. Phys. Rev. Lett., 2001, 87(12): 127901
CrossRef ADS Google scholar
[414]
D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenković, C. Langer, T. Rosenband, D. J. Wineland. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature, 2003, 422(6930): 412
CrossRef ADS Google scholar
[415]
B. C. Sawyer, K. R. Brown. Wavelength-insensitive, multispecies entangling gate for group-2 atomic ions. Phys. Rev. A, 2021, 103(2): 022427
CrossRef ADS Google scholar
[416]
F. Mintert, C. Wunderlich. Ion-trap quantum logic using long-wavelength radiation. Phys. Rev. Lett., 2001, 87(25): 257904
CrossRef ADS Google scholar
[417]
C. Ospelkaus, C. E. Langer, J. M. Amini, K. R. Brown, D. Leibfried, D. J. Wineland. Trapped-ion quantum logic gates based on oscillating magnetic fields. Phys. Rev. Lett., 2008, 101(9): 090502
CrossRef ADS Google scholar
[418]
N. Timoney, I. Baumgart, M. Johanning, A. Varon, M. B. Plenio, A. Retzker, C. Wunderlich. Quantum gates and memory using microwave-dressed states. Nature, 2011, 476(7359): 185
CrossRef ADS Google scholar
[419]
S. Webster, S. Weidt, K. Lake, J. McLoughlin, W. Hensinger. Simple manipulation of a microwave dressed-state ion qubit. Phys. Rev. Lett., 2013, 111(14): 140501
CrossRef ADS Google scholar
[420]
T. Harty, M. Sepiol, D. Allcock, C. Ballance, J. Tarlton, D. Lucas. High-fidelity trapped-ion quantum logic using near-field microwaves. Phys. Rev. Lett., 2016, 117(14): 140501
CrossRef ADS Google scholar
[421]
G. Zarantonello, H. Hahn, J. Morgner, M. Schulte, A. Bautista-Salvador, R. Werner, K. Hammerer, C. Ospelkaus. Robust and resource-efficient microwave near-field entangling 9Be+ gate. Phys. Rev. Lett., 2019, 123(26): 260503
CrossRef ADS Google scholar
[422]
B. Lekitsch, S. Weidt, A. G. Fowler, K. Molmer, S. J. Devitt, C. Wunderlich, W. K. Hensinger. Blueprint for a microwave trapped ion quantum computer. Sci. Adv., 2017, 3(2): e1601540
CrossRef ADS Google scholar
[423]
V. Schäfer, C. Ballance, K. Thirumalai, L. Stephenson, T. Ballance, A. Steane, D. Lucas. Fast quantum logic gates with trapped-ion qubits. Nature, 2018, 555(7694): 75
CrossRef ADS Google scholar
[424]
M. Sameti, J. Lishman, F. Mintert. Strong-coupling quantum logic of trapped ions. Phys. Rev. A, 2021, 103(5): 052603
CrossRef ADS Google scholar
[425]
J. J. García-Ripoll, P. Zoller, J. I. Cirac. Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing. Phys. Rev. Lett., 2003, 91(15): 157901
CrossRef ADS Google scholar
[426]
L. M. Duan. Scaling ion trap quantum computation through fast quantum gates. Phys. Rev. Lett., 2004, 93(10): 100502
CrossRef ADS Google scholar
[427]
J. Mizrahi, C. Senko, B. Neyenhuis, K. Johnson, W. Campbell, C. Conover, C. Monroe. Ultrafast spin-motion entanglement and interferometry with a single atom. Phys. Rev. Lett., 2013, 110(20): 203001
CrossRef ADS Google scholar
[428]
J. Wong-Campos, S. Moses, K. Johnson, C. Monroe. Demonstration of two-atom entanglement with ultrafast optical pulses. Phys. Rev. Lett., 2017, 119(23): 230501
CrossRef ADS Google scholar
[429]
M. I. Hussain, D. Heinrich, M. Guevara-Bertsch, E. Torrontegui, J. J. Garcia-Ripoll, C. F. Roos, R. Blatt. Ultraviolet laser pulses with multigigahertz repetition rate and multiwatt average power for fast trapped-ion entanglement operations. Phys. Rev. Appl., 2021, 15(2): 024054
CrossRef ADS Google scholar
[430]
S. L. Zhu, C. Monroe, L. M. Duan. Arbitrary-speed quantum gates within large ion crystals through minimum control of laser beams. Europhys. Lett., 2006, 73(4): 485
CrossRef ADS Google scholar
[431]
S. L. Zhu, C. Monroe, L. M. Duan. Trapped ion quantum computation with transverse phonon modes. Phys. Rev. Lett., 2006, 97(5): 050505
CrossRef ADS Google scholar
[432]
T. Choi, S. Debnath, T. Manning, C. Figgatt, Z. X. Gong, L. M. Duan, C. Monroe. Optimal quantum control of multimode couplings between trapped ion qubits for scalable entanglement. Phys. Rev. Lett., 2014, 112(19): 190502
CrossRef ADS Google scholar
[433]
P. H. Leung, K. A. Landsman, C. Figgatt, N. M. Linke, C. Monroe, K. R. Brown. Robust 2-qubit gates in a linear ion crystal using a frequency-modulated driving force. Phys. Rev. Lett., 2018, 120(2): 020501
CrossRef ADS Google scholar
[434]
T. J. Green, M. J. Biercuk. Phase-modulated decoupling and error suppression in qubit-oscillator systems. Phys. Rev. Lett., 2015, 114(12): 120502
CrossRef ADS Google scholar
[435]
K. A. Landsman, Y. Wu, P. H. Leung, D. Zhu, N. M. Linke, K. R. Brown, L. Duan, C. Monroe. Two-qubit entangling gates within arbitrarily long chains of trapped ions. Phys. Rev. A, 2019, 100(2): 022332
CrossRef ADS Google scholar
[436]
A. R. Milne, C. L. Edmunds, C. Hempel, F. Roy, S. Mavadia, M. J. Biercuk. Phase-modulated entangling gates robust to static and time-varying errors. Phys. Rev. Appl., 2020, 13(2): 024022
CrossRef ADS Google scholar
[437]
T. Monz, P. Schindler, J. T. Barreiro, M. Chwalla, D. Nigg, W. A. Coish, M. Harlander, W. Hansel, M. Hennrich, R. Blatt. 14-qubit entanglement: Creation and coherence. Phys. Rev. Lett., 2011, 106(13): 130506
CrossRef ADS Google scholar
[438]
S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman, K. Wright, C. Monroe. Demonstration of a small programmable quantum computer with atomic qubits. Nature, 2016, 536(7614): 63
CrossRef ADS Google scholar
[439]
N. M. Linke, D. Maslov, M. Roetteler, S. Debnath, C. Figgatt, K. A. Landsman, K. Wright, C. Monroe. Experimental comparison of two quantum computing architectures. Proc. Natl. Acad. Sci. USA, 2017, 114(13): 3305
CrossRef ADS Google scholar
[440]
S. S. Ivanov, P. A. Ivanov, N. V. Vitanov. Efficient construction of three- and four-qubit quantum gates by global entangling gates. Phys. Rev. A, 2015, 91(3): 032311
CrossRef ADS Google scholar
[441]
E. A. Martinez, T. Monz, D. Nigg, P. Schindler, R. Blatt. Compiling quantum algorithms for architectures with multi-qubit gates. New J. Phys., 2016, 18(6): 063029
CrossRef ADS Google scholar
[442]
D. Maslov, Y. Nam. Use of global interactions in efficient quantum circuit constructions. New J. Phys., 2018, 20(3): 033018
CrossRef ADS Google scholar
[443]
D. Schwerdt, Y. Shapira, T. Manovitz, R. Ozeri. Comparing two-qubit and multiqubit gates within the toric code. Phys. Rev. A, 2022, 105(2): 022612
CrossRef ADS Google scholar
[444]
C. Figgatt, A. Ostrander, N. M. Linke, K. A. Landsman, D. Zhu, D. Maslov, C. Monroe. Parallel entangling operations on a universal ion-trap quantum computer. Nature, 2019, 572(7769): 368
CrossRef ADS Google scholar
[445]
D. Kielpinski, C. Monroe, D. J. Wineland. Architecture for a large-scale ion-trap quantum computer. Nature, 2002, 417(6890): 709
CrossRef ADS Google scholar
[446]
V. Kaushal, B. Lekitsch, A. Stahl, J. Hilder, D. Pijn, C. Schmiegelow, A. Bermudez, M. Muller, F. Schmidt-Kaler, U. Poschinger. Shuttling-based trapped-ion quantum information processing. AVS Quantum Science, 2020, 2(1): 014101
CrossRef ADS Google scholar
[447]
R. Bowler, J. Gaebler, Y. Lin, T. R. Tan, D. Hanneke, J. D. Jost, J. Home, D. Leibfried, D. J. Wineland. Coherent diabatic ion transport and separation in a multizone trap array. Phys. Rev. Lett., 2012, 109(8): 080502
CrossRef ADS Google scholar
[448]
A. Walther, F. Ziesel, T. Ruster, S. T. Dawkins, K. Ott, M. Hettrich, K. Singer, F. Schmidt-Kaler, U. Poschinger. Controlling fast transport of cold trapped ions. Phys. Rev. Lett., 2012, 109(8): 080501
CrossRef ADS Google scholar
[449]
D. Stick, W. Hensinger, S. Olmschenk, M. Madsen, K. Schwab, C. Monroe. Ion trap in a semiconductor chip. Nat. Phys., 2006, 2(1): 36
CrossRef ADS Google scholar
[450]
S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. Wesenberg, R. Blakestad, R. Epstein, D. Hume, W. Itano, J. Jost, C. Langer, R. Ozeri, N. Shiga, D. J. Wineland. Microfabricated surface-electrode ion trap for scalable quantum information processing. Phys. Rev. Lett., 2006, 96(25): 253003
CrossRef ADS Google scholar
[451]
K. Wright, J. M. Amini, D. L. Faircloth, C. Volin, S. Charles Doret, H. Hayden, C. S. Pai, D. W. Landgren, D. Denison, T. Killian, R. E. Slusher, A. W. Harter. Reliable transport through a microfabricated Xjunction surface-electrode ion trap. New J. Phys., 2013, 15(3): 033004
CrossRef ADS Google scholar
[452]
J. M. Amini, H. Uys, J. H. Wesenberg, S. Seidelin, J. Britton, J. J. Bollinger, D. Leibfried, C. Ospelkaus, A. P. VanDevender, D. J. Wineland. Toward scalable ion traps for quantum information processing. New J. Phys., 2010, 12(3): 033031
CrossRef ADS Google scholar
[453]
W. Hensinger, S. Olmschenk, D. Stick, D. Hucul, M. Yeo, M. Acton, L. Deslauriers, C. Monroe, J. Rabchuk. T-junction ion trap array for twodimensional ion shuttling, storage, and manipulation. Appl. Phys. Lett., 2006, 88(3): 034101
CrossRef ADS Google scholar
[454]
Y. Wan, D. Kienzler, S. D. Erickson, K. H. Mayer, T. R. Tan, J. J. Wu, H. M. Vasconcelos, S. Glancy, E. Knill, D. J. Wineland, A. C. Wilson, D. Leibfried. Quantum gate teleportation between separated qubits in a trapped-ion processor. Science, 2019, 364(6443): 875
CrossRef ADS Google scholar
[455]
J. M. Pino, J. M. Dreiling, C. Figgatt, J. P. Gaebler, S. A. Moses, M. Allman, C. Baldwin, M. Foss-Feig, D. Hayes, K. Mayer, C. Ryan-Anderson, B. Neyenhuis. Demonstration of the trapped-ion quantum CCD computer architecture. Nature, 2021, 592(7853): 209
CrossRef ADS Google scholar
[456]
Q. A. Turchette, D. Kielpinski, B. E. King, D. Leibfried, D. M. Meekhof, C. J. Myatt, M. A. Rowe, C. A. Sackett, C. S. Wood, W. M. Itano, C. Monroe, D. J. Wineland. Heating of trapped ions from the quantum ground state. Phys. Rev. A, 2000, 61(6): 063418
CrossRef ADS Google scholar
[457]
L. Deslauriers, S. Olmschenk, D. Stick, W. Hensinger, J. Sterk, C. Monroe. Scaling and suppression of anomalous heating in ion traps. Phys. Rev. Lett., 2006, 97(10): 103007
CrossRef ADS Google scholar
[458]
I. A. Boldin, A. Kraft, C. Wunderlich. Measuring anomalous heating in a planar ion trap with variable ion-surface separation. Phys. Rev. Lett., 2018, 120(2): 023201
CrossRef ADS Google scholar
[459]
J. H. Wesenberg. Electrostatics of surface-electrode ion traps. Phys. Rev. A, 2008, 78(6): 063410
CrossRef ADS Google scholar
[460]
C. Monroe, R. Raussendorf, A. Ruthven, K. Brown, P. Maunz, L. M. Duan, J. Kim. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A, 2014, 89(2): 022317
CrossRef ADS Google scholar
[461]
D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, C. Monroe. Modular entanglement of atomic qubits using photons and phonons. Nat. Phys., 2015, 11(1): 37
CrossRef ADS Google scholar
[462]
L. Stephenson, D. Nadlinger, B. Nichol, S. An, P. Drmota, T. Ballance, K. Thirumalai, J. Goodwin, D. Lucas, C. J. Ballance. High-rate, high-fidelity entanglement of qubits across an elementary quantum network. Phys. Rev. Lett., 2020, 124(11): 110501
CrossRef ADS Google scholar
[463]
T. Kim, P. Maunz, J. Kim. Efficient collection of single photons emitted from a trapped ion into a singlemode fiber for scalable quantum-information processing. Phys. Rev. A, 2011, 84(6): 063423
CrossRef ADS Google scholar
[464]
J. Hannegan, U. Saha, J. D. Siverns, J. Cassell, E. Waks, Q. Quraishi. C-band single photons from a trapped ion via two-stage frequency conversion. Appl. Phys. Lett., 2021, 119(8): 084001
CrossRef ADS Google scholar
[465]
C. Ballance, V. Schafer, J. P. Home, D. Szwer, S. C. Webster, D. Allcock, N. M. Linke, T. Harty, D. Aude Craik, D. N. Stacey, A. M. Steane, D. M. Lucas. Hybrid quantum logic and a test of Bell’s inequality using two different atomic isotopes. Nature, 2015, 528(7582): 384
CrossRef ADS Google scholar
[466]
A. Hughes, V. Schafer, K. Thirumalai, D. Nadlinger, S. Woodrow, D. Lucas, C. Ballance. Benchmarking a high-fidelity mixed-species entangling gate. Phys. Rev. Lett., 2020, 125(8): 080504
CrossRef ADS Google scholar
[467]
I. V. Inlek, C. Crocker, M. Lichtman, K. Sosnova, C. Monroe. Multispecies trapped-ion node for quantum networking. Phys. Rev. Lett., 2017, 118(25): 250502
CrossRef ADS Google scholar
[468]
P. Wang, J. Zhang, C.-Y. Luan, M. Um, Y. Wang. . Significant loophole-free test of Kochen−Specker contextuality using two species of atomic ions. Sci. Adv., 2022, 8: eabk1660
CrossRef ADS Google scholar
[469]
V. Negnevitsky, M. Marinelli, K. K. Mehta, H. Y. Lo, C. Fluhmann, J. P. Home. Repeated multi-qubit readout and feedback with a mixed-species trapped-ion register. Nature, 2018, 563(7732): 527
CrossRef ADS Google scholar
[470]
D. Kielpinski, B. King, C. Myatt, C. A. Sackett, Q. Turchette, W. M. Itano, C. Monroe, D. J. Wineland, W. H. Zurek. Sympathetic cooling of trapped ions for quantum logic. Phys. Rev. A, 2000, 61(3): 032310
CrossRef ADS Google scholar
[471]
M. D. Barrett, B. DeMarco, T. Schaetz, V. Meyer, D. Leibfried, J. Britton, J. Chiaverini, W. Itano, B. Jelenković, J. D. Jost, C. Langer, T. Rosenband, D. J. Wineland. Sympathetic cooling of 9Be+ and 24Mg+ for quantum logic. Phys. Rev. A, 2003, 68(4): 042302
CrossRef ADS Google scholar
[472]
Z. C. Mao, Y. Z. Xu, Q. X. Mei, W. D. Zhao, Y. Jiang, Y. Wang, X. Y. Chang, L. He, L. Yao, Z. C. Zhou, Y. K. Wu, L. M. Duan. Experimental realization of multi-ion sympathetic cooling on a trapped ion crystal. Phys. Rev. Lett., 2021, 127(14): 143201
CrossRef ADS Google scholar
[473]
D. Allcock, W. Campbell, J. Chiaverini, I. Chuang, E. Hudson, I. Moore, A. Ransford, C. Roman, J. Sage, D. J. Wineland. omg blueprint for trapped ion quantum computing with metastable states. Appl. Phys. Lett., 2021, 119(21): 214002
CrossRef ADS Google scholar
[474]
H. X. Yang, J. Y. Ma, Y. K. Wu, Y. Wang, M. M. Cao, W. X. Guo, Y. Y. Huang, L. Feng, Z. C. Zhou, L. M. Duan. Realizing coherently convertible dual-type qubits with the same ion species. Nat. Phys., 2022, 18(9): 1058
CrossRef ADS Google scholar
[475]
K. K. Mehta, C. D. Bruzewicz, R. McConnell, R. J. Ram, J. M. Sage, J. Chiaverini. Integrated optical addressing of an ion qubit. Nat. Nanotechnol., 2016, 11(12): 1066
CrossRef ADS Google scholar
[476]
K. K. Mehta, C. Zhang, M. Malinowski, T. L. Nguyen, M. Stadler, J. P. Home. Integrated optical multi-ion quantum logic. Nature, 2020, 586(7830): 533
CrossRef ADS Google scholar
[477]
J. Stuart, R. Panock, C. Bruzewicz, J. Sedlacek, R. Mc-Connell, I. Chuang, J. Sage, J. Chiaverini. Chipintegrated voltage sources for control of trapped ions. Phys. Rev. Appl., 2019, 11(2): 024010
CrossRef ADS Google scholar
[478]
C. Flühmann, T. L. Nguyen, M. Marinelli, V. Negnevitsky, K. Mehta, J. Home. Encoding a qubit in a trapped-ion mechanical oscillator. Nature, 2019, 566(7745): 513
CrossRef ADS Google scholar
[479]
A. Erhard, H. Poulsen Nautrup, M. Meth, L. Postler, R. Stricker, M. Stadler, V. Negnevitsky, M. Ringbauer, P. Schindler, H. J. Briegel, R. Blatt, N. Friis, T. Monz. Entangling logical qubits with lattice surgery. Nature, 2021, 589(7841): 220
CrossRef ADS Google scholar
[480]
L. Egan, D. M. Debroy, C. Noel, A. Risinger, D. Zhu, D. Biswas, M. Newman, M. Li, K. R. Brown, M. Cetina, C. Monroe. Fault-tolerant control of an error-corrected qubit. Nature, 2021, 598(7880): 281
CrossRef ADS Google scholar
[481]
L. Postler, S. Heuβen, I. Pogorelov, M. Rispler, T. Feldker, M. Meth, C. D. Marciniak, R. Stricker, M. Ringbauer, R. Blatt, P. Schindler, M. Müller, T. Monz. Demonstration of fault-tolerant universal quantum gate operations. Nature, 2022, 605(7911): 675
CrossRef ADS Google scholar
[482]
C. D. Bruzewicz, J. Chiaverini, R. McConnell, J. M. Sage. Trapped-ion quantum computing: Progress and challenges. Appl. Phys. Lett., 2019, 6: 021314
CrossRef ADS Google scholar
[483]
Z. D. Romaszko, S. Hong, M. Siegele, R. K. Puddy, F. R. Lebrun-Gallagher, S. Weidt, W. K. Hensinger. Engineering of microfabricated ion traps and integration of advanced on-chip features. Nat. Rev. Phys., 2020, 2(6): 285
CrossRef ADS Google scholar
[484]
K. R. Brown, J. Chiaverini, J. M. Sage, H. Haffner. Materials challenges for trapped-ion quantum computers. Nat. Rev. Mater., 2021, 6: 892
CrossRef ADS Google scholar
[485]
W. Huang, C. H. Yang, K. W. Chan, T. Tanttu, B. Hensen, R. C. C. Leon, M. A. Fogarty, J. C. C. Hwang, F. E. Hudson, K. M. Itoh, A. Morello, A. Laucht, A. S. Dzurak. Fidelity benchmarks for two-qubit gates in silicon. Nature, 2019, 569(7757): 532
CrossRef ADS Google scholar
[486]
D. M. Zajac, A. J. Sigillito, M. Russ, F. Borjans, J. M. Taylor, G. Burkard, J. R. Petta. Resonantly driven CNOT gate for electron spins. Science, 2018, 359(6374): 439
CrossRef ADS Google scholar
[487]
N. W. Hendrickx, D. P. Franke, A. Sammak, G. Scappucci, M. Veldhorst. Fast two-qubit logic with holes in germanium. Nature, 2020, 577(7791): 487
CrossRef ADS Google scholar
[488]
R. Maurand, X. Jehl, D. Kotekar-Patil, A. Corna, H. Bohuslavskyi, R. Lavieville, L. Hutin, S. Barraud, M. Vinet, M. Sanquer, S. De Franceschi. A CMOS silicon spin qubit. Nat. Commun., 2016, 7(1): 13575
CrossRef ADS Google scholar
[489]
J. T. Muhonen, J. P. Dehollain, A. Laucht, F. E. Hudson, R. Kalra, T. Sekiguchi, K. M. Itoh, D. N. Jamieson, J. C. McCallum, A. S. Dzurak, A. Morello. Storing quantum information for 30 seconds in a nanoelectronic device. Nat. Nanotechnol., 2014, 9(12): 986
CrossRef ADS Google scholar
[490]
Y. He, S. K. Gorman, D. Keith, L. Kranz, J. G. Keizer, M. Y. Simmons. A two-qubit gate between phosphorus donor electrons in silicon. Nature, 2019, 571(7765): 371
CrossRef ADS Google scholar
[491]
L. M. K. Vandersypen, M. A. Eriksson. Quantum computing with semiconductor spins. Phys. Today, 2019, 72(8): 38
CrossRef ADS Google scholar
[492]
A. Noiri, K. Takeda, T. Nakajima, T. Kobayashi, A. Sammak, G. Scappucci, S. Tarucha. Fast universal quantum gate above the fault-tolerance threshold in silicon. Nature, 2022, 601(7893): 338
CrossRef ADS Google scholar
[493]
M. T. Mądzik, S. Asaad, A. Youssry, B. Joecker, K. M. Rudinger. . Precision tomography of a three-qubit donor quantum processor in silicon. Nature, 2022, 601(7893): 348
CrossRef ADS Google scholar
[494]
X. Xue, M. Russ, N. Samkharadze, B. Undseth, A. Sammak, G. Scappucci, L. M. K. Vandersypen. Quantum logic with spin qubits crossing the surface code threshold. Nature, 2022, 601(7893): 343
CrossRef ADS Google scholar
[495]
A. West, B. Hensen, A. Jouan, T. Tanttu, C. H. Yang, A. Rossi, M. F. Gonzalez-Zalba, F. Hudson, A. Morello, D. J. Reilly, A. S. Dzurak. Gate-based single-shot readout of spins in silicon. Nat. Nanotechnol., 2019, 14(5): 437
CrossRef ADS Google scholar
[496]
P. Pakkiam, A. V. Timofeev, M. G. House, M. R. Hogg, T. Kobayashi, M. Koch, S. Rogge, M. Y. Simmons. Single-shot single-gate RF spin readout in silicon. Phys. Rev. X, 2018, 8(4): 041032
CrossRef ADS Google scholar
[497]
M. Urdampilleta, D. J. Niegemann, E. Chanrion, B. Jadot, C. Spence, P. A. Mortemousque, C. Bauerle, L. Hutin, B. Bertrand, S. Barraud, R. Maurand, M. Sanquer, X. Jehl, S. De Franceschi, M. Vinet, T. Meunier. Gate-based high fidelity spin readout in a CMOS device. Nat. Nanotechnol., 2019, 14(8): 737
CrossRef ADS Google scholar
[498]
G. Zheng, N. Samkharadze, M. L. Noordam, N. Kalhor, D. Brousse, A. Sammak, G. Scappucci, L. M. K. Vandersypen. Rapid gate-based spin read-out in silicon using an on-chip resonator. Nat. Nanotechnol., 2019, 14(8): 742
CrossRef ADS Google scholar
[499]
X. Mi, M. Benito, S. Putz, D. M. Zajac, J. M. Taylor, G. Burkard, J. R. Petta. A coherent spin–photon interface in silicon. Nature, 2018, 555(7698): 599
CrossRef ADS Google scholar
[500]
N. Samkharadze, G. Zheng, N. Kalhor, D. Brousse, A. Sammak, U. C. Mendes, A. Blais, G. Scappucci, L. M. K. Vandersypen. Strong spin−photon coupling in silicon. Science, 2018, 359(6380): 1123
CrossRef ADS Google scholar
[501]
A. J. Landig, J. V. Koski, P. Scarlino, U. C. Mendes, A. Blais, C. Reichl, W. Wegscheider, A. Wallraff, K. Ensslin, T. Ihn. Coherent spin–photon coupling using a resonant exchange qubit. Nature, 2018, 560(7717): 179
CrossRef ADS Google scholar
[502]
F. Borjans, X. G. Croot, X. Mi, M. J. Gullans, J. R. Petta. Resonant microwave-mediated interactions between distant electron spins. Nature, 2020, 577(7789): 195
CrossRef ADS Google scholar
[503]
P. Harvey-Collard, J. Dijkema, G. Zheng, A. Sammak, G. Scappucci, L. M. K. Vandersypen. Coherent spin-spin coupling mediated by virtual microwave photons. Phys. Rev. X, 2022, 12(2): 021026
CrossRef ADS Google scholar
[504]
L. Petit, H. G. J. Eenink, M. Russ, W. I. L. Lawrie, N. W. Hendrickx, S. G. J. Philips, J. S. Clarke, L. M. K. Vandersypen, M. Veldhorst. Universal quantum logic in hot silicon qubits. Nature, 2020, 580(7803): 355
CrossRef ADS Google scholar
[505]
C. H. Yang, R. C. C. Leon, J. C. C. Hwang, A. Saraiva, T. Tanttu, W. Huang, J. Camirand Lemyre, K. W. Chan, K. Y. Tan, F. E. Hudson, K. M. Itoh, A. Morello, M. Pioro-Ladrière, A. Laucht, A. S. Dzurak. Operation of a silicon quantum processor unit cell above one kelvin. Nature, 2020, 580(7803): 350
CrossRef ADS Google scholar
[506]
L. C. Camenzind, S. Geyer, A. Fuhrer, R. J. Warburton, D. M. Zumbuhl, A. V. Kuhlmann. A hole spin qubit in a fin field-effect transistor above 4 kelvin. Nat. Electron., 2022, 5(3): 178
CrossRef ADS Google scholar
[507]
X. Xue, B. Patra, J. P. G. van Dijk, N. Samkharadze, S. Subramanian. . CMOS-based cryogenic control of silicon quantum circuits. Nature, 2021, 593(7858): 205
CrossRef ADS Google scholar
[508]
S. J. Pauka, K. Das, R. Kalra, A. Moini, Y. Yang, M. Trainer, A. Bousquet, C. Cantaloube, N. Dick, G. C. Gardner, M. J. Manfra, D. J. Reilly. A cryogenic CMOS chip for generating control signals for multiple qubits. Nat. Electron., 2021, 4(1): 64
CrossRef ADS Google scholar
[509]
G.BurkardT. T. LaddJ.M. NicholA.PanJ.R. Petta, Semiconductor spin qubits, arXiv: 2112.08863v1 (2022)
[510]
F. A. Zwanenburg, A. S. Dzurak, A. Morello, M. Y. Simmons, L. C. L. Hollenberg, G. Klimeck, S. Rogge, S. N. Coppersmith, M. A. Eriksson. Silicon quantum electronics. Rev. Mod. Phys., 2013, 85(3): 961
CrossRef ADS Google scholar
[511]
D. Kim, D. R. Ward, C. B. Simmons, J. K. Gamble, R. Blume-Kohout, E. Nielsen, D. E. Savage, M. G. Lagally, M. Friesen, S. N. Coppersmith, M. A. Eriksson. Microwave-driven coherent operation of a semiconductor quantum dot charge qubit. Nat. Nanotechnol., 2015, 10(3): 243
CrossRef ADS Google scholar
[512]
E. R. MacQuarrie, S. F. Neyens, J. P. Dodson, J. Corrigan, B. Thorgrimsson. . Progress toward a capacitively mediated CNOT between two charge qubits in Si/SiGe. npj Quantum Inf., 2020, 6: 81
CrossRef ADS Google scholar
[513]
J. Medford, J. Beil, J. M. Taylor, S. D. Bartlett, A. C. Doherty, E. I. Rashba, D. P. DiVincenzo, H. Lu, A. C. Gossard, C. M. Marcus. Self-consistent measurement and state tomography of an exchange-only spin qubit. Nat. Nanotechnol., 2013, 8(9): 654
CrossRef ADS Google scholar
[514]
A.J. WeinsteinM.D. ReedA.M. Jones R.W. AndrewsD.Barnes, ., Universal logic with encoded spin qubits in silicon, arXiv: 2202.03605 (2022)
[515]
D. Kim, Z. Shi, C. B. Simmons, D. R. Ward, J. R. Prance, T. S. Koh, J. K. Gamble, D. E. Savage, M. G. Lagally, M. Friesen, S. N. Coppersmith, M. A. Eriksson. Quantum control and process tomography of a semiconductor quantum dot hybrid qubit. Nature, 2014, 511: 70
CrossRef ADS Google scholar
[516]
J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, A. C. Gossard. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science, 2005, 309(5744): 2180
CrossRef ADS Google scholar
[517]
X. Wu, D. Ward, J. Prance, D. Kim, J. K. Gamble, R. Mohr, Z. Shi, D. Savage, M. Lagally, M. Friesen, S. N. Coppersmith, M. A. Eriksson. Two-axis control of a singlet-triplet qubit with an integrated micromagnet. Proc. Natl. Acad. Sci. USA, 2014, 111(33): 11938
CrossRef ADS Google scholar
[518]
A. Chatterjee, P. Stevenson, S. De Franceschi, A. Morello, N. P. de Leon, F. Kuemmeth. Semiconductor qubits in practice. Nat. Rev. Phys., 2021, 3(3): 157
CrossRef ADS Google scholar
[519]
A. J. Heinrich, W. D. Oliver, L. M. K. Vandersypen, A. Ardavan, R. Sessoli, D. Loss, A. B. Jayich, J. Fernandez-Rossier, A. Laucht, A. Morello. Quantumcoherent nanoscience. Nat. Nanotechnol., 2021, 16(12): 1318
CrossRef ADS Google scholar
[520]
X. Zhang, H. O. Li, G. Cao, M. Xiao, G. C. Guo, G. P. Guo. Semiconductor quantum computation. Natl. Sci. Rev., 2019, 6(1): 32
CrossRef ADS Google scholar
[521]
C. H. Yang, A. Rossi, R. Ruskov, N. S. Lai, F. A. Mohiyaddin, S. Lee, C. Tahan, G. Klimeck, A. Morello, A. S. Dzurak. Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting. Nat. Commun., 2013, 4(1): 2069
CrossRef ADS Google scholar
[522]
F. Borjans, D. Zajac, T. Hazard, J. Petta. Single-spin relaxation in a synthetic spin−orbit field. Phys. Rev. Appl., 2019, 11(4): 044063
CrossRef ADS Google scholar
[523]
M. Veldhorst, C. H. Yang, J. C. C. Hwang, W. Huang, J. P. Dehollain, J. T. Muhonen, S. Simmons, A. Laucht, F. E. Hudson, K. M. Itoh, A. Morello, A. S. Dzurak. A two-qubit logic gate in silicon. Nature, 2015, 526(7573): 410
CrossRef ADS Google scholar
[524]
J. Yoneda, K. Takeda, T. Otsuka, T. Nakajima, M. R. Delbecq, G. Allison, T. Honda, T. Kodera, S. Oda, Y. Hoshi, N. Usami, K. M. Itoh, S. Tarucha. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. Nat. Nanotechnol., 2018, 13(2): 102
CrossRef ADS Google scholar
[525]
J. J. Pla, K. Y. Tan, J. P. Dehollain, W. H. Lim, J. J. L. Morton, D. N. Jamieson, A. S. Dzurak, A. Morello. A single-atom electron spin qubit in silicon. Nature, 2012, 489(7417): 541
CrossRef ADS Google scholar
[526]
C. H. Yang, K. W. Chan, R. Harper, W. Huang, T. Evans, J. C. C. Hwang, B. Hensen, A. Laucht, T. Tanttu, F. E. Hudson, S. T. Flammia, K. M. Itoh, A. Morello, S. D. Bartlett, A. S. Dzurak. Silicon qubit fidelities approaching incoherent noise limits via pulse engineering. Nat. Electron., 2019, 2(4): 151
CrossRef ADS Google scholar
[527]
J. T. Muhonen, A. Laucht, S. Simmons, J. P. Dehollain, R. Kalra. . Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking. J. Phys.: Condens. Matter, 2015, 27(15): 154205
CrossRef ADS Google scholar
[528]
S. G. J. Philips, M. T. Mądzik, S. V. Amitonov, S. L. de Snoo, M. Russ. . Universal control of a six-qubit quantum processor in silicon. Nature, 2022, 609(7929): 919
CrossRef ADS Google scholar
[529]
R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, L. M. K. Vandersypen. Spins in few-electron quantum dots. Rev. Mod. Phys., 2007, 79(4): 1217
CrossRef ADS Google scholar
[530]
T. Hensgens, T. Fujita, L. Janssen, X. Li, C. J. Van Diepen, C. Reichl, W. Wegscheider, S. Das Sarma, L. M. K. Vandersypen. Quantum simulation of a Fermi–Hubbard model using a semiconductor quantum dot array. Nature, 2017, 548(7665): 70
CrossRef ADS Google scholar
[531]
J. P. Dehollain, U. Mukhopadhyay, V. P. Michal, Y. Wang, B. Wunsch, C. Reichl, W. Wegscheider, M. S. Rudner, E. Demler, L. M. K. Vandersypen. Nagaoka ferromagnetism observed in a quantum dot plaquette. Nature, 2020, 579(7800): 528
CrossRef ADS Google scholar
[532]
Y. P. Kandel, H. Qiao, S. Fallahi, G. C. Gardner, M. J. Manfra, J. M. Nichol. Coherent spin-state transfer via Heisenberg exchange. Nature, 2019, 573(7775): 553
CrossRef ADS Google scholar
[533]
H. Qiao, Y. P. Kandel, K. Deng, S. Fallahi, G. C. Gardner, M. J. Manfra, E. Barnes, J. M. Nichol. Coherent multispin exchange coupling in a quantum-dot spin chain. Phys. Rev. X, 2020, 10(3): 031006
CrossRef ADS Google scholar
[534]
A. Crippa, R. Ezzouch, A. Apra, A. Amisse, R. Lavieville, L. Hutin, B. Bertrand, M. Vinet, M. Urdampilleta, T. Meunier, M. Sanquer, X. Jehl, R. Maurand, S. De Franceschi. Gate-reflectometry dispersive readout and coherent control of a spin qubit in silicon. Nat. Commun., 2019, 10(1): 2776
CrossRef ADS Google scholar
[535]
L. Fricke, S. J. Hile, L. Kranz, Y. Chung, Y. He, P. Pakkiam, M. G. House, J. G. Keizer, M. Y. Simmons. Coherent control of a donor-molecule electron spin qubit in silicon. Nat. Commun., 2021, 12(1): 3323
CrossRef ADS Google scholar
[536]
T. F. Watson, S. G. J. Philips, E. Kawakami, D. R. Ward, P. Scarlino, M. Veldhorst, D. E. Savage, M. G. Lagally, M. Friesen, S. N. Coppersmith, M. A. Eriksson, L. M. K. Vandersypen. A programmable two-qubit quantum processor in silicon. Nature, 2018, 555(7698): 633
CrossRef ADS Google scholar
[537]
X. Zhang, R. Z. Hu, H. O. Li, F. M. Jing, Y. Zhou, R. L. Ma, M. Ni, G. Luo, G. Cao, G. L. Wang, X. Hu, H. W. Jiang, G. C. Guo, G. P. Guo. Giant anisotropy of spin relaxation and spin-valley mixing in a silicon quantum dot. Phys. Rev. Lett., 2020, 124(25): 257701
CrossRef ADS Google scholar
[538]
N. W. Hendrickx, W. I. L. Lawrie, L. Petit, A. Sammak, G. Scappucci, M. Veldhorst. A single-hole spin qubit. Nat. Commun., 2020, 11(1): 3478
CrossRef ADS Google scholar
[539]
N. W. Hendrickx, W. I. L. Lawrie, M. Russ, F. van Riggelen, S. L. de Snoo, R. N. Schouten, A. Sammak, G. Scappucci, M. Veldhorst. A four-qubit germanium quantum processor. Nature, 2021, 591(7851): 580
CrossRef ADS Google scholar
[540]
K. Wang, G. Xu, F. Gao, H. Liu, R. L. Ma, X. Zhang, Z. Wang, G. Cao, T. Wang, J. J. Zhang, D. Culcer, X. Hu, H. W. Jiang, H. O. Li, G. C. Guo, G. P. Guo. Ultrafast coherent control of a hole spin qubit in a germanium quantum dot. Nat. Commun., 2022, 13(1): 206
CrossRef ADS Google scholar
[541]
D. Jirovec, P. M. Mutter, A. Hofmann, A. Crippa, M. Rychetsky, D. L. Craig, J. Kukucka, F. Martins, A. Ballabio, N. Ares, D. Chrastina, G. Isella, G. Burkard, G. Katsaros. Dynamics of hole singlet-triplet qubits with large g-factor differences. Phys. Rev. Lett., 2022, 128(12): 126803
CrossRef ADS Google scholar
[542]
T. F. Watson, B. Weber, Y. L. Hsueh, L. L. C. Hollenberg, R. Rahman, M. Y. Simmons. Atomically engineered electron spin lifetimes of 30 s in silicon. Sci. Adv., 2017, 3(3): e1602811
CrossRef ADS Google scholar
[543]
K. Takeda, A. Noiri, J. Yoneda, T. Nakajima, S. Tarucha. Resonantly driven singlet−triplet spin qubit in silicon. Phys. Rev. Lett., 2020, 124(11): 117701
CrossRef ADS Google scholar
[544]
F. H. L. Koppens, C. Buizert, K. J. Tielrooij, I. T. Vink, K. C. Nowack, T. Meunier, L. P. Kouwenhoven, L. M. K. Vandersypen. Driven coherent oscillations of a single electron spin in a quantum dot. Nature, 2006, 442(7104): 766
CrossRef ADS Google scholar
[545]
M. Veldhorst, J. C. C. Hwang, C. H. Yang, A. W. Leenstra, B. de Ronde, J. P. Dehollain, J. T. Muhonen, F. E. Hudson, K. M. Itoh, A. Morello, A. S. Dzurak. An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol., 2014, 9(12): 981
CrossRef ADS Google scholar
[546]
K. C. Nowack, F. H. Koppens, Y. V. Nazarov, L. M. Vandersypen. Coherent control of a single electron spin with electric fields. Science, 2007, 318(5855): 1430
CrossRef ADS Google scholar
[547]
Y. Tokura, W. G. van der Wiel, T. Obata, S. Tarucha. Coherent single electron spin control in a slanting Zeeman field. Phys. Rev. Lett., 2006, 96(4): 047202
CrossRef ADS Google scholar
[548]
X. Xue, T. F. Watson, J. Helsen, D. R. Ward, D. E. Savage, M. G. Lagally, S. N. Coppersmith, M. A. Eriksson, S. Wehner, L. M. K. Vandersypen. Benchmarking gate fidelities in a Si/SiGe two-qubit device. Phys. Rev. X, 2019, 9(2): 021011
CrossRef ADS Google scholar
[549]
M. D. Shulman, O. E. Dial, S. P. Harvey, H. Bluhm, V. Umansky, A. Yacoby. Demonstration of entanglement of electrostatically coupled singlet−triplet qubits. Science, 2012, 336(6078): 202
CrossRef ADS Google scholar
[550]
J. M. Nichol, L. A. Orona, S. P. Harvey, S. Fallahi, G. C. Gardner, M. J. Manfra, A. Yacoby. High-fidelity entangling gate for double-quantum-dot spin qubits. npj Quantum Inf., 2017, 3: 3
CrossRef ADS Google scholar
[551]
A. R. Mills, C. R. Guinn, M. J. Gullans, A. J. Sigillito, M. M. Feldman, E. Nielsen, J. R. Petta. Twoqubit silicon quantum processor with operation fidelity exceeding 99%. Sci. Adv., 2022, 8(14): eabn5130
CrossRef ADS Google scholar
[552]
X. Hu, S. Das Sarma. Charge-fluctuation-induced dephasing of exchange-coupled spin qubits. Phys. Rev. Lett., 2006, 96(10): 100501
CrossRef ADS Google scholar
[553]
L. Kranz, S. K. Gorman, B. Thorgrimsson, Y. He, D. Keith, J. G. Keizer, M. Y. Simmons. Exploiting a single-crystal environment to minimize the charge noise on qubits in silicon. Adv. Mater., 2020, 32(40): 2003361
CrossRef ADS Google scholar
[554]
A. Laucht, R. Kalra, S. Simmons, J. P. Dehollain, J. T. Muhonen, F. A. Mohiyaddin, S. Freer, F. E. Hudson, K. M. Itoh, D. N. Jamieson, J. C. McCallum, A. S. Dzurak, A. Morello. A dressed spin qubit in silicon. Nat. Nanotechnol., 2017, 12(1): 61
CrossRef ADS Google scholar
[555]
A. E. Seedhouse, I. Hansen, A. Laucht, C. H. Yang, A. S. Dzurak, A. Saraiva. Quantum computation protocol for dressed spins in a global field. Phys. Rev. B, 2021, 104(23): 235411
CrossRef ADS Google scholar
[556]
I. Hansen, A. E. Seedhouse, A. Saraiva, A. Laucht, A. S. Dzurak, C. H. Yang. Pulse engineering of a global field for robust and universal quantum computation. Phys. Rev. A, 2021, 104(6): 062415
CrossRef ADS Google scholar
[557]
G. Tosi, F. A. Mohiyaddin, V. Schmitt, S. Tenberg, R. Rahman, G. Klimeck, A. Morello. Silicon quantum processor with robust long-distance qubit couplings. Nat. Commun., 2017, 8(1): 450
CrossRef ADS Google scholar
[558]
X. Wang, L. S. Bishop, J. P. Kestner, E. Barnes, K. Sun, S. Das Sarma. Composite pulses for robust universal control of singlet–triplet qubits. Nat. Commun., 2012, 3(1): 997
CrossRef ADS Google scholar
[559]
M. A. Broome, T. F. Watson, D. Keith, S. K. Gorman, M. G. House, J. G. Keizer, S. J. Hile, W. Baker, M. Y. Simmons. High-fidelity single-shot singlet−triplet readout of precision-placed donors in silicon. Phys. Rev. Lett., 2017, 119(4): 046802
CrossRef ADS Google scholar
[560]
P. Harvey-Collard, B. D’Anjou, M. Rudolph, N. T. Jacobson, J. Dominguez, G. A. Ten Eyck, J. R. Wendt, T. Pluym, M. P. Lilly, W. A. Coish, M. Pioro-Ladrière, M. S. Carroll. High-fidelity single-shot readout for a spin qubit via an enhanced latching mechanism. Phys. Rev. X, 2018, 8(2): 021046
CrossRef ADS Google scholar
[561]
J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, L. M. K. Vandersypen, L. P. Kouwenhoven. Single-shot read-out of an individual electron spin in a quantum dot. Nature, 2004, 430(6998): 431
CrossRef ADS Google scholar
[562]
J. J. Pla, K. Y. Tan, J. P. Dehollain, W. H. Lim, J. J. L. Morton, F. A. Zwanenburg, D. N. Jamieson, A. S. Dzurak, A. Morello. High-fidelity readout and control of a nuclear spin qubit in silicon. Nature, 2013, 496(7445): 334
CrossRef ADS Google scholar
[563]
D. Keith, S. K. Gorman, L. Kranz, Y. He, J. G. Keizer, M. A. Broome, M. Y. Simmons. Benchmarking high fidelity single-shot readout of semiconductor qubits. New J. Phys., 2019, 21(6): 063011
CrossRef ADS Google scholar
[564]
F.VigneauF. FedeleA.ChatterjeeD.ReillyF.Kuemmeth F.Gonzalez-ZalbaE.LairdN.Ares, Probing quantum devices with radio-frequency reflectometry, arXiv: 2202.10516 (2022)
[565]
J. Y. Huang, W. H. Lim, R. C. C. Leon, C. H. Yang, F. E. Hudson, C. C. Escott, A. Saraiva, A. S. Dzurak, A. Laucht. A high-sensitivity charge sensor for silicon qubits above 1 K. Nano Lett., 2021, 21(14): 6328
CrossRef ADS Google scholar
[566]
S. Schaal, I. Ahmed, J. A. Haigh, L. Hutin, B. Bertrand, S. Barraud, M. Vinet, C. M. Lee, N. Stelmashenko, J. W. A. Robinson, J. Y. Qiu, S. Hacohen-Gourgy, I. Siddiqi, M. F. Gonzalez-Zalba, J. J. L. Morton. Fast gate-based readout of silicon quantum dots using Josephson parametric amplification. Phys. Rev. Lett., 2020, 124(6): 067701
CrossRef ADS Google scholar
[567]
M.R. HoggP. PakkiamS.K. GormanA.V. TimofeevY.Chung G.K. GulatiM. G. HouseM.Y. Simmons, Single-shot readout of multiple donor electron spins with a gate-based sensor, arXiv: 2203.09248 (2022)
[568]
A. Ruffino, T. Y. Yang, J. Michniewicz, Y. Peng, E. Charbon, M. F. Gonzalez-Zalba. A cryo-CMOS chip that integrates silicon quantum dots and multiplexed dispersive readout electronics. Nat. Electron., 2021, 5(1): 53
CrossRef ADS Google scholar
[569]
X. Xue, B. D’Anjou, T. F. Watson, D. R. Ward, D. E. Savage, M. G. Lagally, M. Friesen, S. N. Coppersmith, M. A. Eriksson, W. A. Coish, L. M. K. Vandersypen. Repetitive quantum nondemolition measurement and soft decoding of a silicon spin qubit. Phys. Rev. X, 2020, 10(2): 021006
CrossRef ADS Google scholar
[570]
T. Nakajima, A. Noiri, J. Yoneda, M. R. Delbecq, P. Stano, T. Otsuka, K. Takeda, S. Amaha, G. Allison, K. Kawasaki, A. Ludwig, A. D. Wieck, D. Loss, S. Tarucha. Quantum non-demolition measurement of an electron spin qubit. Nat. Nanotechnol., 2019, 14(6): 555
CrossRef ADS Google scholar
[571]
C. J. van Diepen, T. K. Hsiao, U. Mukhopadhyay, C. Reichl, W. Wegscheider, L. M. K. Vandersypen. Electron cascade for distant spin readout. Nat. Commun., 2021, 12(1): 77
CrossRef ADS Google scholar
[572]
F. Borjans, X. Mi, J. Petta. Spin digitizer for highfidelity readout of a cavity-coupled silicon triple quantum dot. Phys. Rev. Appl., 2021, 15(4): 044052
CrossRef ADS Google scholar
[573]
D. Keith, Y. Chung, L. Kranz, B. Thorgrimsson, S. K. Gorman, M. Y. Simmons. Ramped measurement technique for robust high-fidelity spin qubit readout. Sci. Adv., 2022, 8(36): eabq0455
CrossRef ADS Google scholar
[574]
P. Huang, X. Hu. Spin relaxation in a Si quantum dot due to spin-valley mixing. Phys. Rev. B, 2014, 90(23): 235315
CrossRef ADS Google scholar
[575]
M. F. Gonzalez-Zalba, S. de Franceschi, E. Charbon, T. Meunier, M. Vinet, A. S. Dzurak. Scaling silicon-based quantum computing using CMOS technology. Nat. Electron., 2021, 4(12): 872
CrossRef ADS Google scholar
[576]
F. Ansaloni, A. Chatterjee, H. Bohuslavskyi, B. Bertrand, L. Hutin, M. Vinet, F. Kuemmeth. Single-electron operations in a foundry-fabricated array of quantum dots. Nat. Commun., 2020, 11(1): 6399
CrossRef ADS Google scholar
[577]
R.LiN.I. D. StuyckS.KubicekJ.JussotB.T. Chan, ., A flexible 300 mm integrated Si MOS platform for electron- and hole-spin qubits exploration, in: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2020, p. 38.3.1
[578]
A. M. J. Zwerver, T. Krahenmann, T. F. Watson, L. Lampert, H. C. George. . Qubits made by advanced semiconductor manufacturing. Nat. Electron., 2022, 5(3): 184
CrossRef ADS Google scholar
[579]
L. M. K. Vandersypen, H. Bluhm, J. S. Clarke, A. S. Dzurak, R. Ishihara, A. Morello, D. J. Reilly, L. R. Schreiber, M. Veldhorst. Interfacing spin qubits in quantum dots and donors — hot, dense, and coherent. npj Quantum Inf., 2017, 3: 34
CrossRef ADS Google scholar
[580]
C. D. Hill, E. Peretz, S. J. Hile, M. G. House, M. Fuechsle, S. Rogge, M. Y. Simmons, L. C. L. Hollenberg. A surface code quantum computer in silicon. Sci. Adv., 2015, 1(9): e1500707
CrossRef ADS Google scholar
[581]
J.M. BoterJ. P. DehollainJ.P. G. van DijkY.XuT.Hensgens, ., The spider-web array — a sparse spin qubit array, arXiv: 2110.00189 (2021)
[582]
M. Veldhorst, H. G. J. Eenink, C. H. Yang, A. S. Dzurak. Silicon CMOS architecture for a spin-based quantum computer. Nat. Commun., 2017, 8(1): 1766
CrossRef ADS Google scholar
[583]
R. Li, L. Petit, D. P. Franke, J. P. Dehollain, J. Helsen, M. Steudtner, N. K. Thomas, Z. R. Yoscovits, K. J. Singh, S. Wehner, L. M. K. Vandersypen, J. S. Clarke, M. Veldhorst. A crossbar network for silicon quantum dot qubits. Sci. Adv., 2018, 4(7): eaar3960
CrossRef ADS Google scholar
[584]
K. Takeda, A. Noiri, T. Nakajima, J. Yoneda, T. Kobayashi, S. Tarucha. Quantum tomography of an entangled three-qubit state in silicon. Nat. Nanotechnol., 2021, 16(9): 965
CrossRef ADS Google scholar
[585]
A. R. Mills, D. M. Zajac, M. J. Gullans, F. J. Schupp, T. M. Hazard, J. R. Petta. Shuttling a single charge across a one-dimensional array of silicon quantum dots. Nat. Commun., 2019, 10(1): 1063
CrossRef ADS Google scholar
[586]
J.P. ZwolakJ. M. Taylor, Colloquium: Advances in automation of quantum dot devices control, arXiv: 2112.09362 (2021)
[587]
J. P. Zwolak, T. McJunkin, S. S. Kalantre, J. Dodson, E. MacQuarrie, D. Savage, M. Lagally, S. Coppersmith, M. A. Eriksson, J. M. Taylor. Autotuning of double-dot devices in situ with machine learning. Phys. Rev. Appl., 2020, 13(3): 034075
CrossRef ADS Google scholar
[588]
S. Schaal, A. Rossi, V. N. Ciriano-Tejel, T. Y. Yang, S. Barraud, J. J. L. Morton, M. F. Gonzalez-Zalba. A CMOS dynamic random access architecture for radio-frequency readout of quantum devices. Nat. Electron., 2019, 2(6): 236
CrossRef ADS Google scholar
[589]
F. K. Malinowski, F. Martins, T. B. Smith, S. D. Bartlett, A. C. Doherty, P. D. Nissen, S. Fallahi, G. C. Gardner, M. J. Manfra, C. M. Marcus, F. Kuemmeth. Fast spin exchange across a multielectron mediator. Nat. Commun., 2019, 10(1): 1196
CrossRef ADS Google scholar
[590]
B. Bertrand, S. Hermelin, S. Takada, M. Yamamoto, S. Tarucha, A. Ludwig, A. D. Wieck, C. Bauerle, T. Meunier. Fast spin information transfer between distant quantum dots using individual electrons. Nat. Nanotechnol., 2016, 11(8): 672
CrossRef ADS Google scholar
[591]
X. Mi, J. V. Cady, D. M. Zajac, P. W. Deelman, J. R. Petta. Strong coupling of a single electron in silicon to a microwave photon. Science, 2017, 355(6321): 156
CrossRef ADS Google scholar
[592]
P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, M. D. Lukin. Room-temperature quantum bit memory exceeding one second. Science, 2012, 336(6086): 1283
CrossRef ADS Google scholar
[593]
K. S. Cujia, K. Herb, J. Zopes, J. M. Abendroth, C. L. Degen. Parallel detection and spatial mapping of large nuclear spin clusters. Nat. Commun., 2022, 13(1): 1260
CrossRef ADS Google scholar
[594]
M. H. Abobeih, J. Randall, C. E. Bradley, H. P. Bartling, M. A. Bakker, M. J. Degen, M. Markham, D. J. Twitchen, T. H. Taminiau. Atomic-scale imaging of a 27-nuclear-spin cluster using a quantum sensor. Nature, 2019, 576(7787): 411
CrossRef ADS Google scholar
[595]
G. de Lange, T. van der Sar, M. Blok, Z. H. Wang, V. Dobrovitski, R. Hanson. Controlling the quantum dynamics of a mesoscopic spin bath in diamond. Sci. Rep., 2012, 2(1): 382
CrossRef ADS Google scholar
[596]
H. S. Knowles, D. M. Kara, M. Atature. Demonstration of a coherent electronic spin cluster in diamond. Phys. Rev. Lett., 2016, 117(10): 100802
CrossRef ADS Google scholar
[597]
M. J. Degen, S. J. H. Loenen, H. P. Bartling, C. E. Bradley, A. L. Meinsma, M. Markham, D. J. Twitchen, T. H. Taminiau. Entanglement of dark electronnuclear spin defects in diamond. Nat. Commun., 2021, 12(1): 3470
CrossRef ADS Google scholar
[598]
M. H. Abobeih, J. Cramer, M. A. Bakker, N. Kalb, M. Markham, D. J. Twitchen, T. H. Taminiau. One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment. Nat. Commun., 2018, 9(1): 2552
CrossRef ADS Google scholar
[599]
H. P. Bartling, M. H. Abobeih, B. Pingault, M. J. Degen, S. J. H. Loenen, C. E. Bradley, J. Randall, M. Markham, D. J. Twitchen, T. H. Taminiau. Entanglement of spin-pair qubits with intrinsic dephasing times exceeding a minute. Phys. Rev. X, 2022, 12(1): 011048
CrossRef ADS Google scholar
[600]
N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker, R. L. Walsworth. Solid-state electronic spin coherence time approaching one second. Nat. Commun., 2013, 4(1): 1743
CrossRef ADS Google scholar
[601]
M. L. Goldman, A. Sipahigil, M. W. Doherty, N. Y. Yao, S. D. Bennett, M. Markham, D. J. Twitchen, N. B. Manson, A. Kubanek, M. D. Lukin. Phonon-induced population dynamics and intersystem crossing in nitrogen−vacancy centers. Phys. Rev. Lett., 2015, 114(14): 145502
CrossRef ADS Google scholar
[602]
G. Thiering, A. Gali. Theory of the optical spinpolarization loop of the nitrogen−vacancy center in diamond. Phys. Rev. B, 2018, 98(8): 085207
CrossRef ADS Google scholar
[603]
L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, R. Hanson. High-fidelity projective read-out of a solid-state spin quantum register. Nature, 2011, 477(7366): 574
CrossRef ADS Google scholar
[604]
N. Kalb, P. C. Humphreys, J. J. Slim, R. Hanson. Dephasing mechanisms of diamond-based nuclearspin memories for quantum networks. Phys. Rev. A, 2018, 97(6): 062330
CrossRef ADS Google scholar
[605]
B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb. . Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature, 2015, 526(7575): 682
CrossRef ADS Google scholar
[606]
B. Smeltzer, L. Childress, A. Gali. 13C hyperfine interactions in the nitrogen−vacancy centre in diamond. New J. Phys., 2011, 13(2): 025021
CrossRef ADS Google scholar
[607]
A. Dréau, J. R. Maze, M. Lesik, J. F. Roch, V. Jacques. High-resolution spectroscopy of single NV defects coupled with nearby 13C nuclear spins in diamond. Phys. Rev. B, 2012, 85(13): 134107
CrossRef ADS Google scholar
[608]
V. Jacques, P. Neumann, J. Beck, M. Markham, D. Twitchen, J. Meijer, F. Kaiser, G. Balasubramanian, F. Jelezko, J. Wrachtrup. Dynamic polarization of single nuclear spins by optical pumping of nitrogen−vacancy color centers in diamond at room temperature. Phys. Rev. Lett., 2009, 102(5): 057403
CrossRef ADS Google scholar
[609]
P. London, J. Scheuer, J. M. Cai, I. Schwarz, A. Retzker, M. B. Plenio, M. Katagiri, T. Teraji, S. Koizumi, J. Isoya, R. Fischer, L. P. McGuinness, B. Naydenov, F. Jelezko. Detecting and polarizing nuclear spins with double resonance on a single electron spin. Phys. Rev. Lett., 2013, 111(6): 067601
CrossRef ADS Google scholar
[610]
I. Schwartz, J. Scheuer, B. Tratzmiller, S. Muller, Q. Chen, I. Dhand, Z. Y. Wang, C. Muller, B. Naydenov, F. Jelezko, M. B. Plenio. Robust optical polarization of nuclear spin baths using Hamiltonian engineering of nitrogen−vacancy center quantum dynamics. Sci. Adv., 2018, 4(8): eaat8978
CrossRef ADS Google scholar
[611]
T. Xie, Z. Zhao, X. Kong, W. Ma, M. Wang, X. Ye, P. Yu, Z. Yang, S. Xu, P. Wang, Y. Wang, F. Shi, J. Du. Beating the standard quantum limit under ambient conditions with solidstate spins. Sci. Adv., 2021, 7(32): eabg9204
CrossRef ADS Google scholar
[612]
P. Neumann, J. Beck, M. Steiner, F. Rempp, H. Fedder, P. R. Hemmer, J. Wrachtrup, F. Jelezko. Single-shot readout of a single nuclear spin. Science, 2010, 329(5991): 542
CrossRef ADS Google scholar
[613]
G. Q. Liu, J. Xing, W. L. Ma, P. Wang, C. H. Li, H. C. Po, Y. R. Zhang, H. Fan, R. B. Liu, X. Y. Pan. Single-shot readout of a nuclear spin weakly coupled to a nitrogenvacancy center at room temperature. Phys. Rev. Lett., 2017, 118(15): 150504
CrossRef ADS Google scholar
[614]
J. Randall, C. E. Bradley, F. V. van der Gronden, A. Galicia, M. H. Abobeih, M. Markham, D. J. Twitchen, F. Machado, N. Y. Yao, T. H. Taminiau. Many-body-localized discrete time crystal with a programmable spin-based quantum simulator. Science, 2021, 374(6574): 1474
CrossRef ADS Google scholar
[615]
M. Pompili, S. L. N. Hermans, S. Baier, H. K. C. Beukers, P. C. Humphreys, R. N. Schouten, R. F. L. Vermeulen, M. J. Tiggelman, L. dos Santos Martins, B. Dirkse, S. Wehner, R. Hanson. Realization of a multinode quantum network of remote solidstate qubits. Science, 2021, 372(6539): 259
CrossRef ADS Google scholar
[616]
Y. X. Shang, F. Hong, J. H. Dai, Y. N. Hui-Yu, Y. N. Lu, E. K. Liu, X. H. Yu, G. Q. Liu, X. Y. Pan. Magnetic sensing inside a diamond anvil cell via nitrogen−vacancy center spins. Chin. Phys. Lett., 2019, 36(8): 086201
CrossRef ADS Google scholar
[617]
X. Rong, J. Geng, F. Shi, Y. Liu, K. Xu, W. Ma, F. Kong, Z. Jiang, Y. Wu, J. Du. Experimental faulttolerant universal quantum gates with solid-state spins under ambient conditions. Nat. Commun., 2015, 6(1): 8748
CrossRef ADS Google scholar
[618]
G. D. Fuchs, V. V. Dobrovitski, D. M. Toyli, F. J. Heremans, D. D. Awschalom. Gigahertz dynamics of a strongly driven single quantum spin. Science, 2009, 326(5959): 1520
CrossRef ADS Google scholar
[619]
F. Kong, P. Zhao, X. Ye, Z. Wang, Z. Qin, P. Yu, J. Su, F. Shi, J. Du. Nanoscale zero-field electron spin resonance spectroscopy. Nat. Commun., 2018, 9(1): 1563
CrossRef ADS Google scholar
[620]
J. Scheuer, X. Kong, R. S. Said, J. Chen, A. Kurz, L. Marseglia, J. Du, P. R. Hemmer, S. Montangero, T. Calarco, B. Naydenov, F. Jelezko. Precise qubit control beyond the rotating wave approximation. New J. Phys., 2014, 16(9): 093022
CrossRef ADS Google scholar
[621]
G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, J. Wrachtrup. Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater., 2009, 8(5): 383
CrossRef ADS Google scholar
[622]
N. Zhao, S. W. Ho, R. B. Liu. Decoherence and dynamical decoupling control of nitrogen vacancy center electron spins in nuclear spin baths. Phys. Rev. B, 2012, 85(11): 115303
CrossRef ADS Google scholar
[623]
S. Kolkowitz, Q. P. Unterreithmeier, S. D. Bennett, M. D. Lukin. Sensing distant nuclear spins with a single electron spin. Phys. Rev. Lett., 2012, 109(13): 137601
CrossRef ADS Google scholar
[624]
T. H. Taminiau, J. J. T. Wagenaar, T. van der Sar, F. Jelezko, V. V. Dobrovitski, R. Hanson. Detection and control of individual nuclear spins using a weakly coupled electron spin. Phys. Rev. Lett., 2012, 109(13): 137602
CrossRef ADS Google scholar
[625]
N. Zhao, J. Honert, B. Schmid, M. Klas, J. Isoya, M. Markham, D. Twitchen, F. Jelezko, R. B. Liu, H. Fedder, J. Wrachtrup. Sensing single remote nuclear spins. Nat. Nanotechnol., 2012, 7(10): 657
CrossRef ADS Google scholar
[626]
T. van der Sar, Z. H. Wang, M. S. Blok, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, V. V. Dobrovitski. Decoherence-protected quantum gates for a hybrid solid-state spin register. Nature, 2012, 484(7392): 82
CrossRef ADS Google scholar
[627]
G. Q. Liu, H. C. Po, J. Du, R. B. Liu, X. Y. Pan. Noise-resilient quantum evolution steered by dynamical decoupling. Nat. Commun., 2013, 4(1): 2254
CrossRef ADS Google scholar
[628]
C. E. Bradley, J. Randall, M. H. Abobeih, R. C. Berrevoets, M. J. Degen, M. A. Bakker, M. Markham, D. J. Twitchen, T. H. Taminiau. A ten-qubit solidstate spin register with quantum memory up to one minute. Phys. Rev. X, 2019, 9(3): 031045
CrossRef ADS Google scholar
[629]
A. Reiserer, N. Kalb, M. S. Blok, K. J. M. van Bemmelen, T. H. Taminiau, R. Hanson, D. J. Twitchen, M. Markham. Robust quantum-network memory using decoherence-protected subspaces of nuclear spins. Phys. Rev. X, 2016, 6(2): 021040
CrossRef ADS Google scholar
[630]
F. Wang, Y. Y. Huang, Z. Y. Zhang, C. Zu, P. Y. Hou, X. X. Yuan, W. B. Wang, W. G. Zhang, L. He, X. Y. Chang, L. M. Duan. Room-temperature storage of quantum entanglement using decoherence-free subspace in a solid-state spin system. Phys. Rev. B, 2017, 96(13): 134314
CrossRef ADS Google scholar
[631]
C. Zu, W. B. Wang, L. He, W. G. Zhang, C. Y. Dai, F. Wang, L. M. Duan. Experimental realization of universal geometric quantum gates with solid-state spins. Nature, 2014, 514(7520): 72
CrossRef ADS Google scholar
[632]
S. Arroyo-Camejo, A. Lazariev, S. W. Hell, G. Balasubramanian. Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin. Nat. Commun., 2014, 5(1): 4870
CrossRef ADS Google scholar
[633]
K. Arai, J. Lee, C. Belthangady, D. R. Glenn, H. Zhang, R. L. Walsworth. Geometric phase magnetometry using a solid-state spin. Nat. Commun., 2018, 9(1): 4996
CrossRef ADS Google scholar
[634]
Y. Y. Huang, Y. K. Wu, F. Wang, P. Y. Hou, W. B. Wang, W. G. Zhang, W. Q. Lian, Y. Q. Liu, H. Y. Wang, H. Y. Zhang, L. He, X. Y. Chang, Y. Xu, L. M. Duan. Experimental realization of robust geometric quantum gates with solid-state spins. Phys. Rev. Lett., 2019, 122(1): 010503
CrossRef ADS Google scholar
[635]
M. Hirose, P. Cappellaro. Coherent feedback control of a single qubit in diamond. Nature, 2016, 532(7597): 77
CrossRef ADS Google scholar
[636]
I. Rojkov, D. Layden, P. Cappellaro, J. Home, F. Reiter. Bias in error-corrected quantum sensing. Phys. Rev. Lett., 2022, 128(14): 140503
CrossRef ADS Google scholar
[637]
W. Liu, Y. Wu, C. K. Duan, X. Rong, J. Du. Dynamically encircling an exceptional point in a real quantum system. Phys. Rev. Lett., 2021, 126(17): 170506
CrossRef ADS Google scholar
[638]
M. Chen, C. Li, G. Palumbo, Y. Q. Zhu, N. Goldman, P. Cappellaro. A synthetic monopole source of Kalb−Ramond field in diamond. Science, 2022, 375(6584): 1017
CrossRef ADS Google scholar
[639]
W. Ji, Z. Chai, M. Wang, Y. Guo, X. Rong, F. Shi, C. Ren, Y. Wang, J. Du. Spin quantum heat engine quantified by quantum steering. Phys. Rev. Lett., 2022, 128(9): 090602
CrossRef ADS Google scholar
[640]
F. Kong, C. Ju, Y. Liu, C. Lei, M. Wang, X. Kong, P. Wang, P. Huang, Z. Li, F. Shi, L. Jiang, J. Du. Direct measurement of topological numbers with spins in diamond. Phys. Rev. Lett., 2016, 117(6): 060503
CrossRef ADS Google scholar
[641]
W. Ji, L. Zhang, M. Wang, L. Zhang, Y. Guo, Z. Chai, X. Rong, F. Shi, X. J. Liu, Y. Wang, J. Du. Quantum simulation for three-dimensional chiral topological insulator. Phys. Rev. Lett., 2020, 125(2): 020504
CrossRef ADS Google scholar
[642]
Y. Wu, W. Liu, J. Geng, X. Song, X. Ye, C. K. Duan, X. Rong, J. Du. Observation of parity−time symmetry breaking in a single-spin system. Science, 2019, 364(6443): 878
CrossRef ADS Google scholar
[643]
W. Zhang, X. Ouyang, X. Huang, X. Wang, H. Zhang, Y. Yu, X. Chang, Y. Liu, D. L. Deng, L. M. Duan. Observation of non-Hermitian topology with nonunitary dynamics of solid-state spins. Phys. Rev. Lett., 2021, 127(9): 090501
CrossRef ADS Google scholar
[644]
Y. N. Lu, Y. R. Zhang, G. Q. Liu, F. Nori, H. Fan, X. Y. Pan. Observing information backflow from controllable non-Markovian multichannels in diamond. Phys. Rev. Lett., 2020, 124(21): 210502
CrossRef ADS Google scholar
[645]
C. Zu, F. Machado, B. Ye, S. Choi, B. Kobrin, T. Mittiga, S. Hsieh, P. Bhattacharyya, M. Markham, D. Twitchen, A. Jarmola, D. Budker, C. R. Laumann, J. E. Moore, N. Y. Yao. Emergent hydrodynamics in a strongly interacting dipolar spin ensemble. Nature, 2021, 597(7874): 45
CrossRef ADS Google scholar
[646]
F. Shi, X. Rong, N. Xu, Y. Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R. S. Schoenfeld, W. Harneit, M. Feng, J. Du. Room-temperature implementation of the Deutsch−Jozsa algorithm with a single electronic spin in diamond. Phys. Rev. Lett., 2010, 105(4): 040504
CrossRef ADS Google scholar
[647]
K. Xu, T. Xie, Z. Li, X. Xu, M. Wang, X. Ye, F. Kong, J. Geng, C. Duan, F. Shi, J. Du. Experimental adiabatic quantum factorization under ambient conditions based on a solid-state single spin system. Phys. Rev. Lett., 2017, 118(13): 130504
CrossRef ADS Google scholar
[648]
J. Zhang, S. S. Hegde, D. Suter. Efficient implementation of a quantum algorithm in a single nitrogenvacancy center of diamond. Phys. Rev. Lett., 2020, 125(3): 030501
CrossRef ADS Google scholar
[649]
X. L. Ouyang, X. Z. Huang, Y. K. Wu, W. G. Zhang, X. Wang, H. L. Zhang, L. He, X. Y. Chang, L. M. Duan. Experimental demonstration of quantum-enhanced machine learning in a nitrogen−vacancy-center system. Phys. Rev. A, 2020, 101(1): 012307
CrossRef ADS Google scholar
[650]
Z. Li, Z. Chai, Y. Guo, W. Ji, M. Wang, F. Shi, Y. Wang, S. Lloyd, J. Du. Resonant quantum principal component analysis. Sci. Adv., 2021, 7(34): eabg2589
CrossRef ADS Google scholar
[651]
H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, R. Hanson. Heralded entanglement between solidstate qubits separated by three metres. Nature, 2013, 497(7447): 86
CrossRef ADS Google scholar
[652]
W. Pfaff, B. J. Hensen, H. Bernien, S. B. van Dam, M. S. Blok, T. H. Taminiau, M. J. Tiggelman, R. N. Schouten, M. Markham, D. J. Twitchen, R. Hanson. Unconditional quantum teleportation between distant solid-state quantum bits. Science, 2014, 345(6196): 532
CrossRef ADS Google scholar
[653]
N. Kalb, A. A. Reiserer, P. C. Humphreys, J. J. W. Bakermans, S. J. Kamerling, N. H. Nickerson, S. C. Benjamin, D. J. Twitchen, M. Markham, R. Hanson. Entanglement distillation between solid-state quantum network nodes. Science, 2017, 356(6341): 928
CrossRef ADS Google scholar
[654]
P. C. Humphreys, N. Kalb, J. P. J. Morits, R. N. Schouten, R. F. L. Vermeulen, D. J. Twitchen, M. Markham, R. Hanson. Deterministic delivery of remote entanglement on a quantum network. Nature, 2018, 558(7709): 268
CrossRef ADS Google scholar
[655]
S. L. N. Hermans, M. Pompili, H. K. C. Beukers, S. Baier, J. Borregaard, R. Hanson. Qubit teleportation between non-neighbouring nodes in a quantum network. Nature, 2022, 605(7911): 663
CrossRef ADS Google scholar
[656]
F. Shi, X. Kong, P. Wang, F. Kong, N. Zhao, R. B. Liu, J. Du. Sensing and atomic-scale structure analysis of single nuclear-spin clusters in diamond. Nat. Phys., 2014, 10(1): 21
CrossRef ADS Google scholar
[657]
K. Arai, C. Belthangady, H. Zhang, N. Bar-Gill, S. J. DeVience, P. Cappellaro, A. Yacoby, R. L. Walsworth. Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nat. Nanotechnol., 2015, 10(10): 859
CrossRef ADS Google scholar
[658]
S. Schmitt, T. Gefen, F. M. Sturner, T. Unden, G. Wolff, C. Muller, J. Scheuer, B. Naydenov, M. Markham, S. Pezzagna, J. Meijer, I. Schwarz, M. Plenio, A. Retzker, L. P. McGuinness, F. Jelezko. Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor. Science, 2017, 356(6340): 832
CrossRef ADS Google scholar
[659]
I. Lovchinsky, J. D. Sanchez-Yamagishi, E. K. Urbach, S. Choi, S. Fang, T. I. Andersen, K. Watanabe, T. Taniguchi, A. Bylinskii, E. Kaxiras, P. Kim, H. Park, M. D. Lukin. Magnetic resonance spectroscopy of an atomically thin material using a single-spin qubit. Science, 2017, 355(6324): 503
CrossRef ADS Google scholar
[660]
F. Casola, T. van der Sar, A. Yacoby. Probing condensed matter physics with magnetometry based on nitrogen−vacancy centres in diamond. Nat. Rev. Mater., 2018, 3(1): 17088
CrossRef ADS Google scholar
[661]
Q. Jin, Z. Wang, Q. Zhang, Y. Yu, S. Lin. . Room-temperature ferromagnetism at an oxide-nitride interface. Phys. Rev. Lett., 2022, 128(1): 017202
CrossRef ADS Google scholar
[662]
L. P. McGuinness, Y. Yan, A. Stacey, D. A. Simpson, L. T. Hall, D. Maclaurin, S. Prawer, P. Mulvaney, J. Wrachtrup, F. Caruso, R. E. Scholten, L. C. L. Hollenberg. Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat. Nanotechnol., 2011, 6(6): 358
CrossRef ADS Google scholar
[663]
F. Shi, Q. Zhang, P. Wang, H. Sun, J. Wang, X. Rong, M. Chen, C. Ju, F. Reinhard, H. Chen, J. Wrachtrup, J. Wang, J. Du. Single-protein spin resonance spectroscopy under ambient conditions. Science, 2015, 347(6226): 1135
CrossRef ADS Google scholar
[664]
Y. Wu, F. Jelezko, M. B. Plenio, T. Weil. Diamond quantum devices in biology. Angew. Chem. Int. Ed., 2016, 55(23): 6586
CrossRef ADS Google scholar
[665]
F. Dolde, H. Fedder, M. W. Doherty, T. Nobauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L. C. L. Hollenberg, F. Jelezko, J. Wrachtrup. Electric-field sensing using single diamond spins. Nat. Phys., 2011, 7(6): 459
CrossRef ADS Google scholar
[666]
F. Dolde, M. W. Doherty, J. Michl, I. Jakobi, B. Naydenov, S. Pezzagna, J. Meijer, P. Neumann, F. Jelezko, N. B. Manson, J. Wrachtrup. Nanoscale detection of a single fundamental charge in ambient conditions using the NV-center in diamond. Phys. Rev. Lett., 2014, 112(9): 097603
CrossRef ADS Google scholar
[667]
T. Mittiga, S. Hsieh, C. Zu, B. Kobrin, F. Machado, P. Bhattacharyya, N. Z. Rui, A. Jarmola, S. Choi, D. Budker, N. Y. Yao. Imaging the local charge environment of nitrogen−vacancy centers in diamond. Phys. Rev. Lett., 2018, 121(24): 246402
CrossRef ADS Google scholar
[668]
R. Li, F. Kong, P. Zhao, Z. Cheng, Z. Qin, M. Wang, Q. Zhang, P. Wang, Y. Wang, F. Shi, J. Du. Nanoscale electrometry based on a magnetic-field-resistant spin sensor. Phys. Rev. Lett., 2020, 124(24): 247701
CrossRef ADS Google scholar
[669]
G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, M. D. Lukin. Nanometre-scale thermometry in a living cell. Nature, 2013, 500(7460): 54
CrossRef ADS Google scholar
[670]
P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, J. H. Shim, D. Suter, H. Sumiya, J. Isoya, J. Wrachtrup. High-precision nanoscale temperature sensing using single defects in diamond. Nano Lett., 2013, 13(6): 2738
CrossRef ADS Google scholar
[671]
M. W. Doherty, V. V. Struzhkin, D. A. Simpson, L. P. McGuinness, Y. Meng, A. Stacey, T. J. Karle, R. J. Hemley, N. B. Manson, L. C. L. Hollenberg, S. Prawer. Electronic properties and metrology applications of the diamond NV center under pressure. Phys. Rev. Lett., 2014, 112(4): 047601
CrossRef ADS Google scholar
[672]
H. Zheng, J. Xu, G. Z. Iwata, T. Lenz, J. Michl, B. Yavkin, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, J. Wrachtrup, A. Wickenbrock, D. Budker. Zero-field magnetometry based on nitrogen−vacancy ensembles in diamond. Phys. Rev. Appl., 2019, 11(6): 064068
CrossRef ADS Google scholar
[673]
P. J. Vetter, A. Marshall, G. T. Genov, T. F. Weiss, N. Striegler, E. F. Großmann, S. Oviedo-Casado, J. Cerrillo, J. Prior, P. Neumann, F. Jelezko. Zero- and low-field sensing with nitrogen−vacancy centers. Phys. Rev. Appl., 2022, 17(4): 044028
CrossRef ADS Google scholar
[674]
S. Hsieh, P. Bhattacharyya, C. Zu, T. Mittiga, T. J. Smart, F. Machado, B. Kobrin, T. O. Hohn, N. Z. Rui, M. Kamrani, S. Chatterjee, S. Choi, M. Zaletel, V. V. Struzhkin, J. E. Moore, V. I. Levitas, R. Jeanloz, N. Y. Yao. Imaging stress and magnetism at high pressures using a nanoscale quantum sensor. Science, 2019, 366(6471): 1349
CrossRef ADS Google scholar
[675]
M. Lesik, T. Plisson, L. Toraille, J. Renaud, F. Occelli, M. Schmidt, O. Salord, A. Delobbe, T. Debuisschert, L. Rondin, P. Loubeyre, J. F. Roch. Magnetic measurements on micrometersized samples under high pressure using designed NV centers. Science, 2019, 366(6471): 1359
CrossRef ADS Google scholar
[676]
K. Y. Yip, K. O. Ho, K. Y. Yu, Y. Chen, W. Zhang, S. Kasahara, Y. Mizukami, T. Shibauchi, Y. Matsuda, S. K. Goh, S. Yang. Measuring magnetic field texture in correlated electron systems under extreme conditions. Science, 2019, 366(6471): 1355
CrossRef ADS Google scholar
[677]
Z. Wang, C. McPherson, R. Kadado, N. Brandt, S. Edwards, W. Casey, N. Curro. AC sensing using nitrogen-vacancy centers in a diamond anvil cell up to 6 GPa. Phys. Rev. Appl., 2021, 16(5): 054014
CrossRef ADS Google scholar
[678]
J.H. DaiY. X. ShangY.H. YuY.XuH.Yu F.HongX. H. YuX.Y. PanG.Q. Liu, Quantum sensing with diamond NV centers under megabar pressures, arXiv: 2204.05064 (2022)
[679]
G. Q. Liu, X. Feng, N. Wang, Q. Li, R. B. Liu. Coherent quantum control of nitrogen−vacancy center spins near 1000 kelvin. Nat. Commun., 2019, 10(1): 1344
CrossRef ADS Google scholar
[680]
Y. Chen, S. Stearn, S. Vella, A. Horsley, M. W. Doherty. Optimisation of diamond quantum processors. New J. Phys., 2020, 22(9): 093068
CrossRef ADS Google scholar
[681]
E. M. Kessler, I. Lovchinsky, A. O. Sushkov, M. D. Lukin. Quantum error correction for metrology. Phys. Rev. Lett., 2014, 112(15): 150802
CrossRef ADS Google scholar
[682]
D. Layden, S. Zhou, P. Cappellaro, L. Jiang. Ancilla-free quantum error correction codes for quantum metrology. Phys. Rev. Lett., 2019, 122(4): 040502
CrossRef ADS Google scholar
[683]
J. F. Barry, J. M. Schloss, E. Bauch, M. J. Turner, C. A. Hart, L. M. Pham, R. L. Walsworth. Sensitivity optimization for NV-dimond magnetometry. Rev. Mod. Phys., 2020, 92(1): 015004
CrossRef ADS Google scholar
[684]
K. Groot-Berning, T. Kornher, G. Jacob, F. Stopp, S. T. Dawkins, R. Kolesov, J. Wrachtrup, K. Singer, F. Schmidt-Kaler. Deterministic single-ion implantation of rare-earth ions for nanometer-resolution color-center generation. Phys. Rev. Lett., 2019, 123(10): 106802
CrossRef ADS Google scholar
[685]
T. Lühmann, R. John, R. Wunderlich, J. Meijer, S. Pezzagna. Coulomb-driven single defect engineering for scalable qubits and spin sensors in diamond. Nat. Commun., 2019, 10(1): 4956
CrossRef ADS Google scholar
[686]
Y. Chu, N. de Leon, B. Shields, B. Hausmann, R. Evans, E. Togan, M. J. Burek, M. Markham, A. Stacey, A. S. Zibrov, A. Yacoby, D. J. Twitchen, M. Loncar, H. Park, P. Maletinsky, M. D. Lukin. Coherent optical transitions in implanted nitrogen vacancy centers. Nano Lett., 2014, 14(4): 1982
CrossRef ADS Google scholar
[687]
M. Wang, H. Sun, X. Ye, P. Yu, H. Liu. . Self-aligned patterning technique for fabricating high-performance diamond sensor arrays with nanoscale precision. Sci. Adv., 2022, 8(38): eabn9573
CrossRef ADS Google scholar
[688]
N. H. Wan, B. J. Shields, D. Kim, S. Mouradian, B. Lienhard, M. Walsh, H. Bakhru, T. Schroder, D. Englund. Efficient extraction of light from a nitrogen−vacancy center in a diamond parabolic reflector. Nano Lett., 2018, 18(5): 2787
CrossRef ADS Google scholar
[689]
F. M. Hrubesch, G. Braunbeck, M. Stutzmann, F. Reinhard, M. S. Brandt. Efficient electrical spin readout of NV centers in diamond. Phys. Rev. Lett., 2017, 118(3): 037601
CrossRef ADS Google scholar
[690]
P. Siyushev, M. Nesladek, E. Bourgeois, M. Gulka, J. Hruby, T. Yamamoto, M. Trupke, T. Teraji, J. Isoya, F. Jelezko. Photoelectrical imaging and coherent spin-state readout of single nitrogen−vacancy centers in diamond. Science, 2019, 363(6428): 728
CrossRef ADS Google scholar
[691]
R. Laflamme, E. Knill, D. G. Cory, E. M. Fortunato, T. F. Havel. . NMR and quantum information processing. Los Alamos Sci., 2002, 27: 344
[692]
J. A. Jones. Quantum computing with NMR. Prog. Nucl. Magn. Reson. Spectrosc., 2011, 59(2): 91
CrossRef ADS Google scholar
[693]
L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, I. L. Chuang. Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature, 2001, 414(6866): 883
CrossRef ADS Google scholar
[694]
C. Negrevergne, T. S. Mahesh, C. A. Ryan, M. Ditty, F. Cyr-Racine, W. Power, N. Boulant, T. Havel, D. G. Cory, R. Laflamme. Benchmarking quantum control methods on a 12-qubit system. Phys. Rev. Lett., 2006, 96(17): 170501
CrossRef ADS Google scholar
[695]
J. Li, Z. Luo, T. Xin, H. Wang, D. Kribs, D. Lu, B. Zeng, R. Laflamme. Experimental implementation of efficient quantum pseudorandomness on a 12-spin system. Phys. Rev. Lett., 2019, 123(3): 030502
CrossRef ADS Google scholar
[696]
D. Lu, K. Li, J. Li, H. Katiyar, A. J. Park. . Enhancing quantum control by bootstrapping a quantum processor of 12 qubits. npj Quantum Inf., 2017, 3: 45
CrossRef ADS Google scholar
[697]
R.LaflammeE. KnillD.CoryE.FortunatoT.Havel, ., Introduction to NMR quantum information processing, arXiv: quant-ph/0207172 (2002)
[698]
M. Pravia, E. Fortunato, Y. Weinstein, M. D. Price, G. Teklemariam, R. J. Nelson, Y. Sharf, S. Somaroo, C. H. Tseng, T. F. Havel, D. G. Cory. Observations of quantum dynamics by solution-state NMR spectroscopy. Concepts Magn. Reson., 1999, 11(4): 225
CrossRef ADS Google scholar
[699]
X. Peng, X. Zhu, X. Fang, M. Feng, K. Gao, X. Yang, M. Liu. Preparation of pseudo-pure states by lineselective pulses in nuclear magnetic resonance. Chem. Phys. Lett., 2001, 340(5−6): 509
CrossRef ADS Google scholar
[700]
E. Knill, R. Laflamme, R. Martinez, C. H. Tseng. An algorithmic benchmark for quantum information processing. Nature, 2000, 404(6776): 368
CrossRef ADS Google scholar
[701]
W. Zheng, H. Wang, T. Xin, X. Nie, D. Lu, J. Li. Optimal bounds on state transfer under quantum channels with application to spin system engineering. Phys. Rev. A, 2019, 100(2): 022313
CrossRef ADS Google scholar
[702]
P. O. Boykin, T. Mor, V. Roychowdhury, F. Vatan, R. Vrijen. Algorithmic cooling and scalable NMR quantum computers. Proc. Natl. Acad. Sci. USA, 2002, 99(6): 3388
CrossRef ADS Google scholar
[703]
M. S. Anwar, D. Blazina, H. A. Carteret, S. B. Duckett, T. K. Halstead, J. A. Jones, C. M. Kozak, R. J. K. Taylor. Preparing high purity initial states for nuclear magnetic resonance quantum computing. Phys. Rev. Lett., 2004, 93(4): 040501
CrossRef ADS Google scholar
[704]
R. Freeman. Selective excitation in high-resolution NMR. Chem. Rev., 1991, 91(7): 1397
CrossRef ADS Google scholar
[705]
C. A. Ryan, C. Negrevergne, M. Laforest, E. Knill, R. Laflamme. Liquid-state nuclear magnetic resonance as a testbed for developing quantum control methods. Phys. Rev. A, 2008, 78(1): 012328
CrossRef ADS Google scholar
[706]
L. M. K. Vandersypen, I. L. Chuang. NMR techniques for quantum control and computation. Rev. Mod. Phys., 2005, 76(4): 1037
CrossRef ADS Google scholar
[707]
C. A. Ryan, M. Laforest, R. Laflamme. Randomized benchmarking of single- and multi-qubit control in liquid-state NMR quantum information processing. New J. Phys., 2009, 11(1): 013034
CrossRef ADS Google scholar
[708]
D. Lu, H. Li, D. A. Trottier, J. Li, A. Brodutch, A. P. Krismanich, A. Ghavami, G. I. Dmitrienko, G. Long, J. Baugh, R. Laflamme. Experimental estimation of average fidelity of a Clifford gate on a 7-qubit quantum processor. Phys. Rev. Lett., 2015, 114(14): 140505
CrossRef ADS Google scholar
[709]
J. A. Jones, V. Vedral, A. Ekert, G. Castagnoli. Geometric quantum computation using nuclear magnetic resonance. Nature, 2000, 403(6772): 869
CrossRef ADS Google scholar
[710]
G. Feng, G. Xu, G. Long. Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett., 2013, 110(19): 190501
CrossRef ADS Google scholar
[711]
N. Khaneja, R. Brockett, S. J. Glaser. Time optimal control in spin systems. Phys. Rev. A, 2001, 63(3): 032308
CrossRef ADS Google scholar
[712]
D.D’Alessandro, Introduction to Quantum Control and Dynamics, CRC Press, 2021
[713]
N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbruggen, S. J. Glaser. Optimal control of coupled spin dynamics: Design of NMR pulse sequences by gradient ascent algorithms. J. Magn. Reson., 2005, 172(2): 296
CrossRef ADS Google scholar
[714]
J. Li, X. Yang, X. Peng, C. P. Sun. Hybrid quantum−classical approach to quantum optimal control. Phys. Rev. Lett., 2017, 118(15): 150503
CrossRef ADS Google scholar
[715]
A. M. Souza, G. A. Alvarez, D. Suter. Robust dynamical decoupling for quantum computing and quantum memory. Phys. Rev. Lett., 2011, 106(24): 240501
CrossRef ADS Google scholar
[716]
A. M. Souza, G. A. Alvarez, D. Suter. Robust dynamical decoupling. Phil. Trans. R. Soc. A, 2012, 370(1976): 4748
CrossRef ADS Google scholar
[717]
H. K. Cummins, C. Jones, A. Furze, N. F. Soffe, M. Mosca, J. M. Peach, J. A. Jones. Approximate quantum cloning with nuclear magnetic resonance. Phys. Rev. Lett., 2002, 88(18): 187901
CrossRef ADS Google scholar
[718]
J. Du, T. Durt, P. Zou, H. Li, L. C. Kwek, C. H. Lai, C. H. Oh, A. Ekert. Experimental quantum cloning with prior partial information. Phys. Rev. Lett., 2005, 94(4): 040505
CrossRef ADS Google scholar
[719]
H. Chen, D. Lu, B. Chong, G. Qin, X. Zhou, X. Peng, J. Du. Experimental demonstration of probabilistic quantum cloning. Phys. Rev. Lett., 2011, 106(18): 180404
CrossRef ADS Google scholar
[720]
D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. H. Zurek, T. F. Havel, S. S. Somaroo. Experimental quantum error correction. Phys. Rev. Lett., 1998, 81(10): 2152
CrossRef ADS Google scholar
[721]
J. Zhang, R. Laflamme, D. Suter. Experimental implementation of encoded logical qubit operations in a perfect quantum error correcting code. Phys. Rev. Lett., 2012, 109(10): 100503
CrossRef ADS Google scholar
[722]
T. B. Batalhão, A. M. Souza, L. Mazzola, R. Auccaise, R. S. Sarthour, I. S. Oliveira, J. Goold, G. De Chiara, M. Paternostro, R. M. Serra. Experimental reconstruction of work distribution and study of fluctuation relations in a closed quantum system. Phys. Rev. Lett., 2014, 113(14): 140601
CrossRef ADS Google scholar
[723]
P. A. Camati, J. P. Peterson, T. B. Batalhao, K. Micadei, A. M. Souza, R. S. Sarthour, I. S. Oliveira, R. M. Serra. Experimental rectification of entropy production by Maxwell’s demon in a quantum system. Phys. Rev. Lett., 2016, 117(24): 240502
CrossRef ADS Google scholar
[724]
K. Micadei, J. P. Peterson, A. M. Souza, R. S. Sarthour, I. S. Oliveira, G. T. Landi, T. B. Batalhao, R. M. Serra, E. Lutz. Reversing the direction of heat flow using quantum correlations. Nat. Commun., 2019, 10(1): 2456
CrossRef ADS Google scholar
[725]
X. Nie, X. Zhu, K. Huang, K. Tang, X. Long, Z. Lin, Y. Tian, C. Qiu, C. Xi, X. Yang, J. Li, Y. Dong, T. Xin, D. Lu. Experimental realization of a quantum refrigerator driven by indefinite causal orders. Phys. Rev. Lett., 2022, 129(10): 100603
CrossRef ADS Google scholar
[726]
O. Moussa, C. A. Ryan, D. G. Cory, R. Laflamme. Testing contextuality on quantum ensembles with one clean qubit. Phys. Rev. Lett., 2010, 104(16): 160501
CrossRef ADS Google scholar
[727]
I. L. Chuang, L. M. K. Vandersypen, X. Zhou, D. W. Leung, S. Lloyd. Experimental realization of a quantum algorithm. Nature, 1998, 393(6681): 143
CrossRef ADS Google scholar
[728]
J. A. Jones, M. Mosca, R. H. Hansen. Implementation of a quantum search algorithm on a quantum computer. Nature, 1998, 393(6683): 344
CrossRef ADS Google scholar
[729]
Y. S. Weinstein, M. A. Pravia, E. M. Fortunato, S. Lloyd, D. G. Cory. Implementation of the quantum Fourier transform. Phys. Rev. Lett., 2001, 86(9): 1889
CrossRef ADS Google scholar
[730]
J. Zhang, M. H. Yung, R. Laflamme, A. Aspuru-Guzik, J. Baugh. Digital quantum simulation of the statistical mechanics of a frustrated magnet. Nat. Commun., 2012, 3(1): 880
CrossRef ADS Google scholar
[731]
X. Peng, J. Zhang, J. Du, D. Suter. Quantum simulation of a system with competing two- and three-body interactions. Phys. Rev. Lett., 2009, 103(14): 140501
CrossRef ADS Google scholar
[732]
X. Peng, H. Zhou, B. B. Wei, J. Cui, J. Du, R. B. Liu. Experimental observation of Lee−Yang zeros. Phys. Rev. Lett., 2015, 114(1): 010601
CrossRef ADS Google scholar
[733]
J. Li, R. Fan, H. Wang, B. Ye, B. Zeng, H. Zhai, X. Peng, J. Du. Measuring out-of-time-order correlators on a nuclear magnetic resonance quantum simulator. Phys. Rev. X, 2017, 7(3): 031011
CrossRef ADS Google scholar
[734]
X. Nie, B. B. Wei, X. Chen, Z. Zhang, X. Zhao, C. Qiu, Y. Tian, Y. Ji, T. Xin, D. Lu, J. Li. Experimental observation of equilibrium and dynamical quantum phase transitions via out-of-time-ordered correlators. Phys. Rev. Lett., 2020, 124(25): 250601
CrossRef ADS Google scholar
[735]
J. Du, N. Xu, X. Peng, P. Wang, S. Wu, D. Lu. NMR implementation of a molecular hydrogen quantum simulation with adiabatic state preparation. Phys. Rev. Lett., 2010, 104(3): 030502
CrossRef ADS Google scholar
[736]
Z. Li, X. Liu, H. Wang, S. Ashhab, J. Cui, H. Chen, X. Peng, J. Du. Quantum simulation of resonant transitions for solving the eigenproblem of an effective water Hamiltonian. Phys. Rev. Lett., 2019, 122(9): 090504
CrossRef ADS Google scholar
[737]
D. Lu, N. Xu, R. Xu, H. Chen, J. Gong, X. Peng, J. Du. Simulation of chemical isomerization reaction dynamics on a NMR quantum simulator. Phys. Rev. Lett., 2011, 107(2): 020501
CrossRef ADS Google scholar
[738]
Z. Luo, J. Li, Z. Li, L. Y. Hung, Y. Wan, X. Peng, J. Du. Experimentally probing topological order and its breakdown through modular matrices. Nat. Phys., 2018, 14(2): 160
CrossRef ADS Google scholar
[739]
K. Li, Y. Wan, L. Y. Hung, T. Lan, G. Long, D. Lu, B. Zeng, R. Laflamme. Experimental identification of non-Abelian topological orders on a quantum simulator. Phys. Rev. Lett., 2017, 118(8): 080502
CrossRef ADS Google scholar
[740]
Z. Lin, L. Zhang, X. Long, Y. A. Fan, Y. Li. . Experimental quantum simulation of non-Hermitian dynamical topological states using stochastic Schrödinger equation. npj Quantum Inf., 2022, 8: 77
CrossRef ADS Google scholar
[741]
Z. Zhang, X. Long, X. Zhao, Z. Lin, K. Tang, H. Liu, X. Yang, X. Nie, J. Wu, J. Li, T. Xin, K. Li, D. Lu. Identifying Abelian and non-Abelian topological orders in the string-net model using a quantum scattering circuit. Phys. Rev. A, 2022, 105(3): L030402
CrossRef ADS Google scholar
[742]
Z. Li, X. Liu, N. Xu, J. Du. Experimental realization of a quantum support vector machine. Phys. Rev. Lett., 2015, 114(14): 140504
CrossRef ADS Google scholar
[743]
X. W. Yao, H. Wang, Z. Liao, M. C. Chen, J. Pan, J. Li, K. Zhang, X. Lin, Z. Wang, Z. Luo, W. Zheng, J. Li, M. Zhao, X. Peng, D. Suter. Quantum image processing and its application to edge detection: Theory and experiment. Phys. Rev. X, 2017, 7(3): 031041
CrossRef ADS Google scholar
[744]
T. Xin, L. Che, C. Xi, A. Singh, X. Nie, J. Li, Y. Dong, D. Lu. Experimental quantum principal component analysis via parametrized quantum circuits. Phys. Rev. Lett., 2021, 126(11): 110502
CrossRef ADS Google scholar
[745]
C. A. Ryan, O. Moussa, J. Baugh, R. Laflamme. Spin based heat engine: Demonstration of multiple rounds of algorithmic cooling. Phys. Rev. Lett., 2008, 100(14): 140501
CrossRef ADS Google scholar
[746]
G. A. Álvarez, D. Suter, R. Kaiser. Localization−delocalization transition in the dynamics of dipolar-coupled nuclear spins. Science, 2015, 349(6250): 846
CrossRef ADS Google scholar
[747]
K. X. Wei, C. Ramanathan, P. Cappellaro. Exploring localization in nuclear spin chains. Phys. Rev. Lett., 2018, 120(7): 070501
CrossRef ADS Google scholar
[748]
K. X. Wei, P. Peng, O. Shtanko, I. Marvian, S. Lloyd, C. Ramanathan, P. Cappellaro. Emergent prethermalization signatures in out-of-time ordered correlations. Phys. Rev. Lett., 2019, 123(9): 090605
CrossRef ADS Google scholar
[749]
P. Peng, C. Yin, X. Huang, C. Ramanathan, P. Cappellaro. Floquet prethermalization in dipolar spin chains. Nat. Phys., 2021, 17(4): 444
CrossRef ADS Google scholar
[750]
S. Asaad, V. Mourik, B. Joecker, M. A. I. Johnson, A. D. Baczewski, H. R. Firgau, M. T. Madzik, V. Schmitt, J. J. Pla, F. E. Hudson, K. M. Itoh, J. C. McCallum, A. S. Dzurak, A. Laucht, A. Morello. Coherent electrical control of a single high-spin nucleus in silicon. Nature, 2020, 579(7798): 205
CrossRef ADS Google scholar
[751]
M. Saffman, T. G. Walker, K. Mølmer. Quantum information with Rydberg atoms. Rev. Mod. Phys., 2010, 82(3): 2313
CrossRef ADS Google scholar
[752]
M. Saffman. Quantum computing with atomic qubits and Rydberg interactions: Progress and challenges. J. Phys. At. Mol. Opt. Phys., 2016, 49(20): 202001
CrossRef ADS Google scholar
[753]
A. Browaeys, T. Lahaye. Many-body physics with individually controlled Rydberg atoms. Nat. Phys., 2020, 16(2): 132
CrossRef ADS Google scholar
[754]
L. Henriet, L. Beguin, A. Signoles, T. Lahaye, A. Browaeys, G.-O. Reymond, C. Jurczak. Quantum computing with neutral atoms. Quantum, 2020, 4: 327
CrossRef ADS Google scholar
[755]
M. Morgado, S. Whitlock. Quantum simulation and computing with Rydberg-interacting qubits. AVS Quantum Sci., 2021, 3(2): 023501
CrossRef ADS Google scholar
[756]
A. Cooper, J. P. Covey, I. S. Madjarov, S. G. Porsev, M. S. Safronova, M. Endres. Alkaline earth atoms in optical tweezers. Phys. Rev. X, 2018, 8(4): 041055
CrossRef ADS Google scholar
[757]
M. A. Norcia, A. W. Young, A. M. Kaufman. Microscopic control and detection of ultracold strontium in optical-tweezer arrays. Phys. Rev. X, 2018, 8(4): 041054
CrossRef ADS Google scholar
[758]
S. Saskin, J. T. Wilson, B. Grinkemeyer, J. D. Thompson. Narrow-line cooling and imaging of ytterbium atoms in an optical tweezer array. Phys. Rev. Lett., 2019, 122(14): 143002
CrossRef ADS Google scholar
[759]
A. M. Kaufman, K.-K. Ni. Quantum science with optical tweezer arrays of ultracold atoms and molecules. Nat. Phys., 2021, 17(12): 1324
CrossRef ADS Google scholar
[760]
N. Schlosser, G. Reymond, I. Protsenko, P. Grangier. Sub-Poissonian loading of single atoms in a microscopic dipole trap. Nature, 2001, 411(6841): 1024
CrossRef ADS Google scholar
[761]
N. Schlosser, G. Reymond, P. Grangier. Collisional blockade in microscopic optical dipole traps. Phys. Rev. Lett., 2002, 89(2): 023005
CrossRef ADS Google scholar
[762]
T. Grünzweig, A. Hilliard, M. McGovern, M. F. Andersen. Near-deterministic preparation of a single atom in an optical microtrap. Nat. Phys., 2010, 6(12): 951
CrossRef ADS Google scholar
[763]
B. J. Lester, N. Luick, A. M. Kaufman, C. M. Reynolds, C. A. Regal. Rapid production of uniformly filled arrays of neutral atoms. Phys. Rev. Lett., 2015, 115(7): 073003
CrossRef ADS Google scholar
[764]
M. O. Brown, T. Thiele, C. Kiehl, T.-W. Hsu, C. A. Regal. Gray-molasses optical-tweezer loading: Controlling collisions for scaling atom-array assembly. Phys. Rev. X, 2019, 9(1): 011057
CrossRef ADS Google scholar
[765]
M. M. Aliyu, L. Zhao, X. Q. Quek, K. C. Yellapragada, H. Loh. D1 magic wavelength tweezers for scaling atom arrays. Phys. Rev. Res., 2021, 3(4): 043059
CrossRef ADS Google scholar
[766]
A. Jenkins, J. W. Lis, A. Senoo, W. F. McGrew, A. M. Kaufman. Ytterbium nuclear-spin qubits in an optical tweezer array. Phys. Rev. X, 2022, 12(2): 021027
CrossRef ADS Google scholar
[767]
D. Barredo, S. de Léséleuc, V. Lienhard, T. Lahaye, A. Browaeys. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science, 2016, 354(6315): 1021
CrossRef ADS Google scholar
[768]
M. Endres, H. Bernien, A. Keesling, H. Levine, E. R. Anschuetz, A. Krajenbrink, C. Senko, V. Vuletic, M. Greiner, M. D. Lukin. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science, 2016, 354(6315): 1024
CrossRef ADS Google scholar
[769]
D. Barredo, V. Lienhard, S. De Leseleuc, T. Lahaye, A. Browaeys. Synthetic three-dimensional atomic structures assembled atom by atom. Nature, 2018, 561(7721): 79
CrossRef ADS Google scholar
[770]
T. M. Graham, M. Kwon, B. Grinkemeyer, Z. Marra, X. Jiang, M. T. Lichtman, Y. Sun, M. Ebert, M. Saffman. Rydberg-mediated entanglement in a twodimensional neutral atom qubit array. Phys. Rev. Lett., 2019, 123(23): 230501
CrossRef ADS Google scholar
[771]
P. Scholl, M. Schuler, H. J. Williams, A. A. Eberharter, D. Barredo, K.-N. Schymik, V. Lienhard, L.-P. Henry, T. C. Lang, T. Lahaye, A. M. Läuchli, A. Browaeys. Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms. Nature, 2021, 595(7866): 233
CrossRef ADS Google scholar
[772]
S. Ebadi, T. T. Wang, H. Levine, A. Keesling, G. Semeghini, A. Omran, D. Bluvstein, R. Samajdar, H. Pichler, W. W. Ho, S. Choi, S. Sachdev, M. Greiner, V. Vuletić, M. D. Lukin. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature, 2021, 595(7866): 227
CrossRef ADS Google scholar
[773]
K.-N. Schymik, S. Pancaldi, F. Nogrette, D. Barredo, J. Paris, A. Browaeys, T. Lahaye. Single atoms with 6000-second trapping lifetimes in optical-tweezer arrays at cryogenic temperatures. Phys. Rev. Appl., 2021, 16(3): 034013
CrossRef ADS Google scholar
[774]
K. N. Schymik, B. Ximenez, E. Bloch, D. Dreon, A. Signoles, F. Nogrette, D. Barredo, A. Browaeys, T. Lahaye. In-situ equalization of single-atom loading in large-scale optical tweezers arrays. Phys. Rev. A, 2022, 106(2): 022611
CrossRef ADS Google scholar
[775]
S. de Léséleuc, D. Barredo, V. Lienhard, A. Browaeys, T. Lahaye. Analysis of imperfections in the coherent optical excitation of single atoms to Rydberg states. Phys. Rev. A, 2018, 97(5): 053803
CrossRef ADS Google scholar
[776]
M. J. Gibbons, C. D. Hamley, C.-Y. Shih, M. S. Chapman. Nondestructive fluorescent state detection of single neutral atom qubits. Phys. Rev. Lett., 2011, 106(13): 133002
CrossRef ADS Google scholar
[777]
A. Fuhrmanek, R. Bourgain, Y. R. P. Sortais, A. Browaeys. Free-space lossless state detection of a single trapped atom. Phys. Rev. Lett., 2011, 106(13): 133003
CrossRef ADS Google scholar
[778]
Y.-Y. Jau, A. M. Hankin, T. Keating, I. H. Deutsch, G. W. Biedermann. Entangling atomic spins with a Rydberg-dressed spin-flip blockade. Nat. Phys., 2016, 12(1): 71
CrossRef ADS Google scholar
[779]
M. Kwon, M. F. Ebert, T. G. Walker, M. Saffman. Parallel low-loss measurement of multiple atomic qubits. Phys. Rev. Lett., 2017, 119(18): 180504
CrossRef ADS Google scholar
[780]
S. Yu, P. Xu, M. Liu, X. He, J. Wang, M. Zhan. Qubit fidelity of a single atom transferred among the sites of a ring optical lattice. Phys. Rev. A, 2014, 90(6): 062335
CrossRef ADS Google scholar
[781]
T. Xia, M. Lichtman, K. Maller, A. W. Carr, M. J. Piotrowicz, L. Isenhower, M. Saffman. Randomized benchmarking of single-qubit gates in a 2D array of neutral-atom qubits. Phys. Rev. Lett., 2015, 114(10): 100503
CrossRef ADS Google scholar
[782]
D. Bluvstein, H. Levine, G. Semeghini, T. T. Wang, S. Ebadi, M. Kalinowski, A. Keesling, N. Maskara, H. Pichler, M. Greiner, V. Vuletić, M. D. Lukin. A quantum processor based on coherent transport of entangled atom arrays. Nature, 2022, 604(7906): 451
CrossRef ADS Google scholar
[783]
A. M. Kaufman, B. J. Lester, M. Foss-Feig, M. L. Wall, A. M. Rey, C. A. Regal. Entangling two transportable neutral atoms via local spin exchange. Nature, 2015, 527(7577): 208
CrossRef ADS Google scholar
[784]
T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, A. Browaeys. Entanglement of two individual neutral atoms using Rydberg blockade. Phys. Rev. Lett., 2010, 104(1): 010502
CrossRef ADS Google scholar
[785]
L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, M. Saffman. Demonstration of a neutral atom controlled-NOT quantum gate. Phys. Rev. Lett., 2010, 104(1): 010503
CrossRef ADS Google scholar
[786]
H. Levine, A. Keesling, A. Omran, H. Bernien, S. Schwartz, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletić, M. D. Lukin. High-fidelity control and entanglement of Rydberg-atom qubits. Phys. Rev. Lett., 2018, 121(12): 123603
CrossRef ADS Google scholar
[787]
H. Levine, A. Keesling, G. Semeghini, A. Omran, T. T. Wang, S. Ebadi, H. Bernien, M. Greiner, V. Vuletić, H. Pichler, M. D. Lukin. Parallel implementation of high-fidelity multiqubit gates with neutral atoms. Phys. Rev. Lett., 2019, 123(17): 170503
CrossRef ADS Google scholar
[788]
S. Ma, A. P. Burgers, G. Liu, J. Wilson, B. Zhang, J. D. Thompson. Universal gate operations on nuclear spin qubits in an optical tweezer array of 171Yb atoms. Phys. Rev. X, 2022, 12(2): 021028
CrossRef ADS Google scholar
[789]
I. S. Madjarov, J. P. Covey, A. L. Shaw, J. Choi, A. Kale, A. Cooper, H. Pichler, V. Schkolnik, J. R. Williams, M. Endres. High-fidelity entanglement and detection of alkaline-earth Rydberg atoms. Nat. Phys., 2020, 16(8): 857
CrossRef ADS Google scholar
[790]
J. T. Wilson, S. Saskin, Y. Meng, S. Ma, R. Dilip, A. P. Burgers, J. D. Thompson. Trapping alkaline earth Rydberg atoms optical tweezer arrays. Phys. Rev. Lett., 2022, 128(3): 033201
CrossRef ADS Google scholar
[791]
T. M. Graham, Y. Song, J. Scott, C. Poole, L. Phuttitarn. . Multi-qubit entanglement and algorithms on a neutralatom quantum computer. Nature, 2022, 604(7906): 457
CrossRef ADS Google scholar
[792]
T. Gullion, D. B. Baker, M. S. Conradi. New, compensated carr-purcell sequences. J. Magn. Reson., 1990, 89: 479
[793]
J. Yang, X. He, R. Guo, P. Xu, K. Wang, C. Sheng, M. Liu, J. Wang, A. Derevianko, M. Zhan. Coherence preservation of a single neutral atom qubit transferred between magic-intensity optical traps. Phys. Rev. Lett., 2016, 117(12): 123201
CrossRef ADS Google scholar
[794]
K. Barnes, P. Battaglino, B. J. Bloom, K. Cassella, R. Coxe. . Assembly and coherent control of a register of nuclear spin qubits. Nat. Commun., 2022, 13(1): 2779
CrossRef ADS Google scholar
[795]
S. Ebadi, A. Keesling, M. Cain, T. T. Wang, H. Levine. . Quantum optimization of maximum independent set using Rydberg atom arrays. Science, 2022, 376(6598): 1209
CrossRef ADS Google scholar
[796]
H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T. Macrì, T. Lahaye, A. Browaeys. Tunable twodimensional arrays of single Rydberg atoms for realizing quantum Ising models. Nature, 2016, 534(7609): 667
CrossRef ADS Google scholar
[797]
S. de Léséleuc, S. Weber, V. Lienhard, D. Barredo, H. P. Buchler, T. Lahaye, A. Browaeys. Accurate mapping of multilevel Rydberg atoms on interacting spin-1/2 particles for the quantum simulation of Ising models. Phys. Rev. Lett., 2018, 120(11): 113602
CrossRef ADS Google scholar
[798]
H. Kim, Y. Park, K. Kim, H.-S. Sim, J. Ahn. Detailed balance of thermalization dynamics in Rydberg-atom quantum simulators. Phys. Rev. Lett., 2018, 120(18): 180502
CrossRef ADS Google scholar
[799]
M. Kim, Y. Song, J. Kim, J. Ahn. Quantum Ising Hamiltonian programming in trio, quartet, and sextet qubit systems. PRX Quantum, 2020, 1(2): 020323
CrossRef ADS Google scholar
[800]
Y. Song, M. Kim, H. Hwang, W. Lee, J. Ahn. Quantum simulation of Cayley-tree Ising Hamiltonians with three-dimensional Rydberg atoms. Phys. Rev. Res., 2021, 3(1): 013286
CrossRef ADS Google scholar
[801]
H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletić, M. D. Lukin. Probing many-body dynamics on a 51-atom quantum simulator. Nature, 2017, 551(7682): 579
CrossRef ADS Google scholar
[802]
A. Keesling, A. Omran, H. Levine, H. Bernien, H. Pichler, S. Choi, R. Samajdar, S. Schwartz, P. Silvi, S. Sachdev, P. Zoller, M. Endres, M. Greiner, V. Vuletić, M. D. Lukin. Quantum Kibble–Zurek mechanism and critical dynamics on a programmable Rydberg simulator. Nature, 2019, 568(7751): 207
CrossRef ADS Google scholar
[803]
V. Lienhard, S. de Léséleuc, D. Barredo, T. Lahaye, A. Browaeys, M. Schuler, L.-P. Henry, A. M. Läuchli. Observing the space- and time-dependent growth of correlations in dynamically tuned synthetic Ising models with antiferromagnetic interactions. Phys. Rev. X, 2018, 8(2): 021070
CrossRef ADS Google scholar
[804]
D. Bluvstein, A. Omran, H. Levine, A. Keesling, G. Semeghini, S. Ebadi, T. T. Wang, A. A. Michailidis, N. Maskara, W. W. Ho, S. Choi, M. Serbyn, M. Greiner, V. Vuletić, M. D. Lukin. Controlling quantum many-body dynamics in driven Rydberg atom arrays. Science, 2021, 371(6536): 1355
CrossRef ADS Google scholar
[805]
G. Semeghini, H. Levine, A. Keesling, S. Ebadi, T. T. Wang, D. Bluvstein, R. Verresen, H. Pichler, M. Kalinowski, R. Samajdar, A. Omran, S. Sachdev, A. Vishwanath, M. Greiner, V. Vuletić, M. D. Lukin. Probing topological spin liquids on a programmable quantum simulator. Science, 2021, 374(6572): 1242
CrossRef ADS Google scholar
[806]
S. de Léséleuc, V. Lienhard, P. Scholl, D. Barredo, S. Weber, N. Lang, H. P. Büchler, T. Lahaye, A. Browaeys. Observation of a symmetry-protected topological phase of interacting bosons with Rydberg atoms. Science, 2019, 365(6455): 775
CrossRef ADS Google scholar
[807]
P. Scholl, H. J. Williams, G. Bornet, F. Wallner, D. Barredo, L. Henriet, A. Signoles, C. Hainaut, T. Franz, S. Geier, A. Tebben, A. Salzinger, G. Zürn, T. Lahaye, M. Weidemüller, A. Browaeys. Microwave engineering of programmable XXZ Hamiltonians in arrays of Rydberg atoms. PRX Quantum, 2022, 3(2): 020303
CrossRef ADS Google scholar
[808]
A. M. Kaufman, B. J. Lester, C. A. Regal. Cooling a single atom in an optical tweezer to its quantum ground state. Phys. Rev. X, 2012, 2(4): 041014
CrossRef ADS Google scholar
[809]
J. D. Thompson, T. G. Tiecke, A. S. Zibrov, V. Vuletić, M. D. Lukin. Coherence and Raman sideband cooling of a single atom in an optical tweezer. Phys. Rev. Lett., 2013, 110(13): 133001
CrossRef ADS Google scholar
[810]
D. V. Vasilyev, A. Grankin, M. A. Baranov, L. M. Sieberer, P. Zoller. Monitoring quantum simulators via quantum nondemolition couplings to atomic clock qubits. PRX Quantum, 2020, 1(2): 020302
CrossRef ADS Google scholar
[811]
K. Singh, S. Anand, A. Pocklington, J. T. Kemp, H. Bernien. Dual-element, two-dimensional atom array with continuous-mode operation. Phys. Rev. X, 2022, 12(1): 011040
CrossRef ADS Google scholar
[812]
E. Knill, R. Laflamme, G. J. Milburn. A scheme for efficient quantum computation with linear optics. Nature, 2001, 409(6816): 46
CrossRef ADS Google scholar
[813]
S.AaronsonA. Arkhipov, The computational complexity of linear optics, in: Proceedings of the Forty-third Annual ACM Symposium on Theory of Computing, 2011, pp 333–342
[814]
C. S. Hamilton, R. Kruse, L. Sansoni, S. Barkhofen, C. Silberhorn, I. Jex. Gaussian boson sampling. Phys. Rev. Lett., 2017, 119(17): 170501
CrossRef ADS Google scholar
[815]
P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, G. J. Milburn. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys., 2007, 79(1): 135
CrossRef ADS Google scholar
[816]
J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, M. Żukowski. Multiphoton entanglement and interferometry. Rev. Mod. Phys., 2012, 84(2): 777
CrossRef ADS Google scholar
[817]
H. S. Zhong, Y. Li, W. Li, L. C. Peng, Z. E. Su, Y. Hu, Y. M. He, X. Ding, W. Zhang, H. Li, L. Zhang, Z. Wang, L. You, X. L. Wang, X. Jiang, L. Li, Y. A. Chen, N. L. Liu, C. Y. Lu, J. W. Pan. 12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion. Phys. Rev. Lett., 2018, 121(25): 250505
CrossRef ADS Google scholar
[818]
X. L. Wang, Y. H. Luo, H. L. Huang, M. C. Chen, Z. E. Su, C. Liu, C. Chen, W. Li, Y. Q. Fang, X. Jiang, J. Zhang, L. Li, N. L. Liu, C. Y. Lu, J. W. Pan. 18-qubit entanglement with six photons’ three degrees of freedom. Phys. Rev. Lett., 2018, 120(26): 260502
CrossRef ADS Google scholar
[819]
P. Thomas, L. Ruscio, O. Morin, G. Rempe. Efficient generation of entangled multi-photon graph states from a single atom. Nature, 2022, 608(7924): 677
CrossRef ADS Google scholar
[820]
H. S. Zhong, Y. H. Deng, J. Qin, H. Wang, M. C. Chen, L. C. Peng, Y. H. Luo, D. Wu, S. Q. Gong, H. Su, Y. Hu, P. Hu, X. Y. Yang, W. J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N. L. Liu, J. J. Renema, C. Y. Lu, J. W. Pan. Phase-programmable Gaussian boson sampling using stimulated squeezed light. Phys. Rev. Lett., 2021, 127(18): 180502
CrossRef ADS Google scholar
[821]
C. K. Hong, Z. Y. Ou, L. Mandel. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett., 1987, 59(18): 2044
CrossRef ADS Google scholar
[822]
R. Ghosh, L. Mandel. Observation of nonclassical effects in the interference of two photons. Phys. Rev. Lett., 1987, 59(17): 1903
CrossRef ADS Google scholar
[823]
P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, Y. Shih. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett., 1995, 75(24): 4337
CrossRef ADS Google scholar
[824]
F. Kaneda, B. G. Christensen, J. J. Wong, H. S. Park, K. T. McCusker, P. G. Kwiat. Time-multiplexed heralded single-photon source. Optica, 2015, 2(12): 1010
CrossRef ADS Google scholar
[825]
J. F. Clauser. Experimental distinction between the quantum and classical field theoretic predictions for the photoelectric effect. Phys. Rev. D, 1974, 9(4): 853
CrossRef ADS Google scholar
[826]
H. J. Kimble, M. Dagenais, L. Mandel. Photon antibunching in resonance fluorescence. Phys. Rev. Lett., 1977, 39(11): 691
CrossRef ADS Google scholar
[827]
F. Diedrich, H. Walther. Nonclassical radiation of a single stored ion. Phys. Rev. Lett., 1987, 58(3): 203
CrossRef ADS Google scholar
[828]
W. E. Moerner, L. Kador. Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett., 1989, 62(21): 2535
CrossRef ADS Google scholar
[829]
P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. Petroff, L. Zhang, E. L. Hu, A. Imamoglu. A quantum dot single-photon turnstile device. Science, 2000, 290(5500): 2282
CrossRef ADS Google scholar
[830]
C. Kurtsiefer, S. Mayer, P. Zarda, H. Weinfurter. Stable solid-state source of single photons. Phys. Rev. Lett., 2000, 85(2): 290
CrossRef ADS Google scholar
[831]
S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, T. Ohshima. A silicon carbide room-temperature single-photon source. Nat. Mater., 2014, 13(2): 151
CrossRef ADS Google scholar
[832]
T. T. Tran, K. Bray, M. J. Ford, M. Toth, I. Aharonovich. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol., 2016, 11(1): 37
CrossRef ADS Google scholar
[833]
P. Senellart, G. Solomon, A. White. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol., 2017, 12(11): 1026
CrossRef ADS Google scholar
[834]
N. Tomm, A. Javadi, N. O. Antoniadis, D. Najer, M. C. Lobl, A. R. Korsch, R. Schott, S. R. Valentin, A. D. Wieck, A. Ludwig, R. J. Warburton. A bright and fast source of coherent single photons. Nat. Nanotechnol., 2021, 16(4): 399
CrossRef ADS Google scholar
[835]
H. Wang, Y. M. He, T. H. Chung, H. Hu, Y. Yu, S. Chen, X. Ding, M. C. Chen, J. Qin, X. Yang, R. Z. Liu, Z. C. Duan, J. P. Li, S. Gerhardt, K. Winkler, J. Jurkat, L. J. Wang, N. Gregersen, Y. H. Huo, Q. Dai, S. Yu, S. Höfling, C. Y. Lu, J. W. Pan. Towards optimal single-photon sources from polarized microcavities. Nat. Photonics, 2019, 13(11): 770
CrossRef ADS Google scholar
[836]
M. Varnava, D. E. Browne, T. Rudolph. How good must single photon sources and detectors be for efficient linear optical quantum computation. Phys. Rev. Lett., 2008, 100(6): 060502
CrossRef ADS Google scholar
[837]
S. L. Braunstein, P. Van Loock. Quantum information with continuous variables. Rev. Mod. Phys., 2005, 77(2): 513
CrossRef ADS Google scholar
[838]
S. Lloyd and S. L. Braunstein, Quantum computation over continuous variables, in: Quantum Information with Continuous Variables, Springer, 1999, pp 9–17
[839]
D. Gottesman, A. Kitaev, J. Preskill. Encoding a qubit in an oscillator. Phys. Rev. A, 2001, 64(1): 012310
CrossRef ADS Google scholar
[840]
H. Vahlbruch, M. Mehmet, K. Danzmann, R. Schnabel. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency. Phys. Rev. Lett., 2016, 117(11): 110801
CrossRef ADS Google scholar
[841]
A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, E. S. Polzik. Unconditional quantum teleportation. Science, 1998, 282(5389): 706
CrossRef ADS Google scholar
[842]
M. V. Larsen, X. Guo, C. R. Breum, J. S. Neergaard-Nielsen, U. L. Andersen. Deterministic generation of a two-dimensional cluster state. Science, 2019, 366(6463): 369
CrossRef ADS Google scholar
[843]
W. Asavanant, Y. Shiozawa, S. Yokoyama, B. Charoensombutamon, H. Emura, R. N. Alexander, S. Takeda, J. i. Yoshikawa, N. C. Menicucci, H. Yonezawa, A. Furusawa. Generation of time-domain-multiplexed two-dimensional cluster state. Science, 2019, 366(6463): 373
CrossRef ADS Google scholar
[844]
M. Reck, A. Zeilinger, H. J. Bernstein, P. Bertani. Experimental realization of any discrete unitary operator. Phys. Rev. Lett., 1994, 73(1): 58
CrossRef ADS Google scholar
[845]
W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, I. A. Walmsley. Optimal design for universal multiport interferometers. Optica, 2016, 3(12): 1460
CrossRef ADS Google scholar
[846]
H. Wang, Y. He, Y. H. Li, Z. E. Su, B. Li, H. L. Huang, X. Ding, M. C. Chen, C. Liu, J. Qin, J. P. Li, Y. M. He, C. Schneider, M. Kamp, C. Z. Peng, S. Höfling, C. Y. Lu, J. W. Pan. High-efficiency multiphoton boson sampling. Nat. Photonics, 2017, 11(6): 361
CrossRef ADS Google scholar
[847]
H. Wang, J. Qin, X. Ding, M. C. Chen, S. Chen, X. You, Y. M. He, X. Jiang, L. You, Z. Wang, C. Schneider, J. J. Renema, S. Höfling, C. Y. Lu, J. W. Pan. Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional Hilbert space. Phys. Rev. Lett., 2019, 123(25): 250503
CrossRef ADS Google scholar
[848]
Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, X. L. Wang, W. J. Zhang, S. J. Chen, C. Schneider, M. Kamp, L. X. You, Z. Wang, S. Höfling, C. Y. Lu, J. W. Pan. Time-bin-encoded boson sampling with a single-photon device. Phys. Rev. Lett., 2017, 118(19): 190501
CrossRef ADS Google scholar
[849]
J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X. Jin, M. Barbieri, A. Datta, N. Thomaspeter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, I. A. Walmsley. Boson sampling on a photonic chip. Science, 2013, 339(6121): 798
CrossRef ADS Google scholar
[850]
M. Tillmann, B. Dakic, R. Heilmann, S. Nolte, A. Szameit, P. Walther. Experimental boson sampling. Nat. Photonics, 2013, 7(7): 540
CrossRef ADS Google scholar
[851]
A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, F. Sciarrino. Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat. Photonics, 2013, 7(7): 545
CrossRef ADS Google scholar
[852]
J.Preskill, Quantum computing and the entanglement frontier, arXiv: 1203.5813 (2012)
[853]
M. A. Broome, A. Fedrizzi, S. Rahimikeshari, J. Dove, S. Aaronson, T. C. Ralph, A. White. Photonic boson sampling in a tunable circuit. Science, 2013, 339(6121): 794
CrossRef ADS Google scholar
[854]
A. P. Lund, A. Laing, S. Rahimikeshari, T. Rudolph, J. L. Obrien, T. C. Ralph. Boson sampling from a Gaussian state. Phys. Rev. Lett., 2014, 113(10): 100502
CrossRef ADS Google scholar
[855]
M. Bentivegna, N. Spagnolo, C. Vitelli, F. Flamini, N. Viggianiello, L. Latmiral, P. Mataloni, D. J. Brod, E. F. Galvao, A. Crespi, R. Ramponi, R. Osellame, F. Sciarrino. Experimental scattershot boson sampling. Sci. Adv., 2015, 1(3): e1400255
CrossRef ADS Google scholar
[856]
K. R. Motes, A. Gilchrist, J. P. Dowling, P. P. Rohde. Scalable boson sampling with time-bin encoding using a loop-based architecture. Phys. Rev. Lett., 2014, 113(12): 120501
CrossRef ADS Google scholar
[857]
J. Huh, G. G. Guerreschi, B. Peropadre, J. R. McClean, A. Aspuru-Guzik. Boson sampling for molecular vibronic spectra. Nat. Photonics, 2015, 9(9): 615
CrossRef ADS Google scholar
[858]
J. M. Arrazola, T. R. Bromley. Using Gaussian boson sampling to find dense subgraphs. Phys. Rev. Lett., 2018, 121(3): 030503
CrossRef ADS Google scholar
[859]
C. Sparrow, E. Martin-Lopez, N. Maraviglia, A. Neville, C. Harrold, J. Carolan, Y. N. Joglekar, T. Hashimoto, N. Matsuda, J. L. O’Brien, D. P. Tew, A. Laing. Simulating the vibrational quantum dynamics of molecules using photonics. Nature, 2018, 557(7707): 660
CrossRef ADS Google scholar
[860]
L. Banchi, M. Fingerhuth, T. Babej, C. Ing, J. M. Arrazola. Molecular docking with Gaussian boson sampling. Sci. Adv., 2020, 6(23): eaax1950
CrossRef ADS Google scholar
[861]
J. Preskill. Quantum computing in the NISQ era and beyond. Quantum, 2018, 2: 79
CrossRef ADS Google scholar
[862]
T. M. Stace, S. D. Barrett, A. C. Doherty. Thresholds for topological codes in the presence of loss. Phys. Rev. Lett., 2009, 102(20): 200501
CrossRef ADS Google scholar
[863]
B. M. Terhal. Quantum error correction for quantum memories. Rev. Mod. Phys., 2015, 87(2): 307
CrossRef ADS Google scholar
[864]
M. Pant, D. Towsley, D. Englund, S. Guha. Percolation thresholds for photonic quantum computing. Nat. Commun., 2019, 10(1): 1070
CrossRef ADS Google scholar
[865]
K. Fukui, A. Tomita, A. Okamoto, K. Fujii. Highthreshold fault-tolerant quantum computation with analog quantum error correction. Phys. Rev. X, 2018, 8(2): 021054
CrossRef ADS Google scholar
[866]
D. E. Chang, V. Vuletić, M. D. Lukin. Quantum nonlinear optics — photon by photon. Nat. Photonics, 2014, 8(9): 685
CrossRef ADS Google scholar
[867]
M. Fleischhauer, A. Imamoglu, J. P. Marangos. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys., 2005, 77(2): 633
CrossRef ADS Google scholar
[868]
L. M. Duan, H. Kimble. Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett., 2004, 92(12): 127902
CrossRef ADS Google scholar
[869]
A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl, M. D. Lukin. Photon−photon interactions via Rydberg blockade. Phys. Rev. Lett., 2011, 107(13): 133602
CrossRef ADS Google scholar
[870]
Z. Chen, Y. Zhou, J. T. Shen, P. C. Ku, D. Steel. Two-photon controlled-phase gates enabled by photonic dimers. Phys. Rev. A, 2021, 103(5): 052610
CrossRef ADS Google scholar
[871]
B. Hacker, S. Welte, G. Rempe, S. Ritter. A photon–photon quantum gate based on a single atom in an optical resonator. Nature, 2016, 526(7615): 193
CrossRef ADS Google scholar
[872]
D. Tiarks, S. Schmidt-Eberle, T. Stolz, G. Rempe, S. Durr. A photon–photon quantum gate based on Rydberg interactions. Nat. Phys., 2019, 15(2): 124
CrossRef ADS Google scholar
[873]
T. Stolz, H. Hegels, M. Winter, B. Rohr, Y. F. Hsiao, L. Husel, G. Rempe, S. Durr. Quantum-logic gate between two optical photons with an average efficiency above 40%. Phys. Rev. X, 2022, 12(2): 021035
CrossRef ADS Google scholar
[874]
J. Vaneecloo, S. Garcia, A. Ourjoumtsev. Intracavity Rydberg superatom for optical quantum engineering: Coherent control, single-shot detection, and optical π phase shift. Phys. Rev. X, 2022, 12(2): 021034
CrossRef ADS Google scholar

Acknowledgements

We thank Fei Yan for his contributions to the superconducting qubits section, and thank valuable discussions with Xiaodong He, we thank Chao-Yang Lu, Andrea Morello and Lieven M. K. Vandersypen for valuable comments, and we also thank Jiasheng Mai for figure polishing. This work was supported by the National Natural Science Foundation of China (Grant Nos. U1801661, 12174178, 11905098, 12204228, 12004165, 11875159, 12075110, 92065111, 12275117, 11905099, 11975117, 12004164, 62174076, 92165210, 11904157, 11661161018, 11927811, and 12004371), the National Key Research and Development Program of China (Grant Nos. 2019YFA0308100 and 2018YFA0306600), the Key-Area Research and Development Program of Guangdong Province (No. 2018B030326001), the Guangdong Innovative and Entrepreneurial Research Team Program (Nos. 2016ZT06D348 and 2019ZT08C044), the Guangdong Provincial Key Laboratory (No. 2019B121203002), the Guangdong Basic and Applied Basic Research Foundation (Grant Nos. 2021B1515020070 and 2022B1515020074), the Natural Science Foundation of Guangdong Province (No. 2017B030308003), the Science, Technology and Innovation Commission of Shenzhen, Municipality (Grant Nos. KYTDPT20181011104202253, KQTD20210811090049034, K21547502, ZDSYS20190902092905285, KQTD20190929173815000, KQTD20200820113010023, JCYJ20200109140803865 and JCYJ20170412152620376), Shenzhen Science and Technology Program (Nos. RCBS20200714114820298 and RCYX20200714114522109), the Shenzhen-Hong Kong Cooperation Zone for Technology and Innovation (HZQB-KCZYB-2020050), the Anhui Initiative in Quantum Information Technologies (Grant No. AHY050000), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0303205), Research Grants Council of Hong Kong (GRF No. 14308019), the Research Strategic Funding Scheme of The Chinese University of Hong Kong (No. 3133234). F.N. is supported in part by: Nippon Telegraph and Telephone Corporation (NTT) Research, the Japan Science and Technology Agency (JST) [via the Quantum Leap Flagship Program (Q-LEAP), and the Moonshot R&D Grant Number JPMJMS2061], the Japan Society for the Promotion of Science (JSPS) [via the Grants-in-Aid for Scientific Research (KAKENHI) Grant No. JP20H00134], the Asian Office of Aerospace Research and Development (AOARD) (via Grant No. FA2386-20-1-4069), and the Foundational Questions Institute Fund (FQXi) via Grant No. FQXi-IAF19-06.

Author contributions

M.-H.Y., Y.H., X.-H.D., J.L., D.L., B.-C.L., P.H., and Y.L. wrote the abstract and introduction. M.-H.Y. and B.C. wrote the quantum algorithms section. X.G., Y.Z., and F.N. wrote the superconducting qubits section. Y.L. wrote the trapped-ion qubits section. Y.H., P.H., and G.H. wrote the semiconductor spin qubits section. D.L. and C.Q. wrote the NV centers section. J.L., T.X., and X.-H.P. wrote the NMR system section. S.Y. wrote the neutral atom arrays section. H.W. wrote the photonic quantum computing section. X.-H.D., P.H., Y.H., and M.-H.Y. wrote the outlook and conclusion. The manuscript was revised by X.-H.D., P.H., J.Z., S.Z., F.N. and D.Y. with input from all other authors. D.Y. supervised the review project.

RIGHTS & PERMISSIONS

2023 The Authors
AI Summary AI Mindmap
PDF(11392 KB)

Accesses

Citations

Detail

Sections
Recommended

/