Heavy flavour physics and CP violation at LHCb: A ten-year review

Shanzhen Chen, Yiming Li, Wenbin Qian, Zhihong Shen, Yuehong Xie, Zhenwei Yang, Liming Zhang, Yanxi Zhang

PDF(25848 KB)
PDF(25848 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (4) : 44601. DOI: 10.1007/s11467-022-1247-1
REVIEW ARTICLE
REVIEW ARTICLE

Heavy flavour physics and CP violation at LHCb: A ten-year review

Author information +
History +

Abstract

Heavy flavour physics provides excellent opportunities to indirectly search for new physics at very high energy scales and to study hadron properties for deep understanding of the strong interaction. The LHCb experiment has been playing a leading role in the study of heavy flavour physics since the start of the LHC operations about ten years ago, and made a range of high-precision measurements and unexpected discoveries, which may have far-reaching implications on the field of particle physics. This review highlights a selection of the most influential physics results on CP violation, rare decays, and heavy flavour production and spectroscopy obtained by LHCb using the data collected during the first two operation periods of the LHC. The upgrade plan of LHCb and the physics prospects are also briefly discussed.

Graphical abstract

Keywords

LHCb / flavour physics / CP vioation

Cite this article

Download citation ▾
Shanzhen Chen, Yiming Li, Wenbin Qian, Zhihong Shen, Yuehong Xie, Zhenwei Yang, Liming Zhang, Yanxi Zhang. Heavy flavour physics and CP violation at LHCb: A ten-year review. Front. Phys., 2023, 18(4): 44601 https://doi.org/10.1007/s11467-022-1247-1

References

[1]
O.S. Brüning, ., LHC Design Report, CERN Yellow Reports: Monographs, CERN, Geneva, 2004
[2]
ATLAS CollaborationG. Aad,., ., Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716, 1 (2012), arXiv: 1207.7214
[3]
CMS CollaborationS., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716, 30 (2012), arXiv: 1207.7235
[4]
Webpage: lhcbproject.web.cern.ch/Publications/LHCbProjectPublic/Summary_all.html
[5]
LHCb Collaboration A. A. Alves Jr.,.. . The LHCb detector at the LHC. J. Instrument., 2008, 3: S08005
CrossRef ADS Google scholar
[6]
LHCb CollaborationR., Measurement of σ(ppbX) at s = 7 TeV in the forward region, Phys. Lett. B 694 (2010) 209, arXiv: 1009.2731
[7]
LHCb CollaborationR., Measurement of J/ψ production in pp collisions at s = 7 TeV, Eur. Phys. J. C 71 (2011) 1645, arXiv: 1103.0423
[8]
LHCb CollaborationR., Production of J/ψ and ϒ mesons in pp collisions at s = 8 TeV, J. High Energy Phys. 06, 064 (2013), arXiv: 1304.6977
[9]
LHCb CollaborationR., Prompt charm production in pp collisions at s = 7 TeV, Nucl. Phys. B 871 (2013) 1, arXiv: 1302.2864
[10]
LHCb CollaborationR. Aaij,., ., Measurement of forward J/ψ production cross-sections in pp collisions at s = 13 TeV, J. High Energy Phys. 10, 172 (2015), Erratum: J. High Energy Phys. 05, 172 (2015), arXiv: 1509.00771
[11]
LHCb CollaborationR., Measurements of prompt charm production cross-sections in pp collisions at s = 13 TeV, J. High Energy Phys. 03, 159 (2016), Erratum: J. High Energy Phys. 09, 159 (2016), Erratum: J. High Energy Phys. 05, 159 (2016), arXiv: 1510.01707
[12]
LHCb CollaborationR. Aaij,., ., Measurement of the b-quark production cross-section in 7 and 13 TeV pp collisions, Phys. Rev. Lett. 118, 052002 (2017), Erratum: Phys. Rev. Lett. 119, 052002 (2017), arXiv: 1612.05140
[13]
M.Cacciari, ., Theoretical predictions for charm and bottom production at the LHC, J. High Energy Phys. 10, 137(2012), arXiv: 1205.6344
[14]
A.Andronic, ., Heavy-avour and quarkonium production in the LHC era: From proton-proton to heavy-ion collisions, Eur. Phys. J. C 76 (2016) 107, arXiv: 1506.03981
[15]
X.-H.ZhangF.-H. LiuK.K. Olimov, A systematic analysis of transverse momentum spectra of J/ψ mesons in high energy collisions, Int. J. Mod. Phys. E 30, 2150051 (2021), arXiv: 2105.14700
[16]
C.-H.Chen, ., A study on the exotic state Pc(4312), Pc(4440), Pc(4457) in pp collisions at s = 7, 13 GeV, arXiv: 2111.03241 (2021)
[17]
A.-P.ChenY.-Q. MaH.Zhang, A short theoretical review of charmonium production, arXiv: 2109.04028 (2021)
[18]
Q.WangF.-H. Liu, Excitation function of initial temperature of heavy avor quarkonium emission source in high energy collisions, Adv. High Energy Phys. 2020, 5031494 (2020), arXiv: 2005.04940
[19]
Y.-H. Chen, Y.-G. Ma, G.-L. Ma, J.-H. Chen. Transverse momentum spectra of J/ψ produced in collisions over an energy range from 17.4 GeV to 13 TeV. J. Phys. G, 2020, 47: 045111
CrossRef ADS Google scholar
[20]
Y.YangS. CaiY.CaiW.Xiang, Inclusive diffractive heavy quarkonium photoproduction in pp, pA and AA collisions, Nucl. Phys. A 990, 17 (2019), arXiv: 1907.09036
[21]
Z.-G.HeB. A. KniehlM.A. NefedovV.A. Saleev, Double prompt J/ψ hadroproduction in the parton Reggeization approach with high-energy resummation, Phys. Rev. Lett. 123, 162002 (2019), arXiv: 1906.08979
[22]
M.ButenschoenB.A. Kniehl, World data of J/ψ production consolidate NRQCD factorization at NLO, Phys. Rev. D 84, 051501 (2011), arXiv: 1105.0820
[23]
J.-P.LansbergH.-S.Shao, Towards an automated tool to evaluate the impact of the nuclear modification of the gluon density on quarkonium, D and B meson production in proton−nucleus collisions, Eur. Phys. J. C 77, 1 (2017), arXiv: 1610.05382
[24]
H.-F.ZhangZ. SunW.-L.SangR.Li, Impact of ηc hadroproduction data on charmonium production and polarization within NRQCD framework, Phys. Rev. Lett. 114, 092006 (2015), arXiv: 1412.0508
[25]
J.P. MaJ. X. WangS.Zhao, Transverse momentum dependent factorization for quarkonium production at low transverse momentum, Phys. Rev. D 88, 014027 (2013), arXiv: 1211.7144
[26]
Y.FengB. GongC.-H.ChangJ.-X.Wang, Remaining parts of the long-standing J/ψ polarization puzzle, Phys. Rev. D 99, 014044(2019), arXiv: 1810.08989
[27]
J.-X.WangH.-F. Zhang, hc production at hadron colliders, J. Phys. G 42, 025004 (2015), arXiv: 1403.5944
[28]
Z.TangN. XuK.ZhouP.Zhuang, Charmonium transverse momentum distribution in high energy nuclear collisions, J. Phys. G 41, 124006 (2014), arXiv: 1409.5559
[29]
Q.-F.SunY. JiaX.LiuR.Zhu, Inclusive hc production and energy spectrum from e+e annihilation at a super B factory, Phys. Rev. D 98, 014039 (2018), arXiv: 1801.10137
[30]
B.-C.LiT. BaiY.-Y.GuoF.-H.Liu, On J/ψ and ϒ transverse momentum distributions in high energy collisions, Adv. High Energy Phys. 2017, 9383540 (2017), arXiv: 1701.04689
[31]
H.Han, ., ηc production at LHC and indications on the understanding of J/ψ production, Phys. Rev. Lett. 114, 092005(2015), arXiv: 1411.7350
[32]
H.Han, ., ϒ(nS) and χb(nP) production at hadron colliders in nonrelativistic QCD, Phys. Rev. D 94, 014028 (2016), arXiv: 1410.8537
[33]
P.ZhangC. MengY.-Q.MaK.-T.Chao, Gluon fragmentation into 3P J[1,8] quark pair and test of NRQCD factorization at two-loop level, J. High Energy Phys. 08, 111(2021), arXiv: 2011.04905
[34]
H.-Y.LiuY.-Q. MaK.-T.Chao, Improvement for color glass condensate factorization: Single hadron production in pA collisions at next-to-leading order, Phys. Rev. D 100, 071503 (2019), arXiv: 1909.02370
[35]
Y.-Q. MaK.-T. Chao, New factorization theory for heavy quarkonium production and decay, Phys. Rev. D 100, 094007 (2019), arXiv: 1703.08402
[36]
L.-P.SunH. HanK.-T.Chao, Impact of J/ψ pair production at the LHC and predictions in nonrelativistic QCD, Phys. Rev. D 94, 074033(2016), arXiv: 1404.4042
[37]
Y.-Q.MaK. WangK.-T.Chao, A complete NLO calculation of the J/ψ and ψ′ production at hadron colliders, Phys. Rev. D 84, 114001(2011), arXiv: 1012.1030
[38]
Y.-Q.MaK. WangK.-T.Chao, J/ψ( ψ′) production at the Tevatron and LHC at O( αs4v4) in nonrelativistic QCD, Phys. Rev. Lett. 106, 042002(2011), arXiv: 1009.3655
[39]
B.-Q.LiK.-T. Chao, Higher charmonia and X, Y, Z states with screened potential, Phys. Rev. D 79, 094004 (2009), arXiv: 0903.5506
[40]
Y.-Q.MaK. WangK.-T.Chao, QCD radiative corrections to χcJ production at hadron colliders, Phys. Rev. D 83, 111503 (2011), arXiv: 1002.3987
[41]
Y.-J.ZhangY.-Q. MaK.WangK.-T.Chao, QCD radiative correction to color-octet J/ψ inclusive production at B factories, Phys. Rev. D 81, 034015 (2010), arXiv: 0911.2166
[42]
H.-S.Shao, HELAC-Onia: An automatic matrix element generator for heavy quarkonium physics, Comput. Phys. Commun. 184, 2562 (2013), arXiv: 1212.5293
[43]
C.-H.ChangX.-G. Wu, Uncertainties in estimating Bc hadronic production and comparisons of the production at TEVATRON and LHC, Eur. Phys. J. C 38, 267 (2004), arXiv: hep-ph/0309121
[44]
J.-J.NiuL. GuoH.-H.MaS.-M.Wang, Heavy quarkonium production through the top quark rare decays via the channels involving flavor changing neutral currents, Eur. Phys. J. C 78, 657 (2018), arXiv: 1808.01231
[45]
K.He, ., P-wave excited Bc∗∗ meson photoproduction at the LHeC, J. Phys. G 45, 055005 (2018), arXiv: 1710.11508
[46]
G.ZhangB.-Q. Ma, Searching for lepton number violating Λ baryon decays mediated by a GeV-scale Majorana neutrino with LHCb, Phys. Rev. D 103, 033004 (2021), arXiv: 2101.05566
[47]
G.ChenX.-G. WuS.Xu, Impacts of the intrinsic charm content of the proton on the Ξcc hadroproduction at a fixed target experiment at the LHC, Phys. Rev. D 100, 054022 (2019), arXiv: 1903.00722
[48]
Y.Hu, ., The production of doubly charmed exotic hadrons in heavy ion collisions, arXiv: 2109.07733 (2021)
[49]
S.JiaX. ZhouC.Shen, Experimental review of the ϒ(1S, 2S, 3S) physics at e+e colliders and the LHC, Front. Phys. 15, 64301 (2020), arXiv: 2005.05892
[50]
N.Brambilla, ., The XYZ states: Experimental and theoretical status and perspectives, Phys. Rep. 873, 1 (2020), arXiv: 1907.07583
[51]
H.-X. Chen, W. Chen, X. Liu, and S.-L. Zhu, The hidden-charm pentaquark and tetraquark states, Phys. Rep. 639, 1 (2016), arXiv: 1601.02092
[52]
F.-K.Guo, ., Hadronic molecules, Rev. Mod. Phys. 90, 015004 (2018), arXiv: 1705.00141
[53]
E. S. Swanson, The new heavy mesons: A status report, Phys. Rep. 429 (2006) 243, arXiv: hep-ph/0601110
[54]
S. L. Olsen, T. Skwarnicki, and D. Zieminska, Nonstandard heavy mesons and baryons: Experimental evidence, Rev. Mod. Phys. 90, 015003 (2018), arXiv: 1708.04012
[55]
Y.-R.Liu, ., Pentaquark and tetraquark states, Prog. Part. Nucl. Phys. 107, 237 (2019), arXiv: 1903.11976
[56]
H.-X.Chen, ., A review of the open charm and open bottom systems, Rep. Prog. Phys. 80, 076201 (2017), arXiv: 1609.08928
[57]
X. Liu, An overview of XYZ new particles, Chin. Sci. Bull. 59, 3815 (2014), arXiv: 1312.7408
[58]
F.-K. Guo, X.-H. Liu, and S. Sakai, Threshold cusps and triangle singularities in hadronic reactions, Prog. Part. Nucl. Phys. 112, 103757 (2020), arXiv: 1912.07030
[59]
C.-Z. Yuan, The XYZ states revisited, Int. J. Mod. Phys. A 33, 1830018 (2018), arXiv: 1808.01570
[60]
X. Liu, Z.-G. Luo, Y.-R. Liu, and S.-L. Zhu, X(3872) and other possible heavy molecular states, Eur. Phys. J. C 61, 411 (2009), arXiv: 0808.0073
[61]
X.-K. Dong, F.-K. Guo, and B.-S. Zou, A survey of heavy-heavy hadronic molecules, Commun. Theor. Phys. 73, 125201 (2021), arXiv: 2108.02673
[62]
R.-X. Shi, Y. Xiao, and L.-S. Geng, Magnetic moments of the spin-1/2 singly charmed baryons in covariant baryon chiral perturbation theory, Phys. Rev. D 100, 054019 (2019), arXiv: 1812.07833
[63]
A. Ali, J. S. Lange, and S. Stone, Exotics: Heavy pentaquarks and tetraquarks, Prog. Part. Nucl. Phys. 97, 123 (2017), arXiv: 1706.00610
[64]
A.Esposito, ., Four-quark hadrons: An updated review, Int. J. Mod. Phys. A 30, 1530002 (2015), arXiv: 1411.5997
[65]
L. Maiani, F. Piccinini, A. D. Polosa, and V. Riquer, The Z(4430) and a new paradigm for spin interactions in tetraquarks, Phys. Rev. D 89, 114010 (2014), arXiv: 1405.1551
[66]
F.-Z. Peng, M.-Z. Liu, M. S. Sánchez, and M. P. Valderrama, Heavy-hadron molecules from light-meson-exchange saturation, Phys. Rev. D 102, 114020 (2020), arXiv: 2004.05658
[67]
G. Yang, J. Ping, and J. Segovia, Tetra- and penta-quark structures in the constituent quark model, Symmetry 12, 1869 (2020), arXiv: 2009.00238
[68]
J.-M. Richard, Fully-heavy tetraquarks and other heavy multiquarks, Nucl. Part. Phys. Proc. 312–317, 15295 (2021), arXiv: 2105.02503
[69]
M. Karliner, J. L. Rosner, and T. Skwarnicki, Multiquark states, Ann. Rev. Nucl. Part. Sci. 68, 17 (2018), arXiv: 1711.10626
[70]
J.-M. Richard, Exotic hadrons: Review and perspectives, Few Body Syst. 57, 1185 (2016), arXiv: 1606.08593
[71]
R.-H.Wu, ., NLO effects for QQQ baryons in QCD sum rules, Chin. Phys. C 45, 093103 (2021), arXiv: 2104.07384
[72]
S. Wicks, W. Horowitz, M. Djordjevic, and M. Gyulassy, Elastic, inelastic, and path length fluctuations in jet tomography, Nucl. Phys. A 784, 426 (2007), arXiv: nucl-th/0512076
[73]
K. Zhou, N. Xu, Z. Xu, and P. Zhuang, Medium effects on charmonium production at ultrarelativistic energies available at the CERN Large Hadron Collider, Phys. Rev. C 89, 054911 (2014), arXiv: 1401.5845
[74]
LHCb Collaboration, Study of prompt D0 meson production in pPb at sN N = 8.16 TeV at LHCb, LHCb-CONF-2019-004, 2019
[75]
LHCb CollaborationR. Aaij,., ., Observation of J/ψ-pair production in pp collisions at s = 7 TeV, Phys. Lett. B 707, 52 (2012), arXiv: 1109.0963
[76]
LHCb collaborationR. Aaij,., ., Measurement of the cross-section ratio σ(χc2)/σ(χc1) for prompt χc production at s = 7 TeV, Phys. Lett. B 714, 215 (2012), arXiv: 1202.1080
[77]
LHCb CollaborationR. Aaij,., ., Measurement of the ratio of prompt χc to J/ψ production in pp collisions at s = 7 TeV, Phys. Lett. B 718, 431 (2012), arXiv: 1204.1462
[78]
LHCb CollaborationR. Aaij,., ., Observation of X(3872) production in pp collisions at s = 7 TeV, Eur. Phys. J. C 72, 1972 (2012), arXiv: 1112.5310
[79]
LHCb CollaborationR. Aaij,., ., Measurement of ϒ production in pp collisions at s = 7 TeV, Eur. Phys. J. C 72, 2025 (2012), arXiv: 1202.6579
[80]
LHCb CollaborationR. Aaij,., ., Measurement of the B± production cross-section in pp collisions at s = 7 TeV, J. High Energy Phys. 04, 093 (2012), arXiv: 1202.4812
[81]
LHCb CollaborationR. Aaij,., ., Measurement of ψ(2S) meson production in pp collisions at s = 7 TeV, Eur. Phys. J. C 72, 2100 (2012), Erratum: Eur. Phys. J. C 80, 2100 (2012), arXiv: 1204.1258
[82]
LHCb CollaborationR. Aaij,., ., Observation of double charm production involving open charm in pp collisions at s = 7 TeV, J. High Energy Phys. 06, 141 (2012), Addendum: J. High Energy Phys. 03, 108 (2012), arXiv: 1205.0975
[83]
LHCb CollaborationR. Aaij,., ., Measurements of Bc+ production and mass with the Bc+ → J/ψπ+ decay, Phys. Rev. Lett. 109, 232001 (2012), arXiv: 1209.5634
[84]
LHCb CollaborationR. Aaij,., ., Measurement of J/ψ production in pp collisions at s = 2.76 TeV, J. High Energy Phys. 02, 041 (2013), arXiv: 1212.1045
[85]
LHCb CollaborationR. Aaij,., ., Measurement of B meson production cross-sections in proton−proton collisions at s = 7 TeV, J. High Energy Phys. 08, 117 (2013), arXiv: 1306.3663
[86]
LHCb CollaborationR. Aaij,., ., Measurement of the relative rate of prompt χc0, χc1 and χc2 production at s = 7 TeV, J. High Energy Phys. 10, 115 (2013), arXiv: 1307.4285
[87]
LHCb CollaborationR. Aaij,., ., Study of J/ψ production and cold nuclear matter effects in pPb collisions at sN N = 5 TeV, J. High Energy Phys. 02, 072 (2014), arXiv: 1308.6729
[88]
LHCb CollaborationR. Aaij,., ., Measurement of ϒ production in pp collisions at s = 2.76TeV, Eur. Phys. J. C 74, 2835(2014), arXiv: 1402.2539
[89]
LHCb CollaborationR. Aaij,., ., Study of the kinematic dependences of Λb0 production in pp collisions and a measurement of the Λ b0→ Λc 0π branching fraction, J. High Energy Phys. 08, 143 (2014), arXiv: 1405.6842
[90]
LHCb CollaborationR. Aaij,., ., Study of ϒ production and cold nuclear matter effects in pPb collisions at sNN = 5 TeV, J. High Energy Phys. 07, 094 (2014), arXiv: 1405.5152
[91]
LHCb CollaborationR. Aaij,., ., Measurement of the ηc(1S) production cross-section in proton−proton collisions via the decay ηc(1S)→p p¯, Eur. Phys. J. C 75, 311 (2015), arXiv: 1409.3612
[92]
LHCb CollaborationR. Aaij,., ., Study of χb meson production in pp collisions at s = 7 and 8 TeV and observation of the decay χb →ϒ(3S)γ, Eur. Phys. J. C 74 (2014) 3092, arXiv: 1407.7734
[93]
LHCb CollaborationR. Aaij,., ., Measurement of the χb(3P) mass and of the relative rate of χb1(1P) and χb2(1P) production, J. High Energy Phys. 10, 088 (2014), arXiv: 1409.1408
[94]
LHCb CollaborationR. Aaij,., ., Measurement of Bc+ production in proton−proton collisions at s = 8 TeV, Phys. Rev. Lett. 114, 132001 (2015), arXiv: 1411.2943
[95]
LHCb CollaborationR. Aaij,., ., Identification of beauty and charm quark jets at LHCb, J. Instrument. 10, P06013 (2015), arXiv: 1504.07670
[96]
LHCb CollaborationR. Aaij,., ., Study of the productions of Λb0 and B¯ 0 hadrons in pp collisions and first measurement of the Λb 0 → J/ψpK branching fraction, Chin. Phys. C 40, 011001 (2016), arXiv: 1509.00292
[97]
LHCb CollaborationR. Aaij,., ., Forward production of ϒ mesons in pp collisions at s = 7 and 8 TeV, J. High Energy Phys. 11, 103 (2015), arXiv: 1509.02372
[98]
LHCb CollaborationR. Aaij,., ., Production of associated ϒ and open charm hadrons in pp collisions at s = 7 and 8 TeV via double parton scattering, J. High Energy Phys. 07, 052 (2016), arXiv: 1510.05949
[99]
LHCb CollaborationR. Aaij,., ., Study of ψ(2S) production cross-sections and cold nuclear matter effects in pPb collisions at sNN = 5 TeV, J. High Energy Phys. 03, 133 (2016), arXiv: 1601.07878
[100]
LHCb CollaborationR. Aaij,., ., Measurements of prompt charm production cross-sections in pp collisions at s = 5 TeV, J. High Energy Phys. 06, 147 (2017), arXiv: 1610.02230
[101]
LHCb CollaborationR. Aaij,., ., Measurement of the J/ψ pair production cross-section in pp collisions at s = 13 TeV, J. High Energy Phys. 06 (2017) 047, Erratum: J. High Energy Phys. 10, 047 (2017), arXiv: 1612.07451
[102]
LHCb CollaborationR. Aaij,., ., Study of J/ψ production in jets, Phys. Rev. Lett. 118, 192001 (2017), arXiv: 1701.05116
[103]
LHCb CollaborationR. Aaij,., ., Prompt and nonprompt J/ψ production and nuclear modification in pPb collisions at sN N = 8.16 TeV, Phys. Lett. B 774 (2017) 159, arXiv: 1706.07122
[104]
LHCb CollaborationR. Aaij,., ., Study of prompt D0 meson production in pPb collisions at sN N = 5 TeV, J. High Energy Phys. 10, 090 (2017), arXiv: 1707.02750
[105]
LHCb CollaborationR. Aaij,., ., Measurement of the B± production cross-section in pp collisions at s = 7 and 13 TeV, J. High Energy Phys. 12, 026 (2017), arXiv: 1710.04921
[106]
LHCb CollaborationR. Aaij,., ., Measurement of ϒ production cross-section in pp collisions at s = 13 TeV, J. High Energy Phys. 07, 134 (2018), arXiv: 1804.09214
[107]
LHCb CollaborationR. Aaij,., ., Prompt Λ c+ production in pPb collisions at sNN = 5.02 TeV, J. High Energy Phys. 02, 102 (2019), arXiv: 1809.01404
[108]
LHCb CollaborationR. Aaij,., ., Study of ϒ production in pPb collisions at sN N = 8.16 TeV, J. High Energy Phys. 11, 194 (2018), arXiv: 1810.07655
[109]
LHCb CollaborationR. Aaij,., ., Measurement of the mass and production rate of Ξb− baryons, Phys. Rev. D 99, 052006 (2019), arXiv: 1901.07075
[110]
LHCb CollaborationR. Aaij,., ., Measurement of B+, B0 and Λb0 production in pPb collisions at sN N = 8.16 TeV, Phys. Rev. D 99, 052011 (2019), arXiv: 1902.05599
[111]
LHCb CollaborationR. Aaij,., ., Measurement of ψ(2S) production cross-sections in proton−proton collisions at s = 7 and 13 TeV, Eur. Phys. J. C 80, 185 (2020), arXiv: 1908.03099
[112]
LHCb CollaborationR. Aaij,., ., Measurement of the ηc(1S) production cross-section in pp collisions at s = 13 TeV, Eur. Phys. J. C 80, 191 (2020), arXiv: 1911.03326
[113]
LHCb CollaborationR. Aaij,., ., Measurement of the B c− production fraction and asymmetry in 7 and 13 TeV pp collisions, Phys. Rev. D 100, 112006 (2019), arXiv: 1910.13404
[114]
LHCb CollaborationR. Aaij,., ., Measurement of Ξcc++ production in pp collisions at s = 13 TeV, Chin. Phys. C 44, 022001 (2020), arXiv: 1910.11316
[115]
LHCb CollaborationR. Aaij,., ., Observation of enhanced double parton scattering in proton-lead collisions at sN N = 8.16 TeV, Phys. Rev. Lett. 125, 212001 (2020), arXiv: 2007.06945
[116]
LHCb CollaborationR. Aaij,., ., Observation of multiplicity-dependent χc1(3872) and ψ(2S) production in pp collisions, Phys. Rev. Lett. 126, 092001 (2021), arXiv: 2009.06619
[117]
LHCb CollaborationR. Aaij,., ., Precise measurement of the fs/fd ratio of fragmentation fractions and of Bs0 decay branching fractions, Phys. Rev. D 104, 032005 (2021), arXiv: 2103.06810
[118]
LHCb CollaborationR. Aaij,., ., Measurement of prompt-cross-section ratio σ(χc2)/σ(χc1) in pPb collisions at sN N = 8.16 TeV, Phys. Rev. C 103 (2021) 064905, arXiv: 2103.07349
[119]
LHCb CollaborationR. Aaij,., ., Measurement of χc1(3872) production in proton−proton collisions at s = 8 and 13 TeV, J. High Energy Phys. 01, 131 (2022), arXiv: 2109.07360
[120]
J.Pumplin, ., New generation of parton distributions with uncertainties from global QCD analysis, J. High Energy Phys. 07, 012 (2002), arXiv: hep-ph/0201195
[121]
M. Cacciari, M. Greco, and P. Nason, The pT spectrum in heavy-flavor hadroproduction, J. High Energy Phys. 05, 007 (1998), arXiv: hep-ph/9803400
[122]
R. Gauld and J. Rojo, Precision determination of the small-x gluon from charm production at LHCb, Phys. Rev. Lett. 118, 072001 (2017), arXiv: 1610.09373
[123]
LHCb CollaborationR., Measurement of J/ψ polarization in pp collisions at s = 7 TeV, Eur. Phys. J. C 73, 2631 (2013), arXiv: 1307.6379
[124]
K, J/ψ polarization at hadron colliders in nonrelativistic QCD, Phys. Rev. Lett. 108, 242004 (2012), arXiv: 1201.2675
[125]
M. Butenschoen and B. A. Kniehl, J/ψ production in NRQCD: A global analysis of yield and polarization, Nucl. Phys. B Proc. Suppl. 222–224, 151 (2012), arXiv: 1201.3862
[126]
B. Gong, L.-P. Wan, J.-X. Wang, and H.-F. Zhang, Polarization for prompt J/ψ and ψ(2S) production at the Tevatron and LHC, Phys. Rev. Lett. 110, 042002 (2013), arXiv: 1205.6682
[127]
Y.-Q. Ma and R. Venugopalan, Comprehensive description of J/ψ production in proton−proton collisions at collider energies, Phys. Rev. Lett. 113, 192301 (2014), arXiv: 1408.4075
[128]
Y. Zhang, Measurement of charmonium polarization with the LHCb detector, PhD thesis, Tsinghua University, Beijing, 2013
[129]
N, Heavy quarkonium: Progress, puzzles, and opportunities, Eur. Phys. J. C 71, 1534 (2011), arXiv: 1010.5827
[130]
N. Brambilla, A. Pineda, J. Soto, and A. Vairo, Effective field theories for heavy quarkonium, Rev. Mod. Phys. 77, 1423 (2005), arXiv: hep-ph/0410047
[131]
G. T. Bodwin, E. Braaten, and G. P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D 51, 1125 (1995), Erratum: Phys. Rev. D 55, 5853 (1997), arXiv: hep-ph/9407339
[132]
Y.-Q. Ma and R. Vogt, Quarkonium production in an improved color evaporation model, Phys. Rev. D 94, 114029 (2016), arXiv: 1609.06042
[133]
LHCb CollaborationR., Measurement of the ϒ(nS) polarizations in pp collisions at s = 7 and 8 TeV, J. High Energy Phys. 12, 110 (2017), arXiv: 1709.01301
[134]
LHCb CollaborationR., Measurement of ψ(2S) polarisation in pp collisions at s = 7 TeV, Eur. Phys. J. C 74, 2872 (2014), arXiv: 1403.1339
[135]
H, Yields and polarizations of prompt J/ψ and ψ(2S) production in hadronic collisions, J. High Energy Phys. 05, 103 (2015), arXiv: 1411.3300
[136]
H.-S. Shao, Probing heavy quarkonium production mechanism: χc polarization, AIP Conf. Proc. 1701, 050006 (2016), arXiv: 1412.2576
[137]
M. Butenschoen and B. A. Kniehl, J/ψ polarization at Tevatron and LHC: Nonrelativistic-QCD factorization at the crossroads, Phys. Rev. Lett. 108, 172002 (2012), arXiv: 1201.1872
[138]
Y.-Q. Ma, T. Stebel, and R. Venugopalan, J/ψ polarization in the CGC+NRQCD approach, J. High Energy Phys. 12, 057 (2018), arXiv: 1809.03573
[139]
H.-S. Shao, Y.-Q. Ma, K. Wang, and K.-T. Chao, Polarizations of χc1 and χc2 in prompt production at the LHC, Phys. Rev. Lett. 112, 182003 (2014), arXiv: 1402.2913
[140]
H.-S. Shao and K.-T. Chao, Spin correlations in polarizations of P-wave charmonia χcJ and impact on J/ψ polarization, Phys. Rev. D 90, 014002 (2014), arXiv: 1209.4610
[141]
E, Prospects for quarkonium studies at the high-luminosity LHC, Prog. Part. Nucl. Phys. 122, 103906 (2022), arXiv: 2012.14161
[142]
C. H. Kom, A. Kulesza, and W. J. Stirling, Pair production of J/ψ as a probe of double parton scattering at LHCb, Phys. Rev. Lett. 107, 082002 (2011), arXiv: 1105.4186
[143]
H.-S. Shao and Y.-J. Zhang, Triple prompt J/ψ hadroproduction as a hard probe of multiple-parton scatterings, Phys. Rev. Lett. 122, 192002 (2019), arXiv: 1902.04949
[144]
Z.-G. He, Y. Fan, and K.-T. Chao, Relativistic corrections to J/ψ exclusive and inclusive double charm production at B factories, Phys. Rev. D 75, 074011 (2007), arXiv: hep-ph/0702239
[145]
J.-P. Lansberg and H.-S. Shao, Production of J/ψ + ηc versus J/ψ + J/ψ at the LHC: Importance of real αs5 corrections, Phys. Rev. Lett. 111, 122001 (2013), arXiv: 1308.0474
[146]
H.-S. Shao, J/ψ meson production in association with an open charm hadron at the LHC: A reappraisal, Phys. Rev. D 102, 034023 (2020), arXiv: 2005.12967
[147]
CDF Collaboration F. Abe,.. . Double parton scattering in p ¯p collisions at s = 1.8 TeV. Phys. Rev. D, 1997, 56: 3811
CrossRef ADS Google scholar
[148]
ATLAS CollaborationM., Measurement of the prompt J/ψ pair production cross-section in pp collisions at s = 8 TeV with the ATLAS detector, Eur. Phys. J. C 77, 76 (2017), arXiv: 1612.02950
[149]
D0CollaborationV, Evidence for simultaneous production of J/ψ and ϒ mesons, Phys. Rev. Lett. 116, 082002 (2016), arXiv: 1511.02428
[150]
J.-P. Lansberg and H.-S. Shao, J/ψ-pair production at large momenta: Indications for double parton scatterings and large αs5 contributions, Phys. Lett. B 751, 479 (2015), arXiv: 1410.8822
[151]
S. P. Baranov, A. M. Snigirev, and N. P. Zotov, Double heavy meson production through double parton scattering in hadronic collisions, Phys. Lett. B 705, 116 (2011), arXiv: 1105.6276
[152]
D. d'Enterria and A. M. Snigirev, Same-sign WW production in proton−nucleus collisions at the LHC as a signal for double parton scattering, Phys. Lett. B 718, 1395 (2013), arXiv: 1211.0197
[153]
E. G. Ferreiro and J.-P. Lansberg, Is bottomonium suppression in proton−nucleus and nucleus−nucleus collisions at LHC energies due to the same effects? J. High Energy Phys. 10, 094 (2018), Erratum: J. High Energy Phys. 03, 063 (2019), arXiv: 1804.04474
[154]
S. Gavin and J. Milana, Energy loss at large xF in nuclear collisions, Phys. Rev. Lett. 68, 1834 (1992)
[155]
N. Armesto, Nuclear shadowing, J. Phys. G 32, R367 (2006), arXiv: hep-ph/0604108
[156]
F. Arleo and S. Peigne, Heavy-quarkonium suppression in p−A collisions from parton energy loss in cold QCD matter, J. High Energy Phys. 03, 122 (2013), arXiv: 1212.0434
[157]
A. Kusina, J.-P. Lansberg, I. Schienbein, and H.-S. Shao, Gluon shadowing in heavy-flavor production at the LHC, Phys. Rev. Lett. 121, 052004 (2018), arXiv: 1712.07024
[158]
F. Arleo, G. Jackson, and S. Peigné, Impact of fully coherent energy loss on heavy meson production in pA collisions, arXiv: 2107.05871 (2021)
[159]
E. Braaten, L.-P. He, K. Ingles, and J. Jiang, Production of X(3872) at high multiplicity, Phys. Rev. D 103, L071901 (2021), arXiv: 2012.13499
[160]
A, The nature of X(3872) from high-multiplicity pp collisions, Eur. Phys. J. C 81, 669 (2021), arXiv: 2006.15044
[161]
M. Gell-Mann, A schematic model of baryons and mesons, Phys. Lett. 8, 214 (1964)
[162]
G. Zweig, An SU3 Model for Strong Interaction Symmetry and Its Breaking, Version 2, 1964
[163]
S.-L. Zhu, Understanding pentaquark states in QCD, Phys. Rev. Lett. 91, 232002 (2003), arXiv: hep-ph/0307345
[164]
Z, Zb(10610)± and Zb(10650)± as the B ∗B¯ and B ∗B¯* molecular states, Phys. Rev. D 84, 054002 (2011), arXiv: 1106.2968
[165]
X. Liu and S.-L. Zhu, Y(4143) is probably a molecular partner of Y(3930), Phys. Rev. D 80, 017502 (2009), Erratum: Phys. Rev. D 85, 019902 (2012), arXiv: 0903.2529
[166]
Y.-R. Liu, X. Liu, W.-Z. Deng, and S.-L. Zhu, Is X(3872) really a molecular state? Eur. Phys. J. C 56, 63 (2008), arXiv: 0801.3540
[167]
S.-L. Zhu, New hadron states, Int. J. Mod. Phys. E 17, 283 (2008), arXiv: hep-ph/0703225
[168]
R. Chen, Z.-F. Sun, X. Liu, and S.-L. Zhu, Strong LHCb evidence supporting the existence of the hidden-charm molecular pentaquarks, Phys. Rev. D 100, 011502 (2019), arXiv: 1903.11013
[169]
X. Liu, Y.-R. Liu, W.-Z. Deng, and S.-L. Zhu, Is Z+(4430) a loosely bound molecular state? Phys. Rev. D 77, 034003 (2008), arXiv: 0711.0494
[170]
Webpage: www.nikhef.nl/%7Epkoppenb/particles.html
[171]
LHCb CollaborationR. Aaij,., ., Precise measurements of the properties of the B1(5721)0,+ and B2*(5747)0,+ states and observation of structure at higher invariant mass in the B+π and B0π+ spectra, J. High Energy Phys. 04, 024 (2015), arXiv: 1502.02638
[172]
LHCb CollaborationR., Observation of new excited Bs0 states, Eur. Phys. J. C 81, 601 (2021), arXiv: 2010.15931
[173]
LHCb CollaborationR., Study of DJ meson decays to D+π, D0π+ and D*+π final states in pp collisions, J. High Energy Phys. 09, 145 (2013), arXiv: 1307.4556
[174]
LHCb CollaborationR., Observation of overlapping spin-1 and spin-3 D¯0K− resonances at mass 2.86 GeV/c2, Phys. Rev. Lett. 113, 162001 (2014), arXiv: 1407.7574
[175]
LHCb CollaborationR., Amplitude analysis of BD+ππ decays, Phys. Rev. D 94, 072001 (2016), arXiv: 1608.01289
[176]
LHCb CollaborationR., Observation of a new excited Ds+ state in B0DD+K+π decays, Phys. Rev. Lett. 126, 122002 (2021), arXiv: 2011.09112
[177]
S.-Q. Luo, B. Chen, X. Liu, and T. Matsuki, Predicting a new resonance as charmed-strange baryonic analog of Ds 0∗ (2317), Phys. Rev. D 103, 074027 (2021), arXiv: 2102.00679
[178]
R.-H. Ni, Q. Li, and X.-H. Zhong, Mass spectra and strong decays of charmed and charmed-strange mesons, arXiv: 2110.05024 (2021)
[179]
J.-M. Xie, M.-Z. Liu, and L.-S. Geng, Ds0(2590) as a dominant c s¯ state with a small D*K component, arXiv: 2108.12993 (2021)
[180]
Z.Yang, ., Novel coupled channel framework connecting quark model and lattice QCD: An investigation on near-threshold Ds states, arXiv: 2107.04860 (2021)
[181]
G, The newly observed state Ds0(2590)+ and width of D*(2007)0, arXiv: 2107.01751 (2021)
[182]
Z.-H. Wang, G.-L. Wang, J.-M. Zhang, and T.-H. Wang, The productions and strong decays of Dq(2S) and Bq(2S), J. Phys. G 39, 085006 (2012), arXiv: 1207.2528
[183]
X, Bottom baryons, Phys. Rev. D 77, 014031 (2008), arXiv: 0710.0123
[184]
G.-L. Yu, Z.-G. Wang, and X.-W. Wang, The 1D, 2D Ξb and Λb baryons, arXiv: 2109.02217 (2021)
[185]
K.-L. Wang and X.-H. Zhong, Toward establishing the low-lying P-wave excited Σc baryon states, arXiv: 2110.12443 (2021)
[186]
T. Matsuki. . Regge-like relation and universal description of heavy-light systems. PoS Hadron, 2018, 2017: 071
CrossRef ADS Google scholar
[187]
K.-L. Wang, Y.-X. Yao, X.-H. Zhong, and Q. Zhao, Strong and radiative decays of the low-lying S- and P-wave singly heavy baryons, Phys. Rev. D 96, 116016 (2017), arXiv: 1709.04268
[188]
Q, D-wave heavy baryons of the SU(3) flavor 6F, Phys. Rev. D 96, 074021 (2017), arXiv: 1707.03712
[189]
H.-Y. Cheng and C.-W. Chiang, Quantum numbers of Ωc states and other charmed baryons, Phys. Rev. D 95, 094018 (2017), arXiv: 1704.00396
[190]
H.-M. Yang and H.-X. Chen, P-wave bottom baryons of the SU(3) flavor 6F, Phys. Rev. D 101, 114013 (2020), Erratum: Phys. Rev. D 102, 079901 (2020), arXiv: 2003.07488
[191]
B. Chen, K.-W. Wei, X. Liu, and A. Zhang, Role of newly discovered Ξb(6227) for constructing excited bottom baryon family, Phys. Rev. D 98, 031502 (2018), arXiv: 1805.10826
[192]
Z.-Y. Wang, J.-J. Qi, X.-H. Guo, and K.-W. Wei, Spectra of charmed and bottom baryons with hyperfine interaction, Chin. Phys. C 41, 093103 (2017), arXiv: 1701.04524
[193]
K, Spectroscopy of singly, doubly, and triply bottom baryons, Phys. Rev. D 95, 116005 (2017), arXiv: 1609.02512
[194]
J, Λc(2595) resonance as a dynamically generated state: The compositeness condition and the large Nc evolution, Phys. Rev. D 93, 114028 (2016), arXiv: 1603.05388
[195]
H.-Z. He, W. Liang, Q.-F. Lü, and Y.-B. Dong, Strong decays of the low-lying bottom strange baryons, Sci. China Phys. Mech. Astron. 64, 261012 (2021), arXiv: 2102.07391
[196]
J.-R. Zhang and M.-Q. Huang, Heavy baryon spectroscopy in QCD, Phys. Rev. D 78, 094015 (2008), arXiv: 0811.3266
[197]
J.-R. Zhang and M.-Q. Huang, Mass spectra of the heavy baryons ΛQ and ΣQ(*) From QCD sum rules, Phys. Rev. D 77, 094002 (2008), arXiv: 0805.0479
[198]
K.-W. Wei, X.-H. Guo. Mass spectra of doubly heavy mesons in Regge phenomenology. Phys. Rev. D, 2010, 81: 076005
CrossRef ADS Google scholar
[199]
F.-K. Guo, C. Hanhart, and U.-G. Meissner, Mass splittings within heavy baryon isospin multiplets in chiral perturbation theory, J. High Energy Phys. 09, 136 (2008), arXiv: 0809.2359
[200]
LHCb CollaborationR., Observation of five new narrow Ω0c states decaying to Ξ c+K, Phys. Rev. Lett. 118, 182001 (2017), arXiv: 1703.04639
[201]
Belle CollaborationJ., Observation of excited Ωc charmed baryons in e+e collisions, Phys. Rev. D 97, 051102 (2018), arXiv: 1711.07927
[202]
LHCb CollaborationR., Observation of excited Ω c0 baryons in Ωb− → Ξc+Kπ+ decays, Phys. Rev. D 104, L091102 (2021), arXiv: 2107.03419
[203]
M. Karliner and J. L. Rosner, Very narrow excited c baryons, Phys. Rev. D 95, 114012 (2017), arXiv: 1703.07774
[204]
K.-L. Wang, L.-Y. Xiao, X.-H. Zhong, and Q. Zhao, Understanding the newly observed Ωc states through their decays, Phys. Rev. D 95, 116010 (2017), arXiv: 1703.09130
[205]
H, Investigation of Ωc0 states decaying to Ξc+K in pp collisions at s = 7.13 TeV, Phys. Rev. C 102, 054319 (2020), arXiv: 1912.12905
[206]
B. Chen and X. Liu, New Ωc0 baryons discovered by LHCb as the members of 1P and 2S states, Phys. Rev. D 96, 094015 (2017), arXiv: 1704.02583
[207]
W. Wang and R.-L. Zhu, Interpretation of the newly observed Ωc0 resonances, Phys. Rev. D 96, 014024 (2017), arXiv: 1704.00179
[208]
H, Decay properties of P-wave charmed baryons from light-cone QCD sum rules, Phys. Rev. D 95, 094008 (2017), arXiv: 1703.07703
[209]
G. Yang and J. Ping, Dynamical study of Ωc0 in the chiral quark model, Phys. Rev. D 97, 034023 (2018), arXiv: 1703.08845
[210]
H.-J. Wang, Z.-Y. Di, Z.-G. Wang. Analysis of the excited Ωc states as the (1/2)± pentaquark states with QCD sum rules. Commun. Theor. Phys., 2021, 73: 035201
CrossRef ADS Google scholar
[211]
Z.-G. Wang and J.-X. Zhang, Possible pentaquark candidates: New excited Ωc states, Eur. Phys. J. C 78, 503 (2018), arXiv: 1804.06195
[212]
R. Chen, A. Hosaka, and X. Liu, Searching for possible Ωc-like molecular states from meson−baryon interaction, Phys. Rev. D 97, 036016 (2018), arXiv: 1711.07650
[213]
C, Possible open-charmed pentaquark molecule Ωc(3188) — the bound state — in the Bethe−Salpeter formalism, Eur. Phys. J. C 78, 407 (2018), arXiv: 1710.10850
[214]
Z.-G. Wang, X.-N. Wei, and Z.-H. Yan, Revisit assignments of the new excited Ωc states with QCD sum rules, Eur. Phys. J. C 77, 832 (2017), arXiv: 1706.09401
[215]
LHCb CollaborationR., Observation of new Ξ c0 baryons decaying to Λc +K, Phys. Rev. Lett. 124, 222001 (2020), arXiv: 2003.13649
[216]
BellecollaborationY, Observation of Ξc(2930)0 and updated measurement of BKΛc+ Λ¯ c¯ at Belle, Eur. Phys. J. C 78, 252 (2018), arXiv: 1712.03612
[217]
LHCb CollaborationR., Study of the B+ → Λc+Λ¯ c¯K+ decay, arXiv: 2211.00812 (submitted to Phys. Rev. D)
[218]
D. Ebert, R. N. Faustov, and V. O. Galkin, Masses of excited heavy baryons in the relativistic quark model, Phys. Lett. B 659, 612 (2008), arXiv: 0705.2957
[219]
W. Roberts and M. Pervin, Heavy baryons in a quark model, Int. J. Mod. Phys. A 23, 2817 (2008), arXiv: 0711.2492
[220]
S. Migura, D. Merten, B. Metsch, and H.-R. Petry, Charmed baryons in a relativistic quark model, Eur. Phys. J. A 28, 41 (2006), arXiv: hep-ph/0602153
[221]
H.-M. Yang and H.-X. Chen, P-wave charmed baryons of the SU(3) flavor 6F, Phys. Rev. D 104, 034037 (2021), arXiv: 2106.15488
[222]
B. Chen, S.-Q. Luo, and X. Liu, Universal behavior of mass gaps existing in the single heavy baryon family, Eur. Phys. J. C 81, 474 (2021), arXiv: 2101.10806
[223]
J. Nieves, R. Pavao, and L. Tolos, Ξc and Ξb excited states within a SU(6)lsf×HQSS model, Eur. Phys. J. C 80, 22 (2020), arXiv: 1911.06089
[224]
Y.-J. Xu, Y.-L. Liu, C.-Y. Cui, and M.-Q. Huang, P-wave Ωb states: Masses and pole residues, arXiv: 2010.10697 (2020)
[225]
M. Karliner and J. L. Rosner, Interpretation of excited Ωb signals, Phys. Rev. D 102, 014027 (2020), arXiv: 2005.12424
[226]
L.-Y. Xiao and X.-H. Zhong, Toward establishing the low-lying P-wave Σb states, Phys. Rev. D 102, 014009 (2020), arXiv: 2004.11106
[227]
H.-M. Yang, H.-X. Chen, and Q. Mao, Excited Ξc0 baryons within the QCD rum rule approach, Phys. Rev. D 102, 114009 (2020), arXiv: 2004.00531
[228]
L.-Y. Xiao, K.-L. Wang, M.-S. Liu, and X.-H. Zhong, Possible interpretation of the newly observed Ωb states, Eur. Phys. J. C 80, 279 (2020), arXiv: 2001.05110
[229]
Z.-G. Wang, Analysis of the Ωb(6316), Ωb(6330), Ωb(6340) and Ωb(6350) with QCD sum rules, Int. J. Mod. Phys. A 35, 2050043 (2020), arXiv: 2001.02961
[230]
W.-H. Liang and E. Oset, Observed Ωb spectrum and meson−baryon molecular states, Phys. Rev. D 101, 054033 (2020), arXiv: 2001.02929
[231]
H, Excited Ωb baryons and fine structure of strong interaction, Eur. Phys. J. C 80, 256 (2020), arXiv: 2001.02147
[232]
W. Liang and Q.-F. Lü, Strong decays of the newly observed narrow Ωb structures, Eur. Phys. J. C 80, 198 (2020), arXiv: 2001.02221
[233]
Q.-F. Lü and X.-H. Zhong, Strong decays of the higher excited ΛQ and ΣQ baryons, Phys. Rev. D 101, 014017 (2020), arXiv: 1910.06126
[234]
B. Chen and X. Liu, Assigning the newly reported Σb(6097) as a P-wave excited state and predicting its partners, Phys. Rev. D 98, 074032 (2018), arXiv: 1810.00389
[235]
H.-J. Wang, Z.-Y. Di, Z.-G. Wang. Analysis of the Ξb(6227) as the (1/2)± pentaquark molecular states with QCD sum rules. Int. J. Theor. Phys., 2020, 59: 3124
CrossRef ADS Google scholar
[236]
Q, QCD sum rule calculation for P-wave bottom baryons, Phys. Rev. D 92, 114007 (2015), arXiv: 1510.05267
[237]
J, Dynamically generated JP = 1/2 (3/2) singly charmed and bottom heavy baryons, Phys. Rev. D 92, 014036 (2015), arXiv: 1409.3133
[238]
P. Yang, J.-J. Guo, and A. Zhang, Identification of the newly observed Σb(6097)± baryons from their strong decays, Phys. Rev. D 99, 034018 (2019), arXiv: 1810.06947
[239]
Y. Huang, C.-j. Xiao, L.-S. Geng, and J. He, Strong decays of the Ξb(6227) as a ΣbK¯ molecule, Phys. Rev. D 99, 014008 (2019), arXiv: 1811.10769
[240]
LHCb CollaborationR., Observation of excited Λb0 baryons, Phys. Rev. Lett. 109, 172003 (2012), arXiv: 1205.3452
[241]
LHCb CollaborationR., Observation of new resonances in the Λ b0π+π system, Phys. Rev. Lett. 123, 152001 (2019), arXiv: 1907.13598
[242]
LHCb CollaborationR. Aaij,., ., Observation of a new baryon state in the Λb0π+π mass spectrum, JHEP 06 (2020) 136, arXiv: 2002.05112
[243]
B. Chen, S.-Q. Luo, X. Liu, and T. Matsuki, Interpretation of the observed Λb(6146)0 and Λb(6152)0 states as 1D bottom baryons, Phys. Rev. D 100, 094032 (2019), arXiv: 1910.03318
[244]
H, Decay properties of P-wave bottom baryons within light-cone sum rules, Eur. Phys. J. C 80, 80 (2020), arXiv: 1909.13575
[245]
K.-L. Wang, Q.-F. Lü, and X.-H. Zhong, Interpretation of the newly observed Λb(6146)0 and Λb(6152)0 states in a chiral quark model, Phys. Rev. D 100, 114035 (2019), arXiv: 1908.04622
[246]
K.-L. Wang, Q.-F. Lü, and X.-H. Zhong, Interpretation of the newly observed Σb(6097)± and Ξb(6227) states as the P-wave bottom baryons, Phys. Rev. D 99, 014011 (2019), arXiv: 1810.02205
[247]
Q. Mao, H.-X. Chen, and H.-M. Yang, Identifying the Λb(6146)0 and Λb(6152)0 as D-wave bottom baryons, Universe 6, 86 (2020), arXiv: 2002.11435
[248]
CDF CollaborationT., Observation of the heavy baryons Σb and Σb*, Phys. Rev. Lett. 99, 202001 (2007), arXiv: 0706.3868
[249]
LHCb CollaborationR., Observation of two resonances in the Λ b0π± systems and precise measurement of Σb± and Σb properties, Phys. Rev. Lett. 122, 012001 (2019), arXiv: 1809.07752
[250]
CMS CollaborationS., Observation of a new Ξb baryon, Phys. Rev. Lett. 108, 252002 (2012), arXiv: 1204.5955
[251]
LHCb CollaborationR., Observation of two new Ξb baryon resonances, Phys. Rev. Lett. 114, 062004 (2015), arXiv: 1411.4849
[252]
LHCb CollaborationR., Observation of a new Ξb resonance, Phys. Rev. Lett. 121, 072002 (2018), arXiv: 1805.09418
[253]
LHCb CollaborationR., Observation of a new Ξb0 state, Phys. Rev. D 103, 012004 (2021), arXiv: 2010.14485
[254]
LHCb CollaborationR., Observation of two new excited Ξb0 states decaying to Λb0Kπ+, Phys. Rev. Lett. 128, 162001 (2022), arXiv: 2110.04497
[255]
CMSCollaborationA, Observation of a new excited beauty strange baryon decaying to Ξbπ+π, Phys. Rev. Lett. 126, 252003 (2021), arXiv: 2102.04524
[256]
LHCb CollaborationR., First observation of excited Ωb states, Phys. Rev. Lett. 124, 082002 (2020), arXiv: 2001.00851
[257]
LHCb CollaborationR., Observation of an excited Bc+ state, Phys. Rev. Lett. 122, 232001 (2019), arXiv: 1904.00081
[258]
LHCb CollaborationR., Observation of the doubly charmed baryon Ξ cc ++, Phys. Rev. Lett. 119, 112001 (2017), arXiv: 1707.01621
[259]
LHCb CollaborationR., Near-threshold DD¯ spectroscopy and observation of a new charmonium state, J. High Energy Phys. 07, 035 (2019), arXiv: 1903.12240
[260]
T. Barnes, S. Godfrey, and E. S. Swanson, Higher charmonia, Phys. Rev. D 72, 054026 (2005), arXiv: hep-ph/0505002
[261]
CMSCollaborationA, Observation of two excited Bc+ states and measurement of the B c+(2S) mass in pp collisions at s= 13 TeV, Phys. Rev. Lett. 122, 132001 (2019), arXiv: 1902.00571
[262]
S. N. Gupta and J. M. Johnson, Bc spectroscopy in a quantum chromodynamic potential model, Phys. Rev. D 53, 312 (1996), arXiv: hep-ph/9511267
[263]
Y. -Q. Chen and Y. -P. Kuang, Improved QCD motivated heavy quark potentials with explicit Λ M S¯ dependence, Phys. Rev. D 46, 1165 (1992), Erratum: Phys. Rev. D 47, 350 (1993)
[264]
R, Finding Bc(3S) states via their strong decays, Phys. Lett. B 816, 136277 (2021), arXiv: 2101.01958
[265]
M. Chen, L. Chang, and Y.-X. Liu, Bc meson spectrum via Dyson−Schwinger equation and Bethe−Salpeter equation approach, Phys. Rev. D 101, 056002 (2020), arXiv: 2001.00161
[266]
L, Can the hyperfine mass splitting formula in heavy quarkonia be applied to the Bc system? Few Body Syst. 62, 4 (2021), arXiv: 1912.08339
[267]
L. Chang, M. Chen, and Y.-X. Liu, Excited Bc states via the Dyson−Schwinger equation approach of QCD, Phys. Rev. D 102, 074010 (2020), arXiv: 1904.00399
[268]
C.-H. Chang, C. Driouichi, P. Eerola, and X. G. Wu, BCVEGPY: An event generator for hadronic production of the Bc meson, Comput. Phys. Commun. 159, 192 (2004), arXiv: hep-ph/0309120
[269]
C.-H. Chang, J.-X. Wang, and X.-G. Wu, BCVEGPY2.0: An upgraded version of the generator BCVEGPY with an addition of hadroproduction of the P-wave Bc states, Comput. Phys. Commun. 174, 241 (2006), arXiv: hep-ph/0504017
[270]
F.-S. Yu, Role of decay in the search for double-charm baryons, Sci. China Phys. Mech. Astron. 63, 221065 (2020), arXiv: 1912.10253
[271]
X.-H. Hu and Y.-J. Shi, Light-cone sum rules analysis of ΞQ Q′ →ΣQ′ weak decays, Eur. Phys. J. C 80, 56 (2020), arXiv: 1910.07909
[272]
LHCb CollaborationR., First observation of the doubly charmed baryon decay Ξcc++→ Ξc+π+, Phys. Rev. Lett. 121, 162002 (2018), arXiv: 1807.01919
[273]
LHCb CollaborationR., Precision measurement of the Ξcc++ mass, J. High Energy Phys. 02, 049 (2020), arXiv: 1911.08594
[274]
LHCb CollaborationR., Search for the doubly charmed baryon Ξcc+, Sci. China Phys. Mech. Astron. 63, 221062 (2020), arXiv: 1909.12273
[275]
LHCb CollaborationR., Search for the doubly charmed baryon Ω cc +, Sci. China Phys. Mech. Astron. 64, 101062 (2021), arXiv: 2105.06841
[276]
LHCb CollaborationR., Search for the doubly charmed baryon Ξcc++ in the Ξc+ ππ+ final state, J. High Energy Phys. 12, 107 (2021), arXiv: 2109.07292
[277]
H.-Z. Tong and H.-S. Li, The chiral corrections to the masses of the doubly heavy baryons, arXiv: 2110.01380 (2021)
[278]
H.-S. Li and W.-L. Yang, Spin-3/2 doubly charmed baryon contribution to the magnetic moments of the spin-1/2 doubly charmed baryons, Phys. Rev. D 103, 056024 (2021), arXiv: 2012.14596
[279]
J, Ωcc resonances with negative parity in the chiral constituent quark model, Phys. Rev. D 104, 094008 (2021), arXiv: 2110.06408
[280]
M.-S. Liu, Q.-F. Lü, and X.-H. Zhong, Triply charmed and bottom baryons in a constituent quark model, Phys. Rev. D 101, 074031 (2020), arXiv: 1912.11805
[281]
J, Ξbb and Ξbbb molecular states, Chin. Phys. C 44 (2020) 064101, arXiv: 1912.04517
[282]
Q.-X. Yu, J. M. Dias, W.-H. Liang, and E. Oset, Molecular Ξbc states from meson−baryon interaction, Eur. Phys. J. C 79, 1025 (2019), arXiv: 1909.13449
[283]
Q. Li, C.-H. Chang, S.-X. Qin, and G.-L. Wang, Mass spectra and wave functions of the doubly heavy baryons with JP = 1+ heavy diquark cores, Chin. Phys. C 44, 013102 (2020), arXiv: 1903.02282
[284]
H.-X.Chen, ., Establishing low-lying doubly charmed baryons, Phys. Rev. D 96, 031501 (2017), Erratum: Phys. Rev. D 96, 119902 (2017), arXiv: 1707.01779
[285]
C.-Y. Wang, C. Meng, Y.-Q. Ma, and K.-T. Chao, NLO effects for doubly heavy baryons in QCD sum rules, Phys. Rev. D 99, 014018 (2019), arXiv: 1708.04563
[286]
T. Guo, J. Li, J. Zhao, and L. He, Mass spectra of doubly heavy tetraquarks in an improved chromomagnetic interaction model, arXiv: 2108.10462 (2021)
[287]
Q, Inclusive approach to hunt for the beauty-charmed baryons Ξbc, Phys. Rev. D 105, L031902 (2022), arXiv: 2108.06716
[288]
D.Gao, ., Masses of doubly heavy tetraquark states with isospin = 1/2 and 1 and spin-parity 1, arXiv: 2007.15213 (2020)
[289]
X.-Z. Weng, X.-L. Chen, and W.-Z. Deng, Masses of doubly heavy-quark baryons in an extended chromomagnetic model, Phys. Rev. D 97, 054008 (2018), arXiv: 1801.08644
[290]
J, Weak decays of bottom-charm baryons: Bbc →BbP, Eur. Phys. J. C 81, 539 (2021), arXiv: 2102.00961
[291]
D.-M. Li, X.-R. Zhang, Y. Xing, and J. Xu, Weak decays of doubly heavy baryons: Four-body nonleptonic decay channels, Eur. Phys. J. Plus 136, 772 (2021), arXiv: 2101.12574
[292]
J, Rescattering mechanism of weak decays of double-charm baryons, Chin. Phys. C 45, 053105 (2021), arXiv: 2101.12019
[293]
Z.-G. Wang, Analysis of the triply-heavy baryon states with the QCD sum rules, AAPPS Bull. 31, 5 (2021), arXiv: 2010.08939
[294]
L.-Y. Xiao, Q.-F. Lü, and S.-L. Zhu, Strong decays of the 1P and 2D doubly charmed states, Phys. Rev. D 97, 074005 (2018), arXiv: 1712.07295
[295]
Y.-J. Shi, W. Wang, and Z.-X. Zhao, QCD sum rules analysis of weak decays of doubly-heavy baryons, Eur. Phys. J. C 80, 568 (2020), arXiv: 1902.01092
[296]
H.-Y. Cheng and F. Xu, Lifetimes of doubly heavy baryons Bbb and Bbc, Phys. Rev. D 99, 073006 (2019), arXiv: 1903.08148
[297]
Q.-A. Zhang, Weak decays of doubly heavy baryons: W-exchange, Eur. Phys. J. C 78, 1024 (2018), arXiv: 1811.02199
[298]
L.-J. Jiang, B. He, and R.-H. Li, Weak decays of doubly heavy baryons: Bcc →BcV, Eur. Phys. J. C 78, 961 (2018), arXiv: 1810.00541
[299]
Z.-X. Zhao, Weak decays of heavy baryons in the light-front approach, Chin. Phys. C 42, 093101 (2018), arXiv: 1803.02292
[300]
W. Wang and J. Xu, Weak decays of triply heavy baryons, Phys. Rev. D 97, 093007 (2018), arXiv: 1803.01476
[301]
E, Suggested search for doubly charmed baryons of JP = 3/2+ via their electromagnetic transitions, Phys. Rev. D 97, 034018 (2018), arXiv: 1712.03615
[302]
Y.-J. Shi, W. Wang, Y. Xing, and J. Xu, Weak decays of doubly heavy baryons: Multi-body decay channels, Eur. Phys. J. C 78, 56 (2018), arXiv: 1712.03830
[303]
L. Meng, H.-S. Li, Z.-W. Liu, and S.-L. Zhu, Magnetic moments of the spin-3/2 doubly heavy baryons, Eur. Phys. J. C 77, 869 (2017), arXiv: 1710.08283
[304]
C. Q. Geng, Y. K. Hsiao, C.-W. Liu, and T.-H. Tsai, Charmed baryon weak decays with SU(3) flavor symmetry, J. High Energy Phys. 11, 147 (2017), arXiv: 1709.00808
[305]
Q.-F. Lü, K.-L. Wang, L.-Y. Xiao, and X.-H. Zhong, Mass spectra and radiative transitions of doubly heavy baryons in a relativized quark model, Phys. Rev. D 96, 114006 (2017), arXiv: 1708.04468
[306]
L, Strong and radiative decays of the doubly charmed baryons, Phys. Rev. D 96, 094005 (2017), arXiv: 1708.04384
[307]
H.-S. Li, L. Meng, Z.-W. Liu, and S.-L. Zhu, Radiative decays of the doubly charmed baryons in chiral perturbation theory, Phys. Lett. B 777, 169 (2018), arXiv: 1708.03620
[308]
W. Wang, Z.-P. Xing, and J. Xu, Weak decays of doubly heavy baryons: SU(3) analysis, Eur. Phys. J. C 77, 800 (2017), arXiv: 1707.06570
[309]
W. Wang, F.-S. Yu, and Z.-X. Zhao, Weak decays of doubly heavy baryons: The 1/2 → 1/2 case, Eur. Phys. J. C 77, 781 (2017), arXiv: 1707.02834
[310]
F, Discovery potentials of doubly charmed baryons, Chin. Phys. C 42, 051001 (2018), arXiv: 1703.09086
[311]
G.-Y. Chen, W.-S. Huo, and Q. Zhao, Identifying the structure of near-threshold states from the line shape, Chin. Phys. C 39, 093101 (2015), arXiv: 1309.2859
[312]
Z.-Y. Wang, J.-J. Qi, X.-H. Guo, and C. Wang, X(3872) as a molecular D D¯∗ state in the Bethe−Salpeter equation approach, Phys. Rev. D 97, 016015 (2018), arXiv: 1710.07424
[313]
J, Double-heavy tetraquark states with heavy diquark−antiquark symmetry, Chin. Phys. C 45, 043102 (2021), arXiv: 2008.00737
[314]
Q.-F. Lü, D.-Y. Chen, and Y.-B. Dong, Masses of doubly heavy tetraquarks T QQ′ in a relativized quark model, Phys. Rev. D 102, 034012 (2020), arXiv: 2006.08087
[315]
Y.-J. Shi, W. Wang, Z.-X. Zhao, and U.-G. Meiβner, Towards a heavy diquark effective theory for weak decays of doubly heavy baryons, Eur. Phys. J. C 80, 398 (2020), arXiv: 2002.02785
[316]
H, Exotic pentaquark states with the qqQQQ¯ configuration, Phys. Rev. D 100, 056004 (2019), arXiv: 1905.07858
[317]
L. Meng and S.-L. Zhu, Light pseudoscalar meson and doubly charmed baryon scattering lengths with heavy diquark-antiquark symmetry, Phys. Rev. D 100, 014006 (2019), arXiv: 1811.07320
[318]
Q, Surveying exotic pentaquarks with the typical QQqqq¯ configuration, Phys. Rev. C 98, 045204 (2018), arXiv: 1801.04557
[319]
K, Triply heavy tetraquark states with the QQQq¯ configuration, Eur. Phys. J. A 53, 5 (2017), arXiv: 1609.06117
[320]
X.-K. Dong, F.-K. Guo, B. S. Zou. Near threshold structures and hadronic molecules. Few Body Syst., 2021, 62: 61
CrossRef ADS Google scholar
[321]
Z.-M. Ding, H.-Y. Jiang, D. Song, and J. He, Hidden and doubly heavy molecular states from interactions D(s ) (∗)D¯s(∗ )/B (s)(∗ )B¯s(∗ ) and D( s)(∗ )Ds(∗)/B(s ) (∗)B s(∗), Eur. Phys. J. C 81, 732 (2021), arXiv: 2107.00855
[322]
X. Chen. The genuine resonance of full-charm tetraquarks. Universe, 2021, 7: 155
CrossRef ADS Google scholar
[323]
G. Yang, J. Ping, and J. Segovia, QQ tetraquarks in the chiral quark model, Phys. Rev. D 102, 054023 (2020), arXiv: 2007.05190
[324]
Belle CollaborationS., Observation of a narrow charmoniumlike state in exclusive B±K±π+πJ/ψ decays, Phys. Rev. Lett. 91, 262001 (2003), arXiv: hep-ex/0309032
[325]
LHCb CollaborationR., Quantum numbers of the X(3872) state and orbital angular momentum in its ρ0 J/ψ decays, Phys. Rev. D 92, 011102(R) (2015), arXiv: 1504.06339
[326]
Particle Data Group P. A. Zyla,.. . Review of particle physics. Prog. Theor. Exp. Phys., 2020, 2020: 083C01
CrossRef ADS Google scholar
[327]
LHCb CollaborationR., Study of the line shape of the χc1(3872) state, Phys. Rev. D 102, 092005 (2020), arXiv: 2005.13419
[328]
LHCb CollaborationR., Study of the ψ2(3823) and χc1(3872) states in B+→( J/ ψπ+π) K+ decays, J. High Energy Phys. 08, 123 (2020), arXiv: 2005.13422
[329]
LHCb CollaborationR., Evidence for the decay X(3872) → ψ(2S)γ, Nucl. Phys. B 886, 665 (2014), arXiv: 1404.0275
[330]
LHCb CollaborationR., Observation of sizeable ω contribution to χc1→π+πJ/ψ decays, arXiv: 2204.12597 (submitted to Phys. Rev. Lett.)
[331]
Z.-H. Zhang and F.-K. Guo, D±D∗∓ hadronic atom as a key to revealing the X(3872) mystery, Phys. Rev. Lett. 127, 012002 (2021), arXiv: 2012.08281
[332]
L. Meng, G.-J. Wang, B. Wang, and S.-L. Zhu, Revisit the isospin violating decays of X(3872), Phys. Rev. D 104, 094003 (2021), arXiv: 2109.01333
[333]
L. He, K. Ingles, E. Braaten, J. Jiang. Triangle singularities in the production of X(3872). PoS CHARM, 2021, 2020: 027
CrossRef ADS Google scholar
[334]
L. Maiani, F. Piccinini, A. D. Polosa, and V. Riquer, Diquark−antidiquarks with hidden or open charm and the nature of X(3872), Phys. Rev. D 71, 014028 (2005), arXiv: hep-ph/0412098
[335]
Z.-G. Wang and T. Huang, Analysis of the X(3872), Zc(3900) and Zc(3885) as axial-vector tetraquark states with QCD sum rules, Phys. Rev. D 89, 054019 (2014), arXiv: 1310.2422
[336]
W. Chen and S.-L. Zhu, Vector and axial-vector charmoniumlike states, Phys. Rev. D 83, 034010 (2011), arXiv: 1010.3397
[337]
B. A. Li, Is X(3872) a possible candidate of as a hybrid meson, Phys. Lett. B 605, 306 (2005), arXiv: hep-ph/0410264
[338]
F.-K. Guo, C. Hanhart, Q. Wang, and Q. Zhao, Could the near-threshold XYZ states be simply kinematic effects? Phys. Rev. D 91, 051504 (2015), arXiv: 1411.5584
[339]
F, Production of the X(3872) in charmonia radiative decays, Phys. Lett. B 725, 127 (2013), arXiv: 1306.3096
[340]
C. Meng and K.-T. Chao, Decays of the X(3872) and χc1(2P) charmonium state, Phys. Rev. D 75, 114002 (2007), arXiv: hep-ph/0703205
[341]
F, Interplay of quark and meson degrees of freedom in near-threshold states: A practical parametrization for line shapes, Phys. Rev. D 93 (2016) 074031, arXiv: 1602.00940
[342]
S, Exotic tetraquark states with the qqQ¯ Q¯ configuration, Eur. Phys. J. C 77, 709 (2017), arXiv: 1707.01180
[343]
X.-W. Kang and J. A. Oller, Different pole structures in line shapes of the X(3872), Eur. Phys. J. C 77, 399 (2017), arXiv: 1612.08420
[344]
C. Z. Yuan, P. Wang, and X. H. Mo, The Y(4260) as an ωχc1 molecular state, Phys. Lett. B 634, 399 (2006), arXiv: hep-ph/0511107
[345]
Y. Cui, X.-L. Chen, W.-Z. Deng, and S.-L. Zhu, Possible heavy tetraquarks qQq¯ Q¯,qq QQ¯ and qQ QQ¯∗, High Energy Phys. Nucl. Phys. 31, 7 (2007), arXiv: hep-ph/0607226
[346]
C. Meng, Y.-J. Gao, and K.-T. Chao, Bχc1(1P, 2P)K decays in QCD factorization and X(3872), Phys. Rev. D 87, 074035 (2013), arXiv: hep-ph/0506222
[347]
J.-R. Zhang and M.-Q. Huang, {Qq¯}{ Q¯(′)q} molecular states, Phys. Rev. D 80, 056004 (2009), arXiv: 0906.0090
[348]
O. Zhang, C. Meng, and H. Q. Zheng, Ambiversion of X(3872), Phys. Lett. B 680, 453 (2009), arXiv: 0901.1553
[349]
C. Meng, H. Han, and K.-T. Chao, X(3872) and its production at hadron colliders, Phys. Rev. D 96, 074014 (2017), arXiv: 1304.6710
[350]
G.-J. Ding, J.-F. Liu, and M.-L. Yan, Dynamics of hadronic molecule in one-boson exchange approach and possible heavy flavor molecules, Phys. Rev. D 79, 054005 (2009), arXiv: 0901.0426
[351]
H, QCD sum rule study of hidden-charm pentaquarks, Eur. Phys. J. C 76, 572 (2016), arXiv: 1602.02433
[352]
N. Li and S.-L. Zhu, Isospin breaking, coupled-channel effects and diagnosis of X(3872), Phys. Rev. D 86, 074022 (2012), arXiv: 1207.3954
[353]
M, Heavy-quark spin and avor symmetry partners of the X(3872) revisited: What can we learn from the one boson exchange model? Phys. Rev. D 99, 094018 (2019), arXiv: 1902.03044
[354]
W, QCD sum-rule interpretation of X(3872) with JPC = 1++ mixtures of hybrid charmonium and D¯D∗ molecular currents, Phys. Rev. D 88 (2013) 045027, arXiv: 1305.0244
[355]
X.-K. Dong, F.-K. Guo, and B.-S. Zou, A survey of heavy-antiheavy hadronic molecules, Prog. Phys. 41 (2021) 65, arXiv: 2101.01021
[356]
F, What can radiative decays of the X(3872) teach us about its nature? Phys. Lett. B 742, 394 (2015), arXiv: 1410.6712
[357]
F.-K. Guo, Novel method for precisely measuring the X(3872) mass, Phys. Rev. Lett. 122, 202002 (2019), arXiv: 1902.11221
[358]
L. Zhao, L. Ma, and S.-L. Zhu, Spin-orbit force, recoil corrections, and possible B B¯∗ and D D¯∗ molecular states, Phys. Rev. D 89, 094026 (2014), arXiv: 1403.4043
[359]
Y.-R. Liu and Z.-Y. Zhang, X(3872) and the bound state problem of D0D¯∗0( D ¯0D∗0) in a chiral quark model, Phys. Rev. C 79, 035206 (2009), arXiv: 0805.1616
[360]
H, Is Zb(10610) a molecular state? J. High Energy Phys. 04, 056 (2012), arXiv: 1202.2178
[361]
L. Geng, J. Lu, and M. P. Valderrama, Scale invariance in heavy hadron molecules, Phys. Rev. D 97, 094036 (2018), arXiv: 1704.06123
[362]
C, Refined analysis on the X(3872) resonance, Phys. Rev. D 92, 034020 (2015), arXiv: 1411.3106
[363]
R. Chen, A. Hosaka, and X. Liu, Heavy molecules and one-σ/ω-exchange model, Phys. Rev. D 96, 116012 (2017), arXiv: 1707.08306
[364]
L, The molecular systems composed of the charmed mesons in the HS¯ + h.c. doublet, Eur. Phys. J. C 70, 183 (2010), arXiv: 1005.0994
[365]
H. X. Zhang, M. Zhang, and Z. Y. Zhang, Q qQ ¯q¯′ states in chiral SU(3) quark model, Chin. Phys. Lett. 24, 2533 (2007), arXiv: 0705.2470
[366]
T. Wang, G.-L. Wang, Y. Jiang, and W.-L. Ju, Electromagnetic decay of X(3872) as the 11D2(2−+) charmonium, J. Phys. G 40, 035003 (2013), arXiv: 1205.5725
[367]
W. Wang and Q. Zhao, Decipher the short-distance component of X(3872) in Bc decays, Phys. Lett. B 755, 261 (2016), arXiv: 1512.03123
[368]
Y.-C. Yang, Z.-Y. Tan, J. Ping, and H.-S. Zong, Possible D(∗)D ¯(∗ )andB(∗ )B¯(∗) molecular states in the extended constituent quark models, Eur. Phys. J. C 77, 575 (2017), arXiv: 1703.09718
[369]
Z.-R. Liang, X.-Y. Wu, and D.-L. Yao, Hunting for states in the recent LHCb di-J/ψ invariant mass spectrum, Phys. Rev. D 104, 034034 (2021), arXiv: 2104.08589
[370]
B.-X. Sun, D.-M. Wan, and S.-Y. Zhao, The D D¯∗ interaction with isospin zero in an extended hidden gauge symmetry approach, Chin. Phys. C 42, 053105 (2018), arXiv: 1709.07263
[371]
S.-H. Yu, B.-K. Wang, X.-L. Chen, and W.-Z. Deng, Study the Heavy molecular states in quark model with meson exchange interaction, Chin. Phys. C 36, 25 (2012), arXiv: 1104.4535
[372]
H.-Y. Cao and H.-Q. Zhou, Decay widths of 3PJ charmonium to DD, DD*, D*D* and corresponding mass shifts of 3PJ charmonium, Eur. Phys. J. C 80, 975 (2020), arXiv: 2008.11324
[373]
C.-F. Qiao and L. Tang, Molecular states with hidden charm and strange in QCD sum rules, Europhys. Lett. 107, 31001 (2014), arXiv: 1309.7596
[374]
Belle CollaborationS., Observation of a resonance-like structure in the π±ψ' mass distribution in exclusive BKπ±ψ' decays, Phys. Rev. Lett. 100, 142001 (2008), arXiv: 0708.1790
[375]
LHCb Collaboration, T. Gershon, Exotic hadron naming convention, arXiv: 2206.15233 (2022)
[376]
LHCb CollaborationR., Observation of the resonant character of the Z(4430) state, Phys. Rev. Lett. 112, 222002 (2014), arXiv: 1404.1903
[377]
BESIII collaborationM., Observation of a charged charmoniumlike structure in e+e→ π+πJ/ψ at s = 4.26 GeV, Phys. Rev. Lett. 110, 252001 (2013), arXiv: 1303.5949
[378]
Q. Wu and D.-Y. Chen, Exploration of the hidden charm decays of Zcs(3985), Phys. Rev. D 104, 074011 (2021), arXiv: 2108.06700
[379]
F.-L. Wang, X.-D. Yang, R. Chen, and X. Liu, Correlation of the hidden-charm molecular tetraquarks and the charmoniumlike structures existing in the BXYZ + K process, Phys. Rev. D 104, 094010 (2021), arXiv: 2103.04698
[380]
Y. Zhang, E. Wang, D.-M. Li, and Y.-X. Li, Search for the D∗D¯∗ molecular state Zc(4000) in the reaction B → J/ψρ0K, Chin. Phys. C 44, 093107 (2020), arXiv: 2001.06624
[381]
L.-Y. Xiao, G.-J. Wang, and S.-L. Zhu, Hidden-charm strong decays of the Zc states, Phys. Rev. D 101, 054001 (2020), arXiv: 1912.12781
[382]
J. He and D.-Y. Chen, Interpretation of Y(4390) as an isoscalar partner of Z(4430) from D*(2010)D¯1(2420) interaction, Eur. Phys. J. C 77, 398 (2017), arXiv: 1704.08776
[383]
W. Chen, T. G. Steele, H.-X. Chen, and S.-L. Zhu, Mass spectra of Zc and Zb exotic states as hadron molecules, Phys. Rev. D 92, 054002 (2015), arXiv: 1505.05619
[384]
W. Chen, T. G. Steele, H.-X. Chen, and S.-L. Zhu, Zc (4200)+ decay width as a charmonium-like tetraquark state, Eur. Phys. J. C 75, 358 (2015), arXiv: 1501.03863
[385]
X, Resolving the puzzling decay patterns of charged Zc and Zb states, Phys. Rev. D 90, 074020 (2014), arXiv: 1407.3684
[386]
L. Ma, X.-H. Liu, X. Liu, and S.-L. Zhu, Strong decays of the XYZ states, Phys. Rev. D 91, 034032 (2015), arXiv: 1406.6879
[387]
Z.-G. Wang, Analysis of the Z(4430) as the first radial excitation of the Zc(3900), Commun. Theor. Phys. 63, 325 (2015), arXiv: 1405.3581
[388]
L. Ma, X.-H. Liu, X. Liu, and S.-L. Zhu, Exotic four quark matter: Z1(4475), Phys. Rev. D 90, 037502 (2014), arXiv: 1404.3450
[389]
H.-W. Ke, Z.-T. Wei, and X.-Q. Li, Is Zc(3900) a molecular state, Eur. Phys. J. C 73, 2561 (2013), arXiv: 1307.2414
[390]
L. Zhao, W.-Z. Deng, and S.-L. Zhu, Hidden-Charm Tetraquarks and charged Zc states, Phys. Rev. D 90, 094031 (2014), arXiv: 1408.3924
[391]
Q, Zc(3900) as a DD¯* molecule from the pole counting rule, Phys. Rev. D 94, 114019 (2016), arXiv: 1604.08836
[392]
L, Strong decays of higher charmonium states into open-charm meson pairs, Phys. Rev. D 98, 016010 (2018), arXiv: 1801.08791
[393]
Z.-G. Wang, Analysis of the hidden-charm tetraquark mass spectrum with the QCD sum rules, Phys. Rev. D 102, 014018 (2020), arXiv: 1908.07914
[394]
J. He and P.-L. Lü, D ∗D¯1(2420) and DD¯'*(2600) interactions and the charged charmonium-like state Z(4430), Chin. Phys. C 40, 043101 (2016), arXiv: 1410.8645
[395]
Y.-R. Liu and Z.-Y. Zhang, A chiral quark model study of Z+(4430) in the molecular picture, arXiv: 0908.1734 (2009)
[396]
CDF CollaborationT., Evidence for a narrow near-threshold structure in the J/ψϕ mass spectrum in B+ → J/ ψϕK+ decays, Phys. Rev. Lett. 102, 242002 (2009), arXiv: 0903.2229
[397]
CDF CollaborationT., Observation of the Y(4140) structure in the J/ψϕ mass spectrum in B± →J/ψϕK± decays, Mod. Phys. Lett. A 32, 1750139 (2017), arXiv: 1101.6058
[398]
CMS CollaborationS., Observation of a peaking structure in the J/ψϕ mass spectrum from B± →J/ψϕK± decays, Phys. Lett. B 734, 261 (2014), arXiv: 1309.6920
[399]
B, Possible heavy molecular states composed of a pair of excited charm-strange mesons, Chin. Phys. C 35, 113 (2011), arXiv: 1004.4032
[400]
Q, Compact sssc pentaquark states predicted by a quark model, Phys. Lett. B 798, 135028 (2019), arXiv: 1907.00144
[401]
LHCb CollaborationR., Observation of exotic J/ψϕ structures from amplitude analysis of B± →J/ψϕK± decays, Phys. Rev. Lett. 118, 022003 (2017), arXiv: 1606.07895
[402]
Q.-F. Cao, H.-R. Qi, Y.-F. Wang, and H.-Q. Zheng, Discussions on the line-shape of the X(4660) resonance, Phys. Rev. D 100, 054040 (2019), arXiv: 1906.00356
[403]
W, Canonical interpretation of the X(4140) state within the 3P0 model, Eur. Phys. J. C 80, 626 (2020), arXiv: 1909.13099
[404]
F.-L. Wang and X. Liu, Exotic double-charm molecular states with hidden or open strangeness and around 4.5−4.7 GeV, Phys. Rev. D 102, 094006 (2020), arXiv: 2008.13484
[405]
D.-Y. Chen, C.-J. Xiao. Strong two-body decays of the S-wave Ds+ Ds− molecule state. Nucl. Phys. A, 2016, 947: 26
CrossRef ADS Google scholar
[406]
Q.-F. Lü and Y.-B. Dong, X(4140), X(4274), X(4500), and X(4700) in the relativized quark model, Phys. Rev. D 94, 074007 (2016), arXiv: 1607.05570
[407]
J, X(4140), X(4270), X(4500) and X(4700) and their cscs¯ tetraquark partners, Phys. Rev. D 94, 094031 (2016), arXiv: 1608.07900
[408]
X.-H. Liu, How to understand the underlying structures of X(4140), X(4274), X(4500) and X(4700), Phys. Lett. B 766, 117 (2017), arXiv: 1607.01385
[409]
Z.-G. Wang, Reanalysis of the X(3915), X(4500) and X(4700) with QCD sum rules, Eur. Phys. J. A 53, 19 (2017), arXiv: 1607.04840
[410]
Z.-G. Wang, Reanalysis of the Y(3940), Y(4140), Zc(4020), Zc(4025) and Zb(10650) as molecular states with QCD sum rules, Eur. Phys. J. C 74, 2963 (2014), arXiv: 1403.0810
[411]
J.-R. Zhang and M.-Q. Huang, ( Qs ¯)(∗)(Q¯s)(∗) molecular states from QCD sum rules: A view on Y(4140), J. Phys. G 37, 025005 (2010), arXiv: 0905.4178
[412]
X. Liu, The hidden charm decay of Y(4140) by the rescattering mechanism, Phys. Lett. B 680, 137 (2009), arXiv: 0904.0136
[413]
H, Understanding the internal structures of the X(4140), X(4274), X(4500) and X(4700), Eur. Phys. J. C 77, 160 (2017), arXiv: 1606.03179
[414]
Z.-G. Wang, Analysis of the X(4350) as a scalar c ¯c and Ds∗D¯s∗ mixing state with QCD sum rules, Phys. Lett. B 690, 403 (2010), arXiv: 0912.4626
[415]
E. Wang, J.-J. Xie, L.-S. Geng, and E. Oset, Analysis of the B+ → J/ ψϕK+ data at low J/ψϕ invariant masses and the X(4140) and X(4160) resonances, Phys. Rev. D 97, 014017 (2018), arXiv: 1710.02061
[416]
J. He and P.-L. Lü, Understanding Y(4274) and X(4320) in the J/ ψϕ invariant mass spectrum, Nucl. Phys. A 919, 1 (2013), arXiv: 1309.6718
[417]
J. Ferretti, E. Santopinto, M. N. Anwar, and Y. Lu, Quark structure of the χc(3P) and X(4274) resonances and their strong and radiative decays, Eur. Phys. J. C 80, 464 (2020), arXiv: 2002.09401
[418]
C. Deng, H. Chen, and J. Ping, Can the state Y(4626) be a P-wave tetraquark state [cs][c ¯s¯]? Phys. Rev. D 101, 054039 (2020), arXiv: 1912.07174
[419]
Z.-G. Wang, X.-S. Yang, and Q. Xin, Tetraquark molecular states in the Ds D¯s1 and Ds∗D¯s0∗ mass spectrum, Int. J. Mod. Phys. A 36, 2150202 (2021), arXiv: 2106.12400
[420]
P.-P. Shi, F. Huang, and W.-L. Wang, Hidden charm tetraquark states in a diquark model, Phys. Rev. D 103, 094038 (2021), arXiv: 2105.02397
[421]
X, The explanation of some exotic states in the cs tetraquark system, Eur. Phys. J. C 81, 950 (2021), arXiv: 2103.12425
[422]
Y.-H. Ge, X.-H. Liu, and H.-W. Ke, Threshold effects as the origin of Zcs(4000), Zcs(4220) and X(4700) observed in B+ → J/ ψϕK+, Eur. Phys. J. C 81, 854 (2021), arXiv: 2103.05282
[423]
X.-D. Yang, F.-L. Wang, Z.-W. Liu, and X. Liu, Newly observed X(4630): A new charmoniumlike molecule, Eur. Phys. J. C 81, 807 (2021), arXiv: 2103.03127
[424]
Z, Strange molecular partners of the Zc(3900) and Zc(4020), Phys. Rev. D 103, 074029 (2021), arXiv: 2011.08725
[425]
Q.-N. Wang, W. Chen, and H.-X. Chen, Exotic D¯s(∗ )D( ∗) molecular states and scqc¯ tetraquark states with JP = 0+, 1+, 2+, Chin. Phys. C 45, 093102 (2021), arXiv: 2011.10495
[426]
D.-Y. Chen, X. Liu, and T. Matsuki, Predictions of charged charmoniumlike structures with hidden-charm and open-strange channels, Phys. Rev. Lett. 110, 232001 (2013), arXiv: 1303.6842
[427]
X.Jin, ., Strange hidden-charm tetraquarks in constituent quark models, arXiv: 2011.12230 (2020)
[428]
Z. Liu. Four-quark matter — a new era of spectroscopy. AAPPS Bull., 2021, 31: 8
CrossRef ADS Google scholar
[429]
LHCb CollaborationR., Observation of new resonances decaying to J/ψ K+ and J/ψϕ, Phys. Rev. Lett. 127, 082001 (2021), arXiv: 2103.01803
[430]
BESIII CollaborationM., Observation of a near-threshold structure in the K+ recoil-mass spectra in e+eK+(Ds− D∗ 0+D s∗ −D0), Phys. Rev. Lett. 126, 102001 (2021), arXiv: 2011.07855
[431]
LHCb CollaborationR. Aaij,., ., TBD, LHCb-PAPER-2022-040 (in preparation)
[432]
X. Cao and Z. Yang, Hunting for the heavy quark spin symmetry partner of Zcs, arXiv: 2110.09760 (2021)
[433]
M.-Y.Duan, ., Revisiting the Zc(4025) structure observed by BESIII in e+e → (D∗D¯∗ )± ,0π ∓, 0 at s = 4.26 GeV, Phys. Rev. D 104, 074030 (2021), arXiv: 2109.00731
[434]
LHCb CollaborationR., Model-independent study of structure in B+D+DK+ decays, Phys. Rev. Lett. 125, 242001 (2020), arXiv: 2009.00025
[435]
LHCb collaborationR., Amplitude analysis of the B+D+DK+ decay, Phys. Rev. D 102, 112003 (2020), arXiv: 2009.00026
[436]
Y.-K.Chen, ., Branching fractions of BDX0, 1(2900) and their implications, Eur. Phys. J. C 81, 71 (2021), arXiv: 2009.01182
[437]
LHCb CollaborationR. Aaij,., ., TBD, LHCb-PAPER-2022-026, arXiv: 2212.02716 (submitted to Phys. Rev. Lett.)
[438]
LHCb CollaborationR. Aaij,., ., TBD, LHCb-PAPER-2022-027, arXiv: 2212.02717 (submitted to Phys. Rev. D)
[439]
Q. -F. Lü, D.-Y. Chen, and Y.-B. Dong, Open charm and bottom tetraquarks in an extended relativized quark model, Phys. Rev. D 102, 074021 (2020), arXiv: 2008.07340
[440]
M.-Z. Liu, J.-J. Xie, and L.-S. Geng, X0(2866) as a D∗K ¯∗ molecular state, Phys. Rev. D 102, 091502 (2020), arXiv: 2008.07389
[441]
M.-W. Hu, X.-Y. Lao, P. Ling, and Q. Wang, X0(2900) and its heavy quark spin partners in molecular picture, Chin. Phys. C 45, 021003 (2021), arXiv: 2008.06894
[442]
Y. Tan and J. Ping, X(2900) in a chiral quark model, Chin. Phys. C 45, 093104 (2021), arXiv: 2010.04045
[443]
X.-K. Dong and B.-S. Zou, Prediction of possible DK1 bound states, Eur. Phys. J. A 57, 139 (2021), arXiv: 2009.11619
[444]
L. R. Dai, J.-J. Xie, and E. Oset, B0→D 0 D¯ 0K0, B +→ D0D¯0K+, and the scalar DD¯ bound state, Eur. Phys. J. C 76, 121 (2016), arXiv: 1512.04048
[445]
J, Spectrum and rearrangement decays of tetraquark states with four different flavors, Phys. Rev. D 101, 114017 (2020), arXiv: 2001.05287
[446]
B.Wang and S.-L. Zhu, How to understand the X(2900)? arXiv: 2107.09275 (2021)
[447]
Z.-G. Wang, Analysis of the X0(2900) as the scalar tetraquark state via the QCD sum rules, Int. J. Mod. Phys. A 35, 2050187 (2020), arXiv: 2008.07833
[448]
Y. Huang, J.-X. Lu, J.-J. Xie, and L.-S. Geng, Strong decays of D¯ ∗K∗ molecules and the newly observed X0,1 states, Eur. Phys. J. C 80, 973 (2020), arXiv: 2008.07959
[449]
X.-G. He, W. Wang, and R. Zhu, Open-charm tetraquark Xc and open-bottom tetraquark Xb, Eur. Phys. J. C 80, 1026 (2020), arXiv: 2008.07145
[450]
H.-X. Chen, W. Chen, R.-R. Dong, and N. Su, X0(2900) and X1(2900): Hadronic molecules or compact tetraquarks, Chin. Phys. Lett. 37, 101201 (2020), arXiv: 2008.07516
[451]
J.-R. Zhang, Open-charm tetraquark candidate: Note on X0(2900), Phys. Rev. D 103, 054019 (2021), arXiv: 2008.07295
[452]
X, Triangle singularity as the origin of X0(2900) and X1(2900) observed in B+D+DK+, Eur. Phys. J. C 80, 1178 (2020), arXiv: 2008.07190
[453]
LHCb CollaborationR., Observation of a resonant structure near the Ds+Ds− threshold in the B +→ Ds +Ds−K+ decay, arXiv: 2210.15153 (submitted to Phys. Rev. Lett.)
[454]
LHCb CollaborationR., First observation of the B +→ Ds +Ds−K+ decay, arXiv: 2211.05034 (submitted to Phys. Rev. D)
[455]
Y. Yang, C. Deng, J. Ping, and T. Goldman, S-wave QQq ¯q¯ state in the constituent quark model, Phys. Rev. D 80, 114023 (2009)
[456]
LHCb CollaborationR., Observation of an exotic narrow doubly charmed tetraquark, Nat. Phys. 18, 751 (2022), arXiv: 2109.01038
[457]
LHCb CollaborationR., Study of the doubly charmed tetraquark T cc +, Nat. Commun. 13, 3351 (2022), arXiv: 2109.01056
[458]
X.-Z.Ling, ., Can we understand the decay width of the T cc + state? arXiv: 2108.00947 (2021)
[459]
L. Meng, G.-J. Wang, B. Wang, and S.-L. Zhu, Probing the long-range structure of the T+cc with the strong and electromagnetic decays, Phys. Rev. D 104, 051502 (2021), arXiv: 2107.14784
[460]
L, Pole analysis on the doubly charmed meson in D0D0π+ mass spectrum, Phys. Rev. D 105, L051507 (2022), arXiv: 2108.06002
[461]
N. Li, Z.-F. Sun, X. Liu, and S.-L. Zhu, Perfect DD* molecular prediction matching the Tcc observation at LHCb, Chin. Phys. Lett. 38, 092001 (2021), arXiv: 2107.13748
[462]
T. Guo, J. Li, J. Zhao, and L. He, Mass spectra and decays of open-heavy tetraquark states, Phys. Rev. D 105, 054018 (2022), arXiv: 2108.06222
[463]
R, Doubly charmed molecular pentaquarks, Phys. Lett. B 822, 136693 (2021), arXiv: 2108.12730
[464]
Y. Xing and Y. Niu, The study of doubly charmed pentaquark ccq¯qq with the SU(3) symmetry, Eur. Phys. J. C 81, 978 (2021), arXiv: 2106.09939
[465]
H.-T. An, K. Chen, Z.-W. Liu, and X. Liu, Heavy flavor pentaquarks with four heavy quarks, Phys. Rev. D 103, 114027 (2021), arXiv: 2106.02837
[466]
C. Deng, H. Chen, and J. Ping, Systematical investigation on the stability of doubly heavy tetraquark states, Eur. Phys. J. A 56, 9 (2020), arXiv: 1811.06462
[467]
Z.-G. Wang and Z.-H. Yan, Analysis of the scalar, axialvector, vector, tensor doubly charmed tetraquark states with QCD sum rules, Eur. Phys. J. C 78, 19 (2018), arXiv: 1710.02810
[468]
M. Karliner and J. L. Rosner, Discovery of the doubly-charmed Ξcc baryon implies a stable bbu¯ d¯ tetraquark, Phys. Rev. Lett. 119, 202001 (2017), arXiv: 1707.07666
[469]
E. J. Eichten and C. Quigg, Heavy-quark symmetry implies stable heavy tetraquark mesons Qi Qjq¯kq¯l, Phys. Rev. Lett. 119, 202002 (2017), arXiv: 1707.09575
[470]
R. Zhu, Hidden charm octet tetraquarks from a diquark−antidiquark model, Phys. Rev. D 94, 054009 (2016), arXiv: 1607.02799
[471]
G. Yang, J. Ping, and J. Segovia, Doubly-heavy tetraquarks, Phys. Rev. D 101, 014001 (2020), arXiv: 1911.00215
[472]
X. Yan, B. Zhong, and R. Zhu, Doubly charmed tetraquarks in a diquark−antidiquark model, Int. J. Mod. Phys. A 33, 1850096 (2018), arXiv: 1804.06761
[473]
Y. Tan, W. Lu, and J. Ping, Systematics of QQq¯q¯ in a chiral constituent quark model, Eur. Phys. J. Plus 135, 716 (2020), arXiv: 2004.02106
[474]
S.-Y. Kong, J.-T. Zhu, D. Song, and J. He, Heavy-strange meson molecules and possible candidates Ds0∗(2317), Ds1(2460), and X0(2900), Phys. Rev. D 104, 094012 (2021), arXiv: 2106.07272
[475]
Y.-K. Hsiao and Y. Yu, New X0,1(2900)-like exotic states in b-baryon decays, Phys. Rev. D 104, 034008 (2021), arXiv: 2104.01296
[476]
H.-X. Chen, Hadronic molecules in B decays, Phys. Rev. D 105, 094003 (2022), arXiv: 2103.08586
[477]
X, Is the existence of a J/ψJ/ψ bound state plausible? Sci. Bull. 66, 2462 (2021), arXiv: 2107.03946
[478]
Z.-G. He, B. A. Kniehl, M. A. Nefedov, V. A. Saleev. Double prompt J /ψ production at hadron colliders. Mod. Phys. Lett. A, 2021, 36: 2130018
CrossRef ADS Google scholar
[479]
A. J. Majarshin, Y.-A. Luo, F. Pan, and J. Segovia, Bosonic algebraic approach applied to the [QQ][Q¯Q¯] tetraquarks, Phys. Rev. D 105, 054024 (2022), arXiv: 2106.01179
[480]
F.-L. Wang, R. Chen, and X. Liu, A new group of doubly charmed molecule with T-doublet charmed meson pair, Phys. Lett. B 835, 137502 (2022), arXiv: 2111.00208
[481]
M, Coupled-channel approach to Tcc+ including three-body effects, Phys. Rev. D 105, 014024 (2022), arXiv: 2110.13765
[482]
X.-Z. Ling, M.-Z. Liu, and L.-S. Geng, Masses and strong decays of open charm hexaquark states Σ c(∗)Σc( ∗), Eur. Phys. J. C 81, 1090 (2021), arXiv: 2110.13792
[483]
V, Effective range expansion for narrow near-threshold resonances, Phys. Lett. B 833, 137290 (2022), arXiv: 2110.07484
[484]
H. Ren, F. Wu, and R. Zhu, Hadronic molecule interpretation of Tc c+ and its beauty partners, Adv. High Energy Phys. 2022, 9103031 (2022), arXiv: 2109.02531
[485]
Z.-G. Wang, Analysis of the axialvector doubly heavy tetraquark states with QCD sum rules, Acta Phys. Polon. B 49, 1781 (2018), arXiv: 1708.04545
[486]
K. Chen, B. Wang, and S.-L. Zhu, Exploration of the doubly charmed molecular pentaquarks, Phys. Rev. D 103, 116017 (2021), arXiv: 2102.05868
[487]
LHCb CollaborationR., Observation of structure in the J/ψ-pair mass spectrum, Sci. Bull. 65, 1983 (2020), arXiv: 2006.16957
[488]
Y. Iwasaki. Is a state c c¯cc¯ found at 6.0 GeV. Phys. Rev. Lett., 1976, 36: 1266
CrossRef ADS Google scholar
[489]
K.-T. Chao, The cc− c¯ c¯(diquark−antidiquark) states in e+e annihilation, Z. Phys. C 7, 317 (1981)
[490]
J.-P. Ader, J.-M. Richard, P. Taxil. Do narrow heavy multiquark states exist. Phys. Rev. D, 1982, 25: 2370
CrossRef ADS Google scholar
[491]
B.-A. Li and K.-F. Liu, J/ψ pair production in hadronic collisions, Phys. Rev. D 29, 426 (1984)
[492]
A. M. Badalian, B. L. Ioffe, A. V. Smilga. Four quark states in heavy quark systems. Nucl. Phys., 1987, 281: B85
CrossRef ADS Google scholar
[493]
A. V. Berezhnoy, A. V. Luchinsky, and A. A. Novoselov, Heavy tetraquarks production at the LHC, Phys. Rev. D 86, 034004 (2012), arXiv: 1111.1867
[494]
J.Wu, ., Heavy-flavored tetraquark states with the QQQ ¯Q¯ configuration, Phys. Rev. D 97, 094015 (2018), arXiv: 1605.01134
[495]
M. Karliner, S. Nussinov, and J. L. Rosner, Q QQ¯Q¯ states: Masses, production, and decays, Phys. Rev. D 95, 034011 (2017), arXiv: 1611.00348
[496]
N. Barnea, J. Vijande, and A. Valcarce, Four-quark spectroscopy within the hyper-spherical formalism, Phys. Rev. D 73, 054004 (2006), arXiv: hep-ph/0604010
[497]
V. R. Debastiani and F. S. Navarra, A non-relativistic model for the [cc][ c¯c¯] tetraquark, Chin. Phys. C 43, 013105 (2019), arXiv: 1706.07553
[498]
M.-S. Liu, Q.-F. Lü, X.-H. Zhong, and Q. Zhao, All-heavy tetraquarks, Phys. Rev. D 100, 016006 (2019), arXiv: 1901.02564
[499]
W, Hunting for exotic doubly hidden-charm/bottom tetraquark states, Phys. Lett. B 773, 247 (2017), arXiv: 1605.01647
[500]
G.-J. Wang, L. Meng, and S.-L. Zhu, Spectrum of the fully-heavy tetraquark state QQQ¯′Q ¯′, Phys. Rev. D 100, 096013 (2019), arXiv: 1907.05177
[501]
M. A. Bedolla, J. Ferretti, C. D. Roberts, and E. Santopinto, Spectrum of fully-heavy tetraquarks from a diquark+antidiquark perspective, Eur. Phys. J. C 80, 1004 (2020), arXiv: 1911.00960
[502]
R. J. Lloyd and J. P. Vary, All-charm tetraquarks, Phys. Rev. D 70, 014009 (2004), arXiv: hep-ph/0311179
[503]
X. Chen, Fully-charm tetraquarks: cc c¯ c¯, arXiv: 2001.06755 (2020)
[504]
Z.-G. Wang and Z.-Y. Di, Analysis of the vector and axialvector QQQ¯Q¯ tetraquark states with QCD sum rules, Acta Phys. Polon. B 50, 1335 (2019), arXiv: 1807.08520
[505]
M, Spectroscopy and decays of the fully-heavy tetraquarks, Eur. Phys. J. C 78, 647 (2018), arXiv: 1710.02540
[506]
A. Esposito and A. D. Polosa, A bbb¯ b¯ di-bottomonium at the LHC? Eur. Phys. J. C 78, 782 (2018), arXiv: 1807.06040
[507]
C. Becchi, A. Giachino, L. Maiani, and E. Santopinto, Search for bbb¯b¯ tetraquark decays in 4 muons, B+B, B0B ¯0 and Bs0 B¯s0 channels at LHC, Phys. Lett. B 806, 135495 (2020), arXiv: 2002.11077
[508]
Y. Bai, S. Lu, and J. Osborne, Beauty-full tetraquarks, Phys. Lett. B 798, 134930 (2019), arXiv: 1612.00012
[509]
J.-M. Richard, A. Valcarce, and J. Vijande, String dynamics and metastability of all-heavy tetraquarks, Phys. Rev. D 95, 054019 (2017), arXiv: 1703.00783
[510]
Y. Chen and R. Vega-Morales, Golden probe of the di-ϒ threshold, arXiv: 1710.02738 (2017)
[511]
X. Chen, Fully-heavy tetraquarks: bbc¯ c¯ and bcb¯ c¯, Phys. Rev. D 100, 094009 (2019), arXiv: 1908.08811
[512]
A. V. Berezhnoy, A. K. Likhoded, and A. A. Novoselov, ϒ-meson pair production at the LHC, Phys. Rev. D 87, 054023 (2013), arXiv: 1210.5754
[513]
CMS Collaboration, Observation of new structures in the JJ/ψ mass spectrum in pp collisions at s = 13 TeV
[514]
ATLAS Collaboration, Observation of an excess of di-charmonium events in the four-muon final state with the ATLAS detector
[515]
K.-T. Chao and S.-L. Zhu, The possible tetraquark states ccc¯c¯ observed by the LHCb experiment, Sci. Bull. 65, 1952 (2020), arXiv: 2008.07670
[516]
X.-Z. Weng, X.-L. Chen, W.-Z. Deng, and S.-L. Zhu, Systematics of fully heavy tetraquarks, Phys. Rev. D 103, 034001 (2021), arXiv: 2010.05163
[517]
H.-T. An, K. Chen, and X. Liu, Exotic pentaquark states and chromomagnetic interaction, arXiv: 2010.05014 (2020)
[518]
Q.-F. Lü, D.-Y. Chen, and Y.-B. Dong, Masses of fully heavy tetraquarks QQQ¯ Q¯ in an extended relativized quark model, Eur. Phys. J. C 80, 871 (2020), arXiv: 2006.14445
[519]
N. Lee, Z.-G. Luo, X.-L. Chen, and S.-L. Zhu, Possible deuteronlike molecular states composed of heavy baryons, Phys. Rev. D 84, 014031 (2011), arXiv: 1104.4257
[520]
X. Jin, Y. Xue, H. Huang, and J. Ping, Full-heavy tetraquarks in constituent quark models, Eur. Phys. J. C 80, 1083 (2020), arXiv: 2006.13745
[521]
J.-X. Lu, L.-S. Geng, and M. P. Valderrama, Heavy baryon-antibaryon molecules in effective field theory, Phys. Rev. D 99, 074026 (2019), arXiv: 1706.02588
[522]
L. Meng, N. Li, and S.-L. Zhu, Deuteron-like states composed of two doubly charmed baryons, Phys. Rev. D 95, 114019 (2017), arXiv: 1704.01009
[523]
Z.-G. Wang, Revisit the tetraquark candidates in the J /ψ J/ψ mass spectrum, Int. J. Mod. Phys. A 36, 2150014 (2021), arXiv: 2009.05371
[524]
L. Tang, B.-D. Wan, K. Maltman, and C.-F. Qiao, Doubly heavy tetraquarks in QCD sum rules, Phys. Rev. D 101, 094032 (2020), arXiv: 1911.10951
[525]
B.-D. Wan and C.-F. Qiao, Gluonic tetracharm configuration of X(6900), Phys. Lett. B 817, 136339 (2021), arXiv: 2012.00454
[526]
B.-C. Yang, L. Tang, and C.-F. Qiao, Scalar fully-heavy tetraquark states QQ′ Q¯Q ¯′ in QCD sum rules, Eur. Phys. J. C 81, 324 (2021), arXiv: 2012.04463
[527]
G. Li, X.-F. Wang, and Y. Xing, Fully heavy tetraquark b bc ¯c¯: Lifetimes and weak decays, Eur. Phys. J. C 79, 645 (2019), arXiv: 1902.05805
[528]
M.-Z. Liu and L.-S. Geng, Is X(7200) the heavy anti-quark diquark symmetry partner of X(3872)? Eur. Phys. J. C 81, 179 (2021), arXiv: 2012.05096
[529]
Z, Study of charmoniumlike and fully-charm tetraquark spectroscopy, Phys. Rev. D 103, 116027 (2021), arXiv: 2012.15554
[530]
Y.Yan, ., Fully heavy pentaquarks in quark models, arXiv: 2110.10853 (2021)
[531]
F.-X. Liu, M.-S. Liu, X.-H. Zhong, and Q. Zhao, Higher mass spectra of the fully-charmed and fully-bottom tetraquarks, arXiv: 2110.09052 (2021)
[532]
Q.-N. Wang, Z.-Y. Yang, and W. Chen, Exotic fully-heavy QQ¯QQ¯ tetraquark states in 8[QQ¯]⊗ 8[Q Q¯] color configuration, arXiv: 2109.08091 (2021)
[533]
Q. Li, C.-H. Chang, G.-L. Wang, and T. Wang, Mass spectra and wave functions of T QQ Q¯ Q¯ tetraquarks, Phys. Rev. D 104, 014018 (2021), arXiv: 2104.12372
[534]
H.-W. Ke, X. Han, X.-H. Liu, and Y.-L. Shi, Tetraquark state X(6900) and the interaction between diquark and antidiquark, Eur. Phys. J. C 81, 427 (2021), arXiv: 2103.13140
[535]
G. Huang, J. Zhao, and P. Zhuang, Pair structure of heavy tetraquark systems, Phys. Rev. D 103, 054014 (2021), arXiv: 2012.14845
[536]
H.-T. An, K. Chen, Z.-W. Liu, and X. Liu, Fully heavy pentaquarks, Phys. Rev. D 103, 074006 (2021), arXiv: 2012.12459
[537]
C.Gong, ., Nature of X(6900) and its production mechanism at LHCb, arXiv: 2011.11374 (2020)
[538]
J.-W.Zhu, ., A possible interpretation for X(6900) observed in four-muon final state by LHCb - A light Higgs-like boson? arXiv: 2011.07799 (2020)
[539]
J.-R. Zhang, Fully-heavy pentaquark states, Phys. Rev. D 103, 074016 (2021), arXiv: 2011.04594
[540]
Q.-F. Cao, H. Chen, H.-R. Qi, and H.-Q. Zheng, Some remarks on X(6900), Chin. Phys. C 45, 103102 (2021), arXiv: 2011.04347
[541]
Z.-H. Guo and J. A. Oller, Insights into the inner structures of the fully charmed tetraquark state X(6900), Phys. Rev. D 103, 034024 (2021), arXiv: 2011.00978
[542]
R. Zhu, Fully-heavy tetraquark spectra and production at hadron colliders, Nucl. Phys. B 966, 115393 (2021), arXiv: 2010.09082
[543]
J.-R. Zhang, 0+ fully-charmed tetraquark states, Phys. Rev. D 103, 014018 (2021), arXiv: 2010.07719
[544]
R. N. Faustov, V. O. Galkin, and E. M. Savchenko, Masses of the QQQ¯ Q¯ tetraquarks in the relativistic diquark−antidiquark picture, Phys. Rev. D 102, 114030 (2020), arXiv: 2009.13237
[545]
F.Feng, ., Fragmentation production of fully-charmed tetraquarks at LHC, arXiv: 2009.08450 (2020)
[546]
Y.-Q. Ma and H.-F. Zhang, Exploring the di-J/ψ resonances around 6.9 GeV based on ab initio perturbative QCD, arXiv: 2009.08376 (2020)
[547]
X.-K.Dong, ., Coupled-channel interpretation of the LHCb double-J/ψ spectrum and hints of a new state near the JJ/ψ threshold, Phys. Rev. Lett. 126, 132001 (2021), Erratum: Phys. Rev. Lett. 127, 119901 (2021), arXiv: 2009.07795
[548]
M. Karliner and J. L. Rosner, Interpretation of structure in the di-J/ψ spectrum, Phys. Rev. D 102, 114039 (2020), arXiv: 2009.04429
[549]
J.-Z. Wang, D.-Y. Chen, X. Liu, and T. Matsuki, Producing fully charm structures in the J/ψ-pair invariant mass spectrum, Phys. Rev. D 103, 071503 (2021), arXiv: 2008.07430
[550]
G. Yang, J. Ping, L. He, and Q. Wang, Potential model prediction of fully-heavy tetraquarks QQQ¯ Q¯ (Q = c, b), arXiv: 2006.13756 (2020)
[551]
C. Deng, H. Chen, and J. Ping, Towards the understanding of fully-heavy tetraquark states from various models, Phys. Rev. D 103, 014001 (2021), arXiv: 2003.05154
[552]
Z, Possible hidden-charm molecular baryons composed of an anti-charmed meson and a charmed baryon, Chin. Phys. C 36, 6 (2012), arXiv: 1105.2901
[553]
R. Zhu and C.-F. Qiao, Pentaquark states in a diquark−triquark model, Phys. Lett. B 756, 259 (2016), arXiv: 1510.08693
[554]
N. Li and S.-L. Zhu, Hadronic molecular states composed of heavy flavor baryons, Phys. Rev. D 86, 014020 (2012), arXiv: 1204.3364
[555]
M, and D*Ξ molecular states from one boson exchange, Phys. Rev. D 98, 014014 (2018), arXiv: 1805.08384
[556]
LHCb CollaborationR., Observation of Jp resonances consistent with pentaquark states in Λb0→J /ψ pK − decays, Phys. Rev. Lett. 115, 072001 (2015), arXiv: 1507.03414
[557]
LHCb CollaborationR., Evidence for exotic hadron contributions to Λ b0→ J/ ψpπ− decays, Phys. Rev. Lett. 117, 082003 (2016), arXiv: 1606.06999
[558]
LHCb CollaborationR., Model-independent evidence for Jp contributions to Λ b0→ J/ ψpK− decays, Phys. Rev. Lett. 117, 082002 (2016), arXiv: 1604.05708
[559]
LHCb CollaborationR., Observation of a narrow pentaquark state, Pc(4312)+, and of two-peak structure of the Pc(4450)+, Phys. Rev. Lett. 122, 222001 (2019), arXiv: 1904.03947
[560]
LHCb CollaborationR., Evidence for a new structure in the Jp and J/ψ p¯ systems in Bs0→J/ψpp¯ decays, Phys. Rev. Lett. 128, 062001 (2022), arXiv: 2108.04720
[561]
B. Wang, L. Meng, and S.-L. Zhu, Spectrum of the strange hidden charm molecular pentaquarks in chiral effective field theory, Phys. Rev. D 101, 034018 (2020), arXiv: 1912.12592
[562]
H, Looking for a hidden-charm pentaquark state with strangeness S = −1 from Ξb− decay into JKΛ, Phys. Rev. C 93, 065203 (2016), arXiv: 1510.01803
[563]
LHCb CollaborationR., Evidence of a JΛ structure and observation of excited Ξ states in the Ξb−→J/ψΛK − decay, Sci. Bull. 66, 1278 (2021), arXiv: 2012.10380
[564]
LHCb CollaborationR., Observation of a JΛ resonance consistent with a strange pentaquark candidate in B−→J/ψΛ p¯ decays, arXiv: 2210.10346 (submitted to Phys. Rev. Lett.)
[565]
F.-L. Wang, R. Chen, Z. -W. Liu, and X. Liu, Probing new types of Pc states inspired by the interaction between S-wave charmed baryon and anti-charmed meson in a doublet, Phys. Rev. C 101, 025201 (2020), arXiv: 1905.03636
[566]
M, Interpretation of the LHCb Pc states as hadronic molecules and hints of a narrow Pc(4380), Phys. Rev. Lett. 124, 072001 (2020), arXiv: 1910.11846
[567]
L. Meng, B. Wang, G.-J. Wang, and S.-L. Zhu, Hidden charm pentaquark states and Σc D¯(∗ ) interaction in chiral perturbation theory, Phys. Rev. D 100, 014031 (2019), arXiv: 1905.04113
[568]
X.-Z. Weng, X.-L. Chen, W.-Z. Deng, and S.-L. Zhu, Hidden-charm pentaquarks and Pc states, Phys. Rev. D 100, 016014 (2019), arXiv: 1904.09891
[569]
Y.-J. Xu, C.-Y. Cui, Y.-L. Liu, and M.-Q. Huang, Partial decay widths of Pc(4312) as a D¯Σc molecular state, Phys. Rev. D 102, 034028 (2020), arXiv: 1907.05097
[570]
U. Ozdem and K. Azizi, Magnetic dipole moment of Zb(10610) in light-cone QCD, Phys. Rev. D 97, 014010 (2018), arXiv: 1709.09714
[571]
H. Huang, C. Deng, J. Ping, and F. Wang, Possible pentaquarks with heavy quarks, Eur. Phys. J. C 76, 624 (2016), arXiv: 1510.04648
[572]
M.-L. Du, Z.-H. Guo, and J. A. Oller, Insights into the nature of the Pcs(4459), arXiv: 2109.14237 (2021)
[573]
K, Systematics of the heavy flavor hadronic molecules, Eur. Phys. J. C 82, 581 (2022), arXiv: 2109.13057
[574]
X. Hu and J. Ping, Investigation of hidden-charm pentaquarks with strangeness S = −1, Eur. Phys. J. C 82, 118 (2022), arXiv: 2109.09972
[575]
N, Coupled channel effects of the Σc(∗ )D¯(∗)-Λc(2595)D* system and molecular nature of the Pc pentaquark states from one-boson exchange model, Phys. Rev. D 104, 094039 (2021), arXiv: 2109.03504
[576]
J.-X. Lu, M.-Z. Liu, R.-X. Shi, and L.-S. Geng, Understanding Pcs(4459) as a hadronic molecule in the Ξb−→J /ψ ΛK− decay, Phys. Rev. D 104, 034022 (2021), arXiv: 2104.10303
[577]
M, Revisiting the nature of the Pc pentaquarks, J. High Energy Phys. 08, 157 (2021), arXiv: 2102.07159
[578]
J.-T. Zhu, L.-Q. Song, and J. He, Pcs(4459) and other possible molecular states from Ξc(∗ )D¯(∗) and Ξc′D¯(∗) interactions, Phys. Rev. D 103, 074007 (2021), arXiv: 2101.12441
[579]
S. X. Nakamura, A. Hosaka, and Y. Yamaguchi, Pc(4312)+ and Pc(4337)+ as interfering Σc D¯ and Λc D¯∗ (anomalous) threshold cusps, arXiv: 2109.15235 (2021)
[580]
P.-P. Shi, F. Huang, and W.-L. Wang, Hidden charm pentaquark states in a diquark model, Eur. Phys. J. A 57, 237 (2021), arXiv: 2107.08680
[581]
K.Phumphan, ., Pc resonances in molecular picture, arXiv: 2105.03150 (2021)
[582]
S. X. Nakamura, Pc(4312)+, Pc(4380)+, and Pc(4457)+ as double triangle cusps, Phys. Rev. D 103, 111503 (2021), arXiv: 2103.06817
[583]
C. W. Xiao, J. J. Wu, and B. S. Zou, Molecular nature of Pcs(4459) and its heavy quark spin partners, Phys. Rev. D 103, 054016 (2021), arXiv: 2102.02607
[584]
R. Chen, Can the newly reported Pcs(4459) be a strange hidden-charm ΞcD¯∗ molecular pentaquark? Phys. Rev. D 103 (2021) 054007, arXiv: 2011.07214
[585]
Z.-G. Wang, Analysis of the Pcs(4459) as the hidden-charm pentaquark state with QCD sum rules, Int. J. Mod. Phys. A 36, 2150071 (2021), arXiv: 2011.05102
[586]
F, Peaks within peaks and the possible two-peak structure of the Pc(4457): The effective field theory perspective, Phys. Rev. D 103, 014023 (2021), arXiv: 2007.01198
[587]
H. Xu, Q. Li, C.-H. Chang, and G.-L. Wang, Recently observed Pc as molecular states and possible mixture of Pc(4457), Phys. Rev. D 101, 054037 (2020), arXiv: 2001.02980
[588]
A. Giachino. . Hidden-charm and bottom meson-baryon molecules coupled with five-quark states. Springer Proc. Phys., 2020, 238: 621
CrossRef ADS Google scholar
[589]
C.-Y. Chen, M. Chen, and Y.-X. Liu, Quantum numbers of the pentaquark states Pc+ via symmetry analysis, Commun. Theor. Phys. 72, 125202 (2020), arXiv: 1912.01931
[590]
B. Wang, L. Meng, and S.-L. Zhu, Hidden-charm and hidden-bottom molecular pentaquarks in chiral effective field theory, J. High Energy Phys. 11, 108 (2019), arXiv: 1909.13054
[591]
A. Pimikov, H.-J. Lee, and P. Zhang, Hidden-charm pentaquarks with color-octet sub-structure in QCD sum rules, Phys. Rev. D 101, 014002 (2020), arXiv: 1908.04459
[592]
Z.-G. Wang and X. Wang, Analysis of the strong decays of the Pc(4312) as a pentaquark molecular state with QCD sum rules, Chin. Phys. C 44, 103102 (2020), arXiv: 1907.04582
[593]
Y, Pc pentaquarks with chiral tensor and quark dynamics, Phys. Rev. D 101, 091502 (2020), arXiv: 1907.04684
[594]
J.-B. Cheng and Y.-R. Liu, Pc(4457)+, Pc(4440)+, and Pc(4312)+: Molecules or compact pentaquarks? Phys. Rev. D 100, 054002 (2019), arXiv: 1905.08605
[595]
Z.-G. Wang, Analysis of the Pc(4312), Pc(4440), Pc(4457) and related hidden-charm pentaquark states with QCD sum rules, Int. J. Mod. Phys. A 35, 2050003 (2020), arXiv: 1905.02892
[596]
JPAC CollaborationC., Interpretation of the LHCb Pc(4312)+ signal, Phys. Rev. Lett. 123, 092001 (2019), arXiv: 1904.10021
[597]
C, Exploring the molecular scenario of Pc(4312), Pc(4440), and Pc(4457), Phys. Rev. D 100, 014022 (2019), arXiv: 1904.00872
[598]
Z.-H. Guo and J. A. Oller, Anatomy of the newly observed hidden-charm pen-taquark states: Pc(4312), Pc(4440) and Pc(4457), Phys. Lett. B 793, 144 (2019), arXiv: 1904.00851
[599]
J. He, Study of Pc(4457), Pc(4440), and Pc(4312) in a quasipotential Bethe−Salpeter equation approach, Eur. Phys. J. C 79, 393 (2019), arXiv: 1903.11872
[600]
F.-K. Guo, H.-J. Jing, U.-G. Meiβner, and S. Sakai, Isospin breaking decays as a diagnosis of the hadronic molecular structure of the Pc(4457), Phys. Rev. D 99, 091501 (2019), arXiv: 1903.11503
[601]
H.-X. Chen, W. Chen, and S.-L. Zhu, Possible interpretations of the Pc(4312), Pc(4440), and Pc(4457), Phys. Rev. D 100, 051501 (2019), arXiv: 1903.11001
[602]
X. Liu, H. Huang, and J. Ping, Hidden strange pentaquark states in constituent quark models, Phys. Rev. C 98, 055203 (2018), arXiv: 1807.03195.
[603]
J. Ferretti, E. Santopinto, M. Naeem Anwar, and M. A. Bedolla, The baryo-quarkonium picture for hidden-charm and bottom pentaquarks and LHCb Pc(4380) and Pc(4450) states, Phys. Lett. B 789, 562 (2019), arXiv: 1807.01207
[604]
E. Hiyama, A. Hosaka, M. Oka, and J. -M. Richard, Quark model estimate of hidden-charm pentaquark resonances, Phys. Rev. C 98, 045208 (2018), arXiv: 1803.11369
[605]
S.-X. Qin, C. D. Roberts, and S. M. Schmidt, Poincaré-covariant analysis of heavy-quark baryons, Phys. Rev. D 97, 114017 (2018), arXiv: 1801.09697
[606]
J.-M. Richard, A. Valcarce, and J. Vijande, Stable heavy pentaquarks in constituent models, Phys. Lett. B 774, 710 (2017), arXiv: 1710.08239. 100
[607]
J. He, Understanding spin parity of Pc(4450) and Y (4274) in a hadronic molecular state picture, Phys. Rev. D 95, 074004 (2017), arXiv: 1607.03223
[608]
M. I. Eides, V. Y. Petrov, and M. V. Polyakov, Pentaquarks with hidden charm as hadroquarkonia, Eur. Phys. J. C 78, 36 (2018), arXiv: 1709.09523
[609]
Y, Hidden-charm and bottom meson-baryon molecules coupled with five-quark states, Phys. Rev. D 96, 114031 (2017), arXiv: 1709.00819
[610]
Y. Dong, A. Faessler, V. E. Lyubovitskij. Description of heavy exotic resonances as molecular states using phenomenological Lagrangians. Prog. Part. Nucl. Phys., 2017, 94: 282
CrossRef ADS Google scholar
[611]
Y.-H. Lin, C.-W. Shen, F.-K. Guo, and B.-S. Zou, Decay behaviors of the Pc hadronic molecules, Phys. Rev. D 95, 114017 (2017), arXiv: 1703.01045
[612]
R. Chen, J. He, and X. Liu, Possible strange hidden-charm pentaquarks from Σ c(∗ )D¯ s∗ and Ξc(′, ∗)D¯∗ interactions, Chin. Phys. C 41, 103105 (2017), arXiv: 1609.03235
[613]
F.-K. Guo, U. G. Meißner, J. Nieves, and Z. Yang, Remarks on the Pc structures and triangle singularities, Eur. Phys. J. A 52, 318 (2016), arXiv: 1605.05113
[614]
E. Santopinto and A. Giachino, Compact pentaquark structures, Phys. Rev. D 96, 014014 (2017), arXiv: 1604.03769
[615]
C.-W. Shen, F.-K. Guo, J.-J. Xie, and B.-S. Zou, Disentangling the hadronic molecule nature of the Pc(4380) pentaquark-like structure, Nucl. Phys. A 954, 393 (2016), arXiv: 1603.04672
[616]
Y. Shimizu, D. Suenaga, and M. Harada, Coupled channel analysis of molecule picture of Pc(4380), Phys. Rev. D 93, 114003 (2016), arXiv: 1603.02376
[617]
Q.-F. Lü and Y.-B. Dong, Strong decay mode J/ψp of hidden charm pentaquark states Pc (4380) and Pc+(4450) in Σ c∗ molecular scenario, Phys. Rev. D 93, 074020 (2016), arXiv: 1603.00559
[618]
E, Weak decays of heavy hadrons into dynamically generated resonances, Int. J. Mod. Phys. E 25, 1630001 (2016), arXiv: 1601.03972
[619]
R. Chen, X. Liu, and S.-L. Zhu, Hidden-charm molecular pentaquarks and their charm-strange partners, Nucl. Phys. A 954, 406 (2016), arXiv: 1601.03233
[620]
Z.-G. Wang, Analysis of the 32± pentaquark states in the diquark−diquark−antiquark model with QCD sum rules, Nucl. Phys. B 913, 163 (2016), arXiv: 1512.04763
[621]
G. Yang and J. Ping, Structure of pentaquarks Pc+ in the chiral quark model, Phys. Rev. D 95, 014010 (2017), arXiv: 1511.09053
[622]
T. J. Burns, Phenomenology of Pc(4380)+, Pc(4450)+ and related states, Eur. Phys. J. A 51, 152(2015), arXiv: 1509.02460
[623]
N. N. Scoccola, D. O. Riska, and M. Rho, Pentaquark candidates Pc+(4380) and Pc+(4450) within the soliton picture of baryons, Phys. Rev. D 92, 051501 (2015), arXiv: 1508.01172
[624]
Z.-G. Wang, Analysis of Pc(4380) and Pc(4450) as pentaquark states in the diquark model with QCD sum rules, Eur. Phys. J. C 76, 70 (2016), arXiv: 1508.01468
[625]
R. Ghosh, A. Bhattacharya, and B. Chakrabarti, A study on Pc∗(4380) and Pc∗(4450) mass in the quasi particle diquark model, Phys. Part. Nucl. Lett. 14, 550 (2017), arXiv: 1508.00356
[626]
G.-N. Li, X.-G. He, and M. He, Some predictions of diquark model for hidden charm pentaquark discovered at the LHCb, J. High Energy Phys. 12, 128 (2015), arXiv: 1507.08252
[627]
V, Pentaquarks and resonances in the pJ/ψ spectrum, arXiv: 1507.07652 (2015)
[628]
M. Mikhasenko, A triangle singularity and the LHCb pentaquarks, arXiv: 1507.06552 (2015)
[629]
R. F. Lebed, The pentaquark candidates in the dynamical diquark picture, Phys. Lett. B 749, 454 (2015), arXiv: 1507.05867
[630]
X.-H. Liu, Q. Wang, and Q. Zhao, Understanding the newly observed heavy pentaquark candidates, Phys. Lett. B 757, 231 (2016), arXiv: 1507.05359
[631]
J. He, D ¯Σc∗ and D¯ ∗Σ c interactions and the LHCb hidden-charmed pentaquarks, Phys. Lett. B 753, 547 (2016), arXiv: 1507.05200
[632]
L. Maiani, A. D. Polosa, and V. Riquer, The new pentaquarks in the diquark model, Phys. Lett. B 749, 289 (2015), arXiv: 1507.04980
[633]
F.-K. Guo, U.-G. Meißner, W. Wang, and Z. Yang, How to reveal the exotic nature of the Pc(4450), Phys. Rev. D 92, 071502 (2015), arXiv: 1507.04950
[634]
A. Mironov and A. Morozov, Is the pentaquark doublet a hadronic molecule? JETP Lett. 102, 271 (2015), arXiv: 1507.04694
[635]
L. Roca, J. Nieves, and E. Oset, LHCb pentaquark as a D¯*Σc−D ¯*Σc* molecular state, Phys. Rev. D 92, 094003 (2015), arXiv: 1507.04249
[636]
H, Towards exotic hidden-charm pentaquarks in QCD, Phys. Rev. Lett. 115, 172001 (2015), arXiv: 1507.03717
[637]
R. Chen, X. Liu, X.-Q. Li, and S.-L. Zhu, Identifying exotic hidden-charm pentaquarks, Phys. Rev. Lett. 115 (2015) 132002, arXiv: 1507.03704
[638]
M. Karliner and J. L. Rosner, New exotic meson and baryon resonances from doubly heavy hadronic molecules, Phys. Rev. Lett. 115, 122001 (2015), arXiv: 1506.06386
[639]
X.-K. Dong, F.-K. Guo, and B.-S. Zou, Explaining the many threshold structures in the heavy-quark hadron spectrum, Phys. Rev. Lett. 126, 152001 (2021), arXiv: 2011.14517
[640]
TWQCD Collaboration, T.-W. Chiu and T.-H. Hsieh, X(3872) in lattice QCD with exact chiral symmetry, Phys. Lett. B 646, 95 (2007), arXiv: hep-ph/0603207
[641]
F.-K. Guo, L. Liu, U.-G. Meissner, and P. Wang, Tetraquarks, hadronic molecules, meson−meson scattering and disconnected contributions in lattice QCD, Phys. Rev. D 88, 074506 (2013), arXiv: 1308.2545
[642]
Y, Diquark mass differences from unquenched lattice QCD, Chin. Phys. C 40, 073106(2016), arXiv: 1510.07354
[643]
C. Liu, Review on hadron spectroscopy, PoS LATTICE2016, 006(2017), arXiv: 1612.00103
[644]
L. Leskovec, S. Prelovsek, C. B. Lang, and D. Mohler, Study of the Zc+ channel in lattice QCD, PoS LATTICE 2014, 118 (2015), arXiv: 1410.8828
[645]
Hadron Spectrum CollaborationL. Gayer,., ., Isospin-1/2 Dπ scattering and the lightest D 0∗ resonance from lattice QCD, J. High Energy Phys. 07, 123 (2021), arXiv: 2102.04973
[646]
Hadron Spectrum CollaborationG., DK I = 0, DK¯I = 0, 1 scattering and the Ds0*(2317) from lattice QCD, J. High Energy Phys. 02, 100 (2021), arXiv: 2008.06432
[647]
S. L. Glashow, J. Iliopoulos, L. Maiani. Weak interactions with lepton−hadron symmetry. Phys. Rev. D, 1970, 2: 1285
CrossRef ADS Google scholar
[648]
A. J. Buras and M. Munz, Effective Hamiltonian for BXse+e beyond leading logarithms in the naive dimensional regularization and ’t Hooft-Veltman schemes, Phys. Rev. D 52, 186 (1995), arXiv: hep-ph/9501281
[649]
A. J. Buras, Weak Hamiltonian, CP violation and rare decays, in Les Houches summer school in theoretical physics, session 68: Probing the standard model of particle interactions, 1998, arXiv: hep-ph/9806471
[650]
G. Buchalla, A. J. Buras, and M. E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68, 1125 (1996), arXiv: hep-ph/9512380
[651]
W, Symmetries and asymmetries of BK*μ+μ decays in the standard model and beyond, J. High Energy Phys. 01, 019 (2009), arXiv: 0811.1214.
[652]
F. Kruger and J. Matias, Probing new physics via the transverse amplitudes of B0K*0(→ Kπ+)l+l at large recoil, Phys. Rev. D 71 (2005) 094009, arXiv: hep-ph/0502060
[653]
S. Descotes-Genon, D. Ghosh, J. Matias, and M. Ramon, Exploring new physics in the C7C7′ plane, J. High Energy Phys. 06, 099 (2011), arXiv: 1104.3342
[654]
E. Lunghi and J. Matias, Huge right-handed current effects in BK*(Kπ)ℓ+ in supersymmetry, J. High Energy Phys. 04, 058 (2007), arXiv: hep-ph/0612166
[655]
M. Beneke, C. Bobeth, and R. Szafron, Power-enhanced leading-logarithmic QED corrections to Bqμ+μ, J. High Energy Phys. 10, 232 (2019), arXiv: 1908.07011
[656]
CMSCollaborationsLHCbKhachatryanV., ., Observation of the rare Bs0μ+μ decay from the combined analysis of CMS and LHCb data, Nature 522, 68 (2015), arXiv: 1411.4413
[657]
LHCb CollaborationR., Measurement of the Bs0 → μ+μ branching fraction and effective lifetime and search for B0μ+μ decays, Phys. Rev. Lett. 118 (2017) 191801, arXiv: 1703.05747
[658]
CMSCollaborationA, Measurement of properties of Bs0μ+μ decays and search for B0μ+μ with the CMS experiment, J. High Energy Phys. 04, 188 (2020), arXiv: 1910.12127
[659]
ATLAS CollaborationM., Study of the rare decays of Bs0 and B0 mesons into muon pairs using data collected during 2015 and 2016 with the ATLAS detector, J. High Energy Phys. 04, 098 (2019), arXiv: 1812.03017
[660]
LHCb Collaboration, Combination of the ATLAS, CMS and LHCb results on the B(s)0μ+μ decays, LHCb-CONF-2020-002, 2020, ATLAS-CONF-2020-049, CMS PAS BPH-20-003, LHCb-CONF-2020-002
[661]
LHCb CollaborationR., Analysis of neutral B-meson decays into two muons, Phys. Rev. Lett. 128, 041801 (2022), arXiv: 2108.09284
[662]
LHCb CollaborationR., Measurement of the Bs0μ+μ decay properties and search for the Bs0μ+μ and Bs0μ+μγ decays, Phys. Rev. D105, 012010 (2022), arXiv: 2108.09283
[663]
K, Probing new physics via the Bs0μ+μ effective lifetime, Phys. Rev. Lett. 109, 041801 (2012), arXiv: 1204.1737
[664]
LHCb Collaboration, Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era, arXiv: 1808.08865
[665]
LHCb CollaborationR., Search for the rare decays Bs0e+e and B0e+e, Phys. Rev. Lett. 124, 211802 (2020), arXiv: 2003.03999
[666]
LHCb CollaborationR., Search for rare B(s)0μ+μμ+μ decays, J. High Energy Phys. 03, 109 (2022), arXiv: 2111.11339
[667]
A. Bharucha, D. M. Straub, and R. Zwicky, BV+ in the standard model from light-cone sum rules, J. High Energy Phys. 08, 098 (2016), arXiv: 1503.05534
[668]
A. Khodjamirian, T. Mannel, A. A. Pivovarov, and Y. -M. Wang, Charm-loop effect in BK(*)+ and BK*γ, J. High Energy Phys. 09, 089 (2010), arXiv: 1006.4945
[669]
J, Precision calculations of BV form factors from soft-collinear effective theory sum rules on the light-cone, Phys. Rev. D 101, 074035 (2020), arXiv: 1907.11092
[670]
R. R. Horgan, Z. Liu, S. Meinel, and M. Wingate, Lattice QCD calculation of form factors describing the rare decays BK*+ and Bs → ϕℓ+, Phys. Rev. D 89, 094501 (2014), arXiv: 1310.3722
[671]
R. R. Horgan, Z. Liu, S. Meinel, and M. Wingate, Rare B decays using lattice QCD form factors, PoS Lattice 2014, 372 (2015), arXiv: 1501.00367
[672]
LHCb CollaborationR., Angular analysis and differential branching fraction of the decay Bs0 → ϕμ+μ, J. High Energy Phys. 09, 179 (2015), arXiv: 1506.08777
[673]
LHCb CollaborationR., Branching fraction measurements of the rare Bs0 → ϕμ+μ and Bs0f2′ (1525)μ+μ decays, Phys. Rev. Lett. 127, 151801 (2021), arXiv: 2105.14007
[674]
LHCb CollaborationR. Aaij,., ., Differential branching fraction and angular analysis of Λb0 → Λμ+μ decays, J. High Energy Phys. 06, 115 (2015), Erratum JHEP 09, 145 (2018), arXiv: 1503.07138
[675]
LHCb CollaborationR., Measurements of the S-wave fraction in B0K+πμ+μ decays and the B0K*(892)0μ+μ differential branching fraction, J. High Energy Phys. 11, 047 (2016), Erratum: J. High Energy Phys. 04, 142 (2017), arXiv: 1606.04731
[676]
LHCb CollaborationR., Differential branching fractions and isospin asymmetries of BK(*)μ+μ decays, J. High Energy Phys. 06, 133 (2014), arXiv: 1403.8044
[677]
W. Altmannshofer and D. M. Straub, New physics in bs transitions after LHC Run 1, Eur. Phys. J. C 75, 382 (2015), arXiv: 1411.3161
[678]
W. Altmannshofer and D. M. Straub, Implications of bs measurements, in 50th Rencontres de Moriond on EW Interactions and Unified Theories, 333–338, 2015, arXiv: 1503.06199
[679]
W. Detmold, C. -J. D. Lin, S. Meinel, and M. Wingate, Λb0 → Λℓ+ form factors and differential branching fraction from lattice QCD, Phys. Rev. D 87, 074502 (2013), arXiv: 1212.4827
[680]
C. Bobeth, G. Hiller, and D. van Dyk, More benefits of semileptonic rare B decays at low recoil: CP violation, J. High Energy Phys. 07, 067 (2011), arXiv: 1105.0376
[681]
C. Bobeth, G. Hiller, D. van Dyk, and C. Wacker, The decay B → ℓ+ at low hadronic recoil and model-independent ∆B = 1 constraints, J. High Energy Phys. 01, 107 (2012), arXiv: 1111.2558
[682]
BaBar CollaborationB., Measurements of branching fractions, rate asymmetries, and angular distributions in the rare decays BK+ and BK*+, Phys. Rev. D 73, 092001 (2006), arXiv: hep-ex/0604007
[683]
Belle CollaborationS., Lepton-flavor-dependent angular analysis of BK*+, Phys. Rev. Lett. 118, 111801 (2017), arXiv: 1612.05014
[684]
ATLAS CollaborationM., Angular analysis of Bd0K*μ+μ decays in pp collisions at s = 8 TeV with the ATLAS detector, J. High Energy Phys. 10 (2018) 047, arXiv: 1805.04000
[685]
CMSCollaborationA, Measurement of angular parameters from the decay B0K*0μ+μ in proton−proton collisions at s = 8 TeV, Phys. Lett. B 781, 517 (2018), arXiv: 1710.02846
[686]
LHCb CollaborationR., Differential branching fraction and angular analysis of the decay B0K*0μ+μ, Phys. Rev. Lett. 108, 181806 (2012), arXiv: 1112.3515
[687]
LHCb CollaborationR. Aaij,., ., Differential branching fraction and angular analysis of the decay B0K*0μ+μ, JHEP 08, 131 (2013), arXiv: 1304.6325
[688]
LHCb CollaborationR., Angular analysis of the B0K*0μ+μ decay using 3 fb−1 of integrated luminosity, J. High Energy Phys. 02, 104 (2016), arXiv: 1512.04442
[689]
LHCb CollaborationR., Measurement of CP-averaged observables in the B0K*0μ+μ decay, Phys. Rev. Lett. 125, 011802 (2020), arXiv: 2003.04831
[690]
S. Descotes-Genon, L. Hofer, J. Matias, and J. Virto, On the impact of power corrections in the prediction of BK*μ+μ observables, J. High Energy Phys. 12, 125 (2014), arXiv: 1407.8526
[691]
D. M. Straub, flavio: A Python package for flavour and precision phenomenology in the standard model and beyond, arXiv: 1810.08132
[692]
LHCb CollaborationR., Angular analysis of the B+K*+μ+μ decay, Phys. Rev. Lett. 126, 161802 (2021), arXiv: 2012.13241
[693]
LHCb CollaborationR., Angular analysis of the rare decay Bs0 → ϕμ+μ, J. High Energy Phys. 11, 043 (2021), arXiv: 2107.13428
[694]
C. Bobeth, G. Hiller, and G. Piranishvili, CP asymmetries in B ¯ → K¯*(→K ¯π) ℓ¯ℓ and untagged B¯s, B¯s → ϕ(→ K+K)ℓ¯ℓ decays at NLO, J. High Energy Phys. 07, 106 (2008), arXiv: 0805.2525
[695]
S. Descotes-Genon and J. Virto, Time dependence in BVℓℓ decays, J. High Energy Phys. 04, 045 (2015), Erratum: J. High Energy Phys. 07, 049 (2015), arXiv: 1502.05509
[696]
LHCb CollaborationR., Angular analysis of charged and neutral BKμ+μ decays, J. High Energy Phys. 05, 082 (2014), arXiv: 1403.8045
[697]
CMSCollaborationA, Angular analysis of the decay B+K+μ+μ in proton-proton collisions at s = 8 TeV, Phys. Rev. D 98, 112011 (2018), arXiv: 1806.00636
[698]
LHCb CollaborationR., Angular moments of the decay Λ b0 → Λμ+μ at low hadronic recoil, J. High Energy Phys. 09, 146 (2018), arXiv: 1808.00264
[699]
G. Hiller and F. Kruger, More model-independent analysis of bs processes, Phys. Rev. D 69, 074020 (2004), arXiv: hep-ph/0310219
[700]
M. Bordone, G. Isidori, and A. Pattori, On the standard model predictions for RK and R K∗, Eur. Phys. J. C 76, 440 (2016), arXiv: 1605.07633
[701]
G. Isidori, S. Nabeebaccus, and R. Zwicky, QED corrections in B¯ → K¯ℓ+ at the double-differential level, J. High Energy Phys. 12, 104 (2020), arXiv: 2009.00929
[702]
LHCb CollaborationR., Search for lepton-universality violation in B+K++ decays, Phys. Rev. Lett. 122, 191801 (2019), arXiv: 1903.09252
[703]
LHCb CollaborationR., Test of lepton universality in beauty-quark decays, Nat. Phys. 18, 277 (2022), arXiv: 2103.11769
[704]
S. Descotes-Genon, L. Hofer, J. Matias, and J. Virto, Global analysis of bsℓℓ anomalies, J. High Energy Phys. 06, 092 (2016), arXiv: 1510.04239
[705]
C. Bobeth, G. Hiller, and G. Piranishvili, Angular distributions of B ¯→ K¯ ℓ¯ℓ¯ decays, J. High Energy Phys. 12, 040 (2007), arXiv: 0709.4174
[706]
D. van Dyk, F. Beaujean, and C. Bobeth, Eos (“delta456” release), 2016, Zenodo, doi: 10.5281/zenodo.159680
[707]
BaBar CollaborationJ., Measurement of branching fractions and rate asymmetries in the rare decays BK(*)+, Phys. Rev. D 86, 032012 (2012), arXiv: 1204.3933
[708]
Belle CollaborationJ., Measurement of the differential branching fraction and forward-backward asymmetry for BK(*)+, Phys. Rev. Lett. 103, 171801 (2009), arXiv: 0904.0770
[709]
LHCb CollaborationR., Test of lepton universality with B0K*0+ decays, J. High Energy Phys. 08, 055(2017), arXiv: 1705.05802
[710]
B. Capdevila, S. Descotes-Genon, J. Matias, and J. Virto, Assessing lepton-flavour non-universality from BK*+ angular analyses, J. High Energy Phys. 10, 075 (2016), arXiv: 1605.03156
[711]
B. Capdevila, S. Descotes-Genon, L. Hofer, and J. Matias, Hadronic uncertainties in BK*μ+μ: A state-of-the-art analysis, J. High Energy Phys. 04, 016 (2017), arXiv: 1701.08672
[712]
N. Serra, R. Silva Coutinho, and D. van Dyk, Measuring the breaking of lepton flavor universality in BK*+, Phys. Rev. D 95, 035029 (2017), arXiv: 1610.08761
[713]
S. Jäger and J. M. Camalich, Reassessing the discovery potential of the BK*+ decays in the large-recoil region: SM challenges and BSM opportunities, Phys. Rev. D 93, 014028 (2016), arXiv: 1412.3183
[714]
LHCb CollaborationR., Test of lepton universality using Λb0pK+ decays, J. High Energy Phys. 05, 040 (2020), arXiv: 1912.08139
[715]
LHCb CollaborationR., Tests of lepton universality using B0 → K S0ℓ+ and B+K*++ decays, Phys. Rev. Lett. 128, 191802 (2022), arXiv: 2110.09501
[716]
M.Algueró, ., Emerging patterns of new physics with and without lepton flavour universal contributions, Eur. Phys. J. C 79, 714 (2019), Addendum Eur. Phys. J. C 80, 511(2020), arXiv: 1903.09578
[717]
M.Ciuchini, ., Lessons from the B0,+K*0,+ μ+μ angular analyses, Phys. Rev. D 103, 015030 (2021), arXiv: 2011.01212
[718]
J, B-decay discrepancies after Moriond 2019, Eur. Phys. J. C 80, 252 (2020), arXiv: 1903.10434
[719]
M.Algueró, ., bsℓℓ global fits after Moriond 2021 results, in: 55th Rencontres de Moriond on QCD and High Energy Interactions, 2021, arXiv: 2104.08921
[720]
W. Altmannshofer and P. Stangl, New physics in rare B decays after Moriond 2021, Eur. Phys. J. C 81, 952 (2021), arXiv: 2103.13370
[721]
L, Implications of new evidence for lepton-universality violation in bs+ decays, Phys. Rev. D 104, 035029 (2021), arXiv: 2103.12738
[722]
C.Cornella, ., Reading the footprints of the B-meson flavor anomalies, J. High Energy Phys. 08, 050 (2021), arXiv: 2103.16558
[723]
G. Isidori, D. Lancierini, P. Owen, and N. Serra, On the significance of new physics in bs+ decays, Phys. Lett. B 822, 136644 (2021), arXiv: 2104.05631
[724]
G, A general effective field theory description of b → sℓ+ lepton universality ratios, Phys. Lett. B 830, 137151 (2022), arXiv: 2110.09882
[725]
T. Hurth, F. Mahmoudi, D. M. Santos, and S. Neshatpour, More indications for lepton nonuniversality in bs+, Phys. Lett. B 824, 136838 (2022), arXiv: 2104.10058
[726]
S. Descotes-Genon, M. Novoa-Brunet, and K. K. Vos, The time-dependent angular analysis of BdKSℓℓ, a new benchmark for new physics, J. High Energy Phys. 02, 129 (2021), arXiv: 2008.08000
[727]
N. Košnik and A. Smolkovič, LFU and CP violation with S3, arXiv: 2108.11929
[728]
M. Bordone, C. Cornella, G. Isidori, and M. König, The LFU ratio Rπ in the standard model and beyond, Eur. Phys. J. C 81, 850 (2021), arXiv: 2101.11626
[729]
A. V. Rusov, Probing new physics in bd transitions, J. High Energy Phys. 07 (2020) 158, arXiv: 1911.12819
[730]
N.R. Soni, ., Rare bd decays in covariant confined quark model, arXiv: 2008.07202 (2020)
[731]
B. Kindra and N. Mahajan, Predictions of angular observables for B¯sK*ℓℓ and B¯ → ρℓℓ in the standard model, Phys. Rev. D 98, 094012 (2018), arXiv: 1803.05876
[732]
D. Atwood, M. Gronau, and A. Soni, Mixing induced CP asymmetries in radiative B decays in and beyond the standard model, Phys. Rev. Lett. 79, 185 (1997), arXiv: hep-ph/9704272
[733]
L, Alternative approach to bsγ in the uMSSM, J. High Energy Phys. 01, 022 (2002), arXiv: hep-ph/0112126
[734]
B. Grinstein, Y. Grossman, Z. Ligeti, and D. Pirjol, Photon polarization in BXγ in the standard model, Phys. Rev. D 71, 011504 (2005), arXiv: hep-ph/0412019
[735]
D. Becirevic, E. Kou, A. Le Yaouanc, and A. Tayduganov, Future prospects for the determination of the Wilson coefficient C′, J. High Energy Phys. 08, 090 (2012), arXiv: 1206.1502
[736]
E. Kou, C.-D. Lü, and F.-S. Yu, Photon polarization in the bsγ processes in the left-right symmetric model, J. High Energy Phys. 12, 102 (2013), arXiv: 1305.3173
[737]
N.Haba, ., Search for new physics via photon polarization of bsγ, J. High Energy Phys. 03, 160 (2015), arXiv: 1501.00668
[738]
A. Paul and D. M. Straub, Constraints on new physics from radiative B decays, J. High Energy Phys. 04, 027 (2017), arXiv: 1608.02556
[739]
D. Atwood, T. Gershon, M. Hazumi, and A. Soni, Mixing-induced CP violation in BP1P2γ in search of clean new physics signals, Phys. Rev. D 71, 076003 (2005), arXiv: hep-ph/0410036
[740]
F. Muheim, Y. Xie, and R. Zwicky, Exploiting the width difference in Bs → ϕγ, Phys. Lett. B 664, 174 (2008), arXiv: 0802.0876
[741]
BaBar CollaborationJ., Precision measurement of the BXsγ photon energy spectrum, branching fraction, and direct CP asymmetry ACP(BXs+dγ), Phys. Rev. Lett. 109, 191801 (2012), arXiv: 1207.2690
[742]
Belle CollaborationT., Evidence for isospin violation and measurement of CP asymmetries in BK*(892) γ, Phys. Rev. Lett. 119, 191802 (2017), arXiv: 1707.00394
[743]
LHCb CollaborationR., Measurement of the ratio of branching fractions B(B0K*0γ)/B(Bs0 → ϕγ) and the direct CP asymmetry in B0K*0γ, Nucl. Phys. B 867, 1 (2013), arXiv: 1209.0313
[744]
Belle CollaborationY., Time-dependent CP asymmetries in Bs0KS0π0γ transitions, Phys. Rev. D 74, 111104 (2006), arXiv: hep-ex/0608017
[745]
BaBar CollaborationB., Measurement of time-dependent CP asymmetry in B0KS0π0γ decays, Phys. Rev. D 78, 071102 (2008), arXiv: 0807.3103
[746]
LHCb CollaborationR., Measurement of CP-violating and mixing-induced observables in Bs0 → ϕγ decays, Phys. Rev. Lett. 123, 081802 (2019), arXiv: 1905.06284
[747]
D. Becirevic and E. Schneider, On transverse asymmetries in BK*+, Nucl. Phys. B 854, 321 (2012), arXiv: 1106.3283
[748]
LHCb CollaborationR., Strong constraints on the bsγ photon polarisation from B0K*0e+e decays, J. High Energy Phys. 12, 081 (2020), arXiv: 2010.06011
[749]
M. Gronau and D. Pirjol, Photon polarization in radiative B decays, Phys. Rev. D 66, 054008 (2002), arXiv: hep-ph/0205065
[750]
E. Kou, A. Le Yaouanc, and A. Tayduganov, Determining the photon polarization of the bsγ using the BK1(1270) → (Kππ)γ decay, Phys. Rev. D 83, 094007 (2011), arXiv: 1011.6593
[751]
LHCb CollaborationR., Observation of photon polarization in the bsγ transition, Phys. Rev. Lett. 112, 161801 (2014), arXiv: 1402.6852
[752]
W. Wang, F.-S. Yu, and Z.-X. Zhao, Novel method to reliably determine the photon helicity in BK1γ, Phys. Rev. Lett. 125, 051802 (2020), arXiv: 1909.13083
[753]
H.-Y. Cheng, X.-R. Lyu, and Z.-Z. Xing, Charm physics in the high-luminosity super τ-charm factory, in: 2022 Snowmass Summer Study, 2022, arXiv: 2203.03211
[754]
LHCb CollaborationR., First observation of the radiative Λb0 → Λγ decay, Phys. Rev. Lett. 123, 031801 (2019), arXiv: 1904.06697
[755]
M. Gremm, F. Kruger, and L. M. Sehgal, Angular distribution and polarization of photons in the inclusive decay ΛbXsγ, Phys. Lett. B 355, 579 (1995), arXiv: hep-ph/9505354
[756]
T. Mannel and S. Recksiegel, Flavor changing neutral current decays of heavy baryons: The case Λb → Λγ, J. Phys. G 24, 979 (1998), arXiv: hep-ph/9701399
[757]
G. Hiller and A. Kagan, Probing for new physics in polarized Λb decays at the Z, Phys. Rev. D 65, 074038 (2002), arXiv: hep-ph/0108074
[758]
LHCb CollaborationR. Aaij,., ., Measurement of the photon polarization in Λb 0 → Λγ decays, arXiv: 2111.10194, submitted to PRL
[759]
BESIII CollaborationM., Polarization and entanglement in baryon-antibaryon pair production in electron-positron annihilation, Nature Phys. 15, 631 (2019), arXiv: 1808.08917
[760]
Y.-M. Wang, Y. Li, and C.-D. Lü, Rare decays of Λb → Λ + γ and Λ b → Λ + l+l in the light-cone sum rules, Eur. Phys. J. C 59, 861 (2009), arXiv: 0804.0648
[761]
T. Mannel and Y.-M. Wang, Heavy-to-light baryonic form factors at large recoil, J. High Energy Phys. 12, 067 (2011), arXiv: 1111.1849
[762]
T, Rare baryon decays Λb → Λℓ+ (ℓ = e, μ, τ) and Λb → Λγ: Differential and total rates, lepton- and hadron-side forward-backward asymmetries, Phys. Rev. D 87, 074031 (2013), arXiv: 1301.3737
[763]
LHCb CollaborationR. Aaij,., ., Search for the radiative ΞbΞγ decay, J. High Energy Phys. 01, 069 (2022), arXiv: 2108.07678
[764]
LHCb CollaborationR., Search for the lepton flavour violating decay B0K∗0τ±μ∓, arXiv: 2209.09846 (submitted to J. High Energy Phys.)
[765]
LHCb CollaborationR., Search for the lepton-flavour violating decays B0K∗0μ± e∓ and Bs0 → ϕμ± e∓, arXiv: 2207.04005 (submitted to J. High Energy Phys.)
[766]
LHCb CollaborationR., Search for the lepton flavour violating decay B+K+μτ+ using Bs2∗0 decays, J. High Energy Phys. 06, 129(2020), arXiv: 2003.04352
[767]
LHCb CollaborationR., Search for the lepton-flavour violating decays B+K+μ± e∓, Phys. Rev. Lett. 123, 231802 (2019), arXiv: 1909.01010
[768]
LHCb CollaborationR., Search for the lepton-flavour-violating decays Bs0 → τ±μ∓ and B0 → τ±μ∓, Phys. Rev. Lett. 123, 211801 (2019), arXiv: 1905.06614
[769]
LHCb CollaborationR., Search for the lepton-flavour violating decays B(s)0e±μ∓, J. High Energy Phys. 03, 078 (2018), arXiv: 1710.04111
[770]
LHCb CollaborationR., Search for the baryon- and lepton-number violating decays B0pμ and Bs0pμ, arXiv: 2210.10412 (submitted to Phys. Rev. D)
[771]
LHCb CollaborationR., Evidence for the decay Bs0 →K ¯*0μ+μ, J. High Energy Phys. 07, 020 (2018), arXiv: 1804.07167
[772]
LHCb CollaborationR., Observation of the suppressed decay Λb0 → pπμ+μ, J. High Energy Phys. 04, 029 (2017), arXiv: 1701.08705
[773]
LHCb CollaborationR., First observation of the decay B+ → π+μ+μ, J. High Energy Phys. 12, 125 (2012), arXiv: 1210.2645
[774]
LHCb CollaborationR., Search for the decay B0 → ϕμ+μ, J. High Energy Phys. 05, 067 (2022), arXiv: 2201.10167
[775]
LHCb CollaborationR., Search for the rare decay B0 → J/ψϕ, Chin. Phys. C 45, 043001 (2021), arXiv: 2011.06847
[776]
J. Brod, A. Lenz, G. Tetlalmatzi-Xolocotzi, and M. Wiebusch, New physics effects in tree-level decays and the precision in the determination of the quark mixing angle γ, Phys. Rev. D 92, 033002 (2015), arXiv: 1412.1446
[777]
J. Brod and J. Zupan, The ultimate theoretical error on γ from BDK decays, JHEP 01, 051 (2014), arXiv: 1308.5663
[778]
M. Gronau, D. Wyler. On determining a weak phase from CP asymmetries in charged B decays. Phys. Lett. B, 1991, 265: 172
CrossRef ADS Google scholar
[779]
M. Gronau, D. London. How to determine all the angles of the unitarity triangle from Bd0DKs and Bs0Dϕ. Phys. Lett. B, 1991, 253: 483
CrossRef ADS Google scholar
[780]
D. Atwood, I. Dunietz, and A. Soni, Enhanced CP violation with BKD0(D¯0) modes and extraction of the Cabibbo−Kobayashi−Maskawa angle γ, Phys. Rev. Lett. 78, 3257 (1997), arXiv: hep-ph/9612433
[781]
A. Giri, Y. Grossman, A. Soffer, and J. Zupan, Determining γ using B±DK± with multibody D decays, Phys. Rev. D 68, 054018 (2003), arXiv: hep-ph/0303187
[782]
A. Bondar and A. Poluektov, Feasibility study of model-independent approach to φ3 measurement using Dalitz plot analysis, Eur. Phys. J. C 47, 347 (2006), arXiv: hep-ph/0510246
[783]
A. Bondar and A. Poluektov, The use of quantum-correlated D0 decays for φ3 measurement, Eur. Phys. J. C 55, 51 (2008), arXiv: 0801.0840
[784]
LHCb CollaborationR., Simultaneous determination of CKM angle γ and charm mixing parameters, J. High Energy Phys. 12, 141 (2021), arXiv: 2110.02350
[785]
S, First determination of the CP content of D → π+ππ+π and updated determination of the CP contents of D → π+ππ0 and DK+Kπ0, Phys. Lett. B 747, 9 (2015), arXiv: 1504.05878
[786]
BaBar CollaborationB., Measurement of CP violation parameters with a Dalitz plot analysis of B±D+ππ0)K±, Phys. Rev. Lett. 99, 251801 (2007), arXiv: hep-ex/0703037
[787]
CLEO CollaborationD., Searches for CP violation and ππ S-wave in the dalitz-Plot of D0 → π+ππ0, Phys. Rev. D 72, 031102 (2005), Erratum: Phys. Rev. D 75, 119904 (2007), arXiv: hep-ex/0503052
[788]
BaBar CollaborationB., Amplitude analysis of the decay D0K+Kπ0, Phys. Rev. D 76, 011102 (2007), arXiv: 0704.3593
[789]
CLEO CollaborationC., Measurement of interfering K*+K and K*−K+ amplitudes in the decay D0K+Kπ0, Phys. Rev. D 74, 031108 (2006), arXiv: hep-ex/0606045
[790]
LHCb CollaborationR., Observation of CP violation in charm decays, Phys. Rev. Lett. 122, 211803 (2019), arXiv: 1903.08726
[791]
W. Wang, CP violation effects on the measurement of the Cabibbo−Kobayashi−Maskawa angle γ from BDK, Phys. Rev. Lett. 110, 061802 (2013), arXiv: 1211.4539
[792]
LHCb CollaborationR., Measurement of CP observables in B±D(*)K± and B±D(*)π± decays using two-body D final states, J. High Energy Phys. 04, 081 (2021), arXiv: 2012.09903
[793]
T.Evans, ., Improved determination of the DKπ+π+π coherence factor and associated hadronic parameters from a combination of e+e → ψ(3770) → cc¯ and pp → cc¯X data, Phys. Lett. B 757, 520 (2016), Erratum: Phys. Lett. B 765, 402 (2017), arXiv: 1602.07430
[794]
T. Evans, J. Libby, S. Malde, and G. Wilkinson, Improved sensitivity to the CKM phase γ through binning phase space in BDK, DK+πππ+ decays, Phys. Lett. B 802, 135188 (2020), arXiv: 1909.10196. 112
[795]
LHCb CollaborationR., Measurement of the CKM angle γ with B ∓ → D[K± π∓π∓π±]h ∓ decays using a binned phase-space approach, arXiv: 2209.03692 (submitted to J. High Energy Phys.)
[796]
LHCb CollaborationR., Constraints on the CKM angle γ from B±Dh± decays using Dh±h′∓π0 final states, J. High Energy Phys. 07, 099 (2022), arXiv: 2112.10617
[797]
CLEO CollaborationJ. Libby,., ., Model-independent determination of the strong-phase difference between D0 and D¯0 → KS ,L0h+h (h = π, K) and its impact on the measurement of the CKM angle γ/ϕ3, Phys. Rev. D 82, 112006 (2010), arXiv: 1010.2817
[798]
BESIII CollaborationM. Ablikim,., ., Determination of strong-phase parameters in D → KS,L0π+π, Phys. Rev. Lett. 124, 241802 (2020), arXiv: 2002.12791
[799]
BESIII CollaborationM. Ablikim,., ., Model-independent determination of the relative strong-phase difference between D0 and D¯0 → KS ,L0π+π and its impact on the measurement of the CKM angle γ/ϕ3, Phys. Rev. D 101, 112002 (2020), arXiv: 2003.00091
[800]
BESIII CollaborationM. Ablikim,., ., Improved model-independent determination of the strong-phase difference between D0 and D¯0 → KS ,L0K+K decays, Phys. Rev. D 102, 052008 (2020), arXiv: 2007.07959
[801]
LHCb CollaborationR. Aaij,., ., Measurement of the CKM angle γ using B±DK± with D → KS0π+π, KS0K+K decays, J. High Energy Phys. 08, 176 (2018), Erratum JHEP 10, 107 (2018), arXiv: 1806.01202
[802]
LHCb CollaborationR. Aaij,., ., Measurement of the CKM angle γ in B±DK± and B±Dπ± decays with D → KS0h+h, J. High Energy Phys. 02 (2021) 0169, arXiv: 2010.08483
[803]
LHCb CollaborationR. Aaij,., ., Constraints on the unitarity triangle angle γ from Dalitz plot analysis of B0DK+π decays, Phys. Rev. D 93, 112018 (2016), Erratum: Phys. Rev. D 94, 079902 (2016), arXiv: 1602.03455
[804]
LHCb CollaborationR., Measurement of the CKM angle γ and Bs0− B¯s 0 mixing frequency with Bs0 → Ds∓h±π±π ∓ decays, J. High Energy Phys. 03, 137 (2021), arXiv: 2011.12041
[805]
LHCb CollaborationR., Measurement of CP asymmetry in Bs0 → Ds∓K± decays, J. High Energy Phys. 03, 059 (2018), arXiv: 1712.07428
[806]
LHCb CollaborationR., Observation of the decay Bs0 → D¯0ϕ, Phys. Lett. B 727, 403 (2013), arXiv: 1308.4583
[807]
LHCb CollaborationR., Observation of the decay Bs0 → D¯0*ϕ and search for the mode B0 → D ¯0ϕ, Phys. Rev. D 98, 071103(R) (2018), arXiv: 1807.01892
[808]
LHCb CollaborationR., Measurement of CP asymmetry in Bs0 → Ds∓ K± decays, J. High Energy Phys. 11, 060 (2014), arXiv: 1407.6127
[809]
D, Study of CKM angle γ sensitivity using flavor untagged Bs0 → D~(∗ )0ϕ decays, Chin. Phys. C 45, 023003 (2021), arXiv: 2008.00668
[810]
W. Wang, Determining CP violation angle γ with B decays into a scalar/tensor meson, Phys. Rev. D 85, 051301 (2012), arXiv: 1110.5194
[811]
L. Wolfenstein. Parametrization of the Kobayashi-Maskawa matrix. Phys. Rev. Lett., 1983, 51: 1945
CrossRef ADS Google scholar
[812]
Heavy Flavor Averaging GroupY. Amhis,., ., Averages of b-hadron, c-hadron, and τ-lepton properties as of 2018, Eur. Phys. J. C 81, 226 (2021), arXiv: 1909.12524, updated results and plots available at https://hflav.web.cern.ch
[813]
LHCb CollaborationR., Measurement of CP violation in B0 → J/ψKS0 decays, Phys. Rev. Lett. 115, 031601 (2015), arXiv: 1503.07089
[814]
LHCb CollaborationR., Measurement of CP violation in B0 → J/ψKS0 and B0 → ψ(2S)KS0 decays, J. High Energy Phys. 11, 170 (2017), arXiv: 1709.03944
[815]
BaBar CollaborationB., Measurement of time-dependent CP asymmetry in B0 → cc¯K(*)0 Decays, Phys. Rev. D 79, 072009 (2009), arXiv: 0902.1708
[816]
Belle CollaborationI., Precise measurement of the CP violation parameter sin(2ϕ1) in B0 → (cc¯)K0 decays, Phys. Rev. Lett. 108, 171802 (2012), arXiv: 1201.4643
[817]
M. Ciuchini, M. Pierini, and L. Silvestrini, Effect of penguin operators in the B0 → J/ψK0 CP asymmetry, Phys. Rev. Lett. 95, 221804 (2005), arXiv: hep-ph/0507290
[818]
BaBarCollaborationBelleI, First evidence for cos(2β) > 0 and resolution of the Cabibbo−Kobayashi−Maskawa quark-mixing unitarity triangle ambiguity, Phys. Rev. Lett. 121, 261801 (2018), arXiv: 1804.06152
[819]
BaBarCollaborationBelleI, Measurement of cos(2β) in B0D(*)h0 with DKS0π+π decays by a combined time-dependent Dalitz plot analysis of BaBar and Belle data, Phys. Rev. D 98, 112012 (2018), arXiv: 1804.06153
[820]
CKMfitter GroupJ. Charles,., ., Current status of the standard model CKM fit and constraints on ∆F = 2 new physics, Phys. Rev. D 91, 073007 (2015), arXiv: 1501.05013, updated results and plots available at http://ckmfitter.in2p3.fr/
[821]
LHCb CollaborationR. Aaij,., ., Updated measurement of time-dependent CP-violating observables in B s0 → J/ψK+K decays, Eur. Phys. J. C 79, 706 (2019), Erratum: Eur. Phys. J. C 80, 601 (2020), arXiv: 1906.08356
[822]
LHCb CollaborationR., Measurement of the CP-violating phase ϕs from Bs0 → J/ ψπ+π decays in 13 TeV pp collisions, Phys. Lett. B 797, 134789 (2019), arXiv: 1903.05530
[823]
LHCb CollaborationR., Resonances and CP-violation in B0s and B¯0s → J/ψK+K decays in the mass region above the ϕ(1020), J. High Energy Phys. 08, 037 (2017), arXiv: 1704.08217
[824]
LHCb CollaborationR., Measurement of the CP violating phase and decay-width difference in Bs0 → ψ(2S)ϕ decays, Phys. Lett. B 762, 253 (2016), arXiv: 1608.04855
[825]
LHCb CollaborationR., Measurement of the CP-violating phase ϕs in B¯s 0 →Ds+Ds decays, Phys. Rev. Lett. 113, 211801 (2014), arXiv: 1409.4619
[826]
LHCb CollaborationR. Aaij,., ., First measurement of the CP-violating phase in Bs0 → J/ψ(e+e)ϕ decays, arXiv: 2105.14738 (2021)
[827]
ATLAS CollaborationG., Measurement of the CP-violating phase ϕs in Bs0 → J/ψϕ decays in ATLAS at 13 TeV, Eur. Phys. J. C 81, 342(2021), arXiv: 2001.07115
[828]
CMSCollaborationA, Measurement of the CP-violating phase ϕs in the Bs0 → J/ψϕ(1020) → μ+μK+K channel in proton−proton collisions at s = 13 TeV, Phys. Lett. B 816, 136188 (2021), arXiv: 2007.02434
[829]
X. Liu, W. Wang, and Y. Xie, Penguin pollution in B → J/ψV decays and impact on the extraction of the Bs−B¯s0 mixing phase, Phys. Rev. D 89, 094010 (2014), arXiv: 1309.0313
[830]
S. Faller, M. Jung, R. Fleischer, and T. Mannel, The golden modes B0 → J/ψKS,L in the era of precision flavour physics, Phys. Rev. D 79, 014030 (2009), arXiv: 0809.0842
[831]
H. Nagahiro, L. Roca, A. Hosaka, and E. Oset, Hidden gauge formalism for the radiative decays of axial-vector mesons, Phys. Rev. D 79, 014015 (2009), arXiv: 0809.0943
[832]
K. De Bruyn, R. Fleischer, and P. Koppenburg, Extracting γ and penguin topologies through CP violation in Bs0 → J/ψK S0, Eur. Phys. J. C 70, 1025 (2010), arXiv: 1010.0089
[833]
M. Jung, Determining weak phases from B → J/ψP decays, Phys. Rev. D 86, 053008 (2012), arXiv: 1206.2050
[834]
K. De Bruyn and R. Fleischer, A roadmap to control penguin effects in Bd0 → J/ψK S0 and Bs0 → J/ψϕ, J. High Energy Phys. 03, 145 (2015), arXiv: 1412.6834
[835]
P. Frings, U. Nierste, and M. Wiebusch, Penguin contributions to CP phases in Bd,s decays to charmonium, Phys. Rev. Lett. 115, 061802 (2015), arXiv: 1503.00859
[836]
M. Z. Barel, K. De Bruyn, R. Fleischer, and E. Malami, In pursuit of new physics with Bd0 → J/ψK0 and Bs0 → J/ψϕ decays at the high-precision frontier, J. Phys. G 48, 065002 (2021), arXiv: 2010.14423
[837]
LHCb CollaborationR., Measurement of the CP-violating phase β in B¯0 → J/ψπ+π decays and limits on penguin effects, Phys. Lett. B 742, 38 (2015), arXiv: 1411.1634
[838]
LHCb CollaborationR., Measurement of CP violation parameters and polarisation fractions in B s0 → J/ψK¯*0 decays, J. High Energy Phys. 11, 082 (2015), arXiv: 1509.00400
[839]
LHCb CollaborationR., Measurement of CP violation in the Bs0 → ϕϕ decay and search for the B0ϕϕ decay, J. High Energy Phys. 12, 155 (2019), arXiv: 1907.10003.
[840]
LHCb CollaborationR., First measurement of the CP-violating phase ϕsd in Bs0 → (K+π)(Kπ+) decays, J. High Energy Phys. 03, 140 (2018), arXiv: 1712.08683
[841]
H.-n. Li, Y.-L. Shen, and Y.-M. Wang, Next-to-leading-order corrections to B → π form factors in kT factorization, Phys. Rev. D 85, 074004 (2012), arXiv: 1201.5066
[842]
Y.-M. Wang and Y.-L. Shen, QCD corrections to B → π form factors from light-cone sum rules, Nucl. Phys. B 898, 563 (2015), arXiv: 1506.00667
[843]
Y.-M. Wang, Y.-B. Wei, Y.-L. Shen, and C.-D. Lü, Perturbative corrections to BD form factors in QCD, JHEP 06, 062 (2017), arXiv: 1701.06810
[844]
C.-D. Lü, Y.-L. Shen, Y.-M. Wang, and Y.-B. Wei, QCD calculations of B → π, K form factors with higher-twist corrections, J. High Energy Phys. 01, 024 (2019), arXiv: 1810.00819
[845]
A. Khodjamirian, C. Klein, T. Mannel, and Y.-M. Wang, Form factors and strong couplings of heavy baryons from QCD light-cone sum rules, J. High Energy Phys. 09, 106 (2011), arXiv: 1108.2971
[846]
CKMfitter groupJ., CP violation and the CKM matrix: Assessing the impact of the asymmetric B factories, Eur. Phys. J. C 41, 1 (2005), arXiv: hep-ph/0406184
[847]
LHCb CollaborationR., Determination of the quark coupling strength |Vub| using baryonic decays, Nat. Phys. 11, 743 (2015), arXiv: 1504.01568
[848]
BESIII CollaborationM., Measurements of absolute hadronic branching fractions of Λc + baryon, Phys. Rev. Lett. 116, 052001 (2016), arXiv: 1511.08380
[849]
LHCb CollaborationR., First observation of the decay B s0 → Kμ+vμ and measurement of |Vub| / |Vcb|, Phys. Rev. Lett. 126, 081804 (2021), arXiv: 2012.05143
[850]
LHCb CollaborationR., Measurement of |Vcb| with B0D(*)sμ+v decays, Phys. Rev. D 101, 072004 (2020), arXiv: 2001.03225
[851]
I. Caprini, L. Lellouch, and M. Neubert, Dispersive bounds on the shape of BD(*)v form factors, Nucl. Phys. B 530, 153 (1998), arXiv: hep-ph/9712417
[852]
C. G. Boyd, B. Grinstein, and R. F. Lebed, Constraints on form factors for exclusive semileptonic heavy to light meson decays, Phys. Rev. Lett. 74, 4603 (1995), arXiv: hep-ph/9412324
[853]
C. G. Boyd, B. Grinstein, and R. F. Lebed, Precision corrections to dispersive bounds on form factors, Phys. Rev. D 56, 6895 (1997), arXiv: hep-ph/9705252
[854]
LHCb CollaborationR., A precise measurement of the B0 meson oscillation frequency, Eur. Phys. J. C 76, 412 (2016), arXiv: 1604.03475
[855]
LHCb CollaborationR., Precise determination of the B s0− B¯s0 oscillation frequency, Nat. Phys. 18, 1 (2022), arXiv: 2104.04421
[856]
Flavour Lattice Averaging GroupS., FLAG review 2019, Eur. Phys. J. C 80, 113 (2020), arXiv: 1902.08191
[857]
A. J. Buras, M. E. Lautenbacher, and G. Ostermaier, Waiting for the top quark mass, K+ → π+v v¯, Bs0−B¯s0 mixing and CP asymmetries in B-decays, Phys. Rev. D 50, 3433 (1994), arXiv: hep-ph/9403384
[858]
BaBar CollaborationB., Evidence for D0−D¯0 mixing, Phys. Rev. Lett. 98, 211802 (2007), arXiv: hep-ex/0703020
[859]
BELLE CollaborationM., Evidence for D0−D¯0 mixing, Phys. Rev. Lett. 98, 211803 (2007), arXiv: hep-ex/0703036
[860]
CDF CollaborationT., Evidence for D0−D¯0 mixing using the CDF II detector, Phys. Rev. Lett. 100, 121802 (2008), arXiv: 0712.1567
[861]
BaBar CollaborationB., Measurement of D0−D¯0 mixing from a time-dependent amplitude analysis of D0K+ππ0 decays, Phys. Rev. Lett. 103, 211801 (2009), arXiv: 0807.4544
[862]
BaBar CollaborationB., Measurement of D0−D¯0 mixing using the ratio of lifetimes for the decays D0Kπ+ and K+K, Phys. Rev. D 80, 071103 (2009), arXiv: 0908.0761
[863]
LHCb CollaborationR., Observation of D0−D¯0 oscillations, Phys. Rev. Lett. 110, 101802 (2013), arXiv: 1211.1230
[864]
S. Bianco, F. L. Fabbri, D. Benson, and I. Bigi, A Cicerone for the physics of charm, Riv. Nuovo Cim. 26, 1 (2003), arXiv: hep-ex/0309021
[865]
LHCb CollaborationR., Measurement of D0−D¯0 mixing parameters and search for CP violation using D0K+π decays, Phys. Rev. Lett. 111, 251801 (2013), arXiv: 1309.6534
[866]
LHCb CollaborationR. Aaij,., ., Measurements of charm mixing and CP violation using D0K±π∓ decays, Phys. Rev. D 95, 052004 (2017), Erratum: Phys. Rev. D 96, 099907 (2017), arXiv: 1611.06143
[867]
LHCb CollaborationR., Updated determination of D0−D¯0 mixing and CP violation parameters with D0K+π decays, Phys. Rev. D 97, 031101 (2018), arXiv: 1712.03220
[868]
LHCb CollaborationR., Model-independent measurement of mixing parameters in D0KS0π+π decays, J. High Energy Phys. 04, 033 (2016), arXiv: 1510.01664
[869]
LHCb CollaborationR., Measurement of the mass difference between neutral charm-meson eigenstates, Phys. Rev. Lett. 122, 231802 (2019), arXiv: 1903.03074
[870]
LHCb CollaborationR., Observation of the mass difference between neutral charm-meson eigenstates, Phys. Rev. Lett. 127, 111801 (2021), arXiv: 2106.03744
[871]
LHCb CollaborationR., Measurement of CP asymmetry in D0KK+ and D0 → ππ+ decays, J. High Energy Phys. 07, 041 (2014), arXiv: 1405.2797
[872]
LHCb CollaborationR., Measurement of the difference of time-integrated CP asymmetries in D0KK+ and D0 → ππ+ decays, Phys. Rev. Lett. 116, 191601 (2016), arXiv: 1602.03160
[873]
LHCb CollaborationR., Measurement of the charm-mixing parameter yCP, Phys. Rev. Lett. 122, 011802 (2019), arXiv: 1810.06874
[874]
LHCb CollaborationR., Measurement of indirect CP asymmetries in D0KK+ and D0 → ππ+ decays using semileptonic B decays, J. High Energy Phys. 04, 043 (2015), arXiv: 1501.06777
[875]
LHCb CollaborationR., Measurement of the CP violation parameter AΓ in D0K+K and D0 → π+π decays, Phys. Rev. Lett. 118, 261803 (2017), arXiv: 1702.06490
[876]
LHCb CollaborationR., Updated measurement of decay-time-dependent CP asymmetries in D0K+K and D0 → π+π decays, Phys. Rev. D 101, 012005 (2020), arXiv: 1911.01114
[877]
LHCb CollaborationR., Search for time-dependent CP violation in D0K+K and D0 → π+π decays, Phys. Rev. D 104, 072010 (2021), arXiv: 2105.09889
[878]
LHCb CollaborationR., First observation of D0 → D¯0 oscillations in D0K+π+ππdecays and a measurement of the associated coherence parameters, Phys. Rev. Lett. 116, 241801 (2016), arXiv: 1602.07224
[879]
LHCb CollaborationR., Evidence for CP violation in time-integrated D0hh+ decay rates, Phys. Rev. Lett. 108, 111602 (2012), arXiv: 1112.0938
[880]
LHCb CollaborationR., Search for direct CP violation in D0hh+ modes using semileptonic B decays, Phys. Lett. B 723, 33 (2013), arXiv: 1303.2614
[881]
LHCb CollaborationR., Search for CP violation in D+ϕπ+ and Ds+ → KS0π+ decays, J. High Energy Phys. 06, 112 (2013), arXiv: 1303.4906
[882]
LHCb CollaborationR., Search for CP violation in D± → KS0K± and Ds± → KS0π± decays, J. High Energy Phys. 10, 025 (2014), arXiv: 1406.2624
[883]
LHCb CollaborationR., Measurement of the time-integrated CP asymmetry in D0 → KS0 KS0 decays, J. High Energy Phys. 10, 055 (2015), arXiv: 1508.06087
[884]
LHCb CollaborationR., Measurement of CP asymmetries in D±η′π± and D s± → η′π± decays, Phys. Lett. B 771, 21 (2017), arXiv: 1701.01871
[885]
LHCb CollaborationR., Measurement of the time-integrated CP asymmetry in D0 → KS0 KS0 decays, J. High Energy Phys. 11, 048 (2018), arXiv: 1806.01642
[886]
LHCb CollaborationR., Search for CP violation in Ds+ → KS0π+, D+ → KS0K+ and D+ϕπ+ decays, Phys. Rev. Lett. 122, 191803 (2019), arXiv: 1903.01150
[887]
LHCb CollaborationR., Measurement of CP asymmetry in D0 → KS0 KS0 decays, Phys. Rev. D 104, L031102 (2021), arXiv: 2105.01565
[888]
LHCb CollaborationR., Search for CP violation in D(s)+h+π0 and D(s)+h+η decays, J. High Energy Phys. 06, 019 (2021), arXiv: 2103.11058
[889]
LHCb CollaborationR., Measurement of CP asymmetries in D(s)+η′π+ and D(s)+η′π+ decays, arXiv: 2204.12228 (to be published in J. High Energy Phys.)
[890]
LHCb CollaborationR. Aaij,., ., Measurement of the time-integrated CP asymmetry in D0KK+ decays, arXiv: 2209.03179 (submitted to Phys. Rev. Lett.)
[891]
LHCb CollaborationR., Search for CP violation through an amplitude analysis of D0K+Kπ+π decays, J. High Energy Phys. 02, 126 (2019), arXiv: 1811.08304
[892]
LHCb CollaborationR., Search for CP violation in D+KK+π+ decays, Phys. Rev. D 84, 112008 (2011), arXiv: 1110.3970
[893]
LHCb CollaborationR., Model-independent search for CP violation in D0KK+π+π and D0 → ππ+ππ+ decays, Phys. Lett. B 726, 623 (2013), arXiv: 1308.3189
[894]
LHCb CollaborationR., Search for CP violation in the decay D+ → ππ+π+, Phys. Lett. B 728, 585 (2014), arXiv: 1310.7953
[895]
LHCb CollaborationR., Search for CP violation using T-odd correlations in D0K+Kπ+π decays, J. High Energy Phys. 10, 005 (2014), arXiv: 1408.1299
[896]
LHCb CollaborationR., Search for CP violation in Ξc+pKπ+ decays with model-independent techniques, Eur. Phys. J. C 80, 986 (2020), arXiv: 2006.03145
[897]
LHCb CollaborationR., Search for CP violation in D0 → ππ+π0 decays with the energy test, Phys. Lett. B 740, 158 (2015), arXiv: 1410.4170
[898]
LHCb CollaborationR., Search for CP violation in the phase space of D0 → π+ππ+πdecays, Phys. Lett. B 769, 345 (2017), arXiv: 1612.03207
[899]
M. Williams, Observing CP violation in many-body decays, Phys. Rev. D 84, 054015 (2011), arXiv: 1105.5338
[900]
C, On model-independent searches for direct CP violation in multi-body decays, J. Phys. G 44, 085001 (2017), arXiv: 1612.04705
[901]
LHCb CollaborationR., Search for CP violation in Λ c+ → pKK+ and Λc + → pππ+decays, J. High Energy Phys. 03, 182 (2018), arXiv: 1712.07051
[902]
LHCb CollaborationR., Measurement of mixing and CP violation parameters in two-body charm decays, J. High Energy Phys. 04, 129 (2012), arXiv: 1112.4698
[903]
LHCb CollaborationR., Measurements of indirect CP asymmetries in D0KK+ and D0 → ππ+ decays, Phys. Rev. Lett. 112, 041801 (2014), arXiv: 1310.7201
[904]
LHCb CollaborationR., Measurement of the charm mixing parameter yCP−y CP Kπ using two-body D0 meson decays, Phys. Rev. D 105, 092013 (2022), arXiv: 2202.09106
[905]
T. Pajero and M. J. Morello, Mixing and CP violation in D0Kπ+ decays, J. High Energy Phys. 03, 162 (2022), arXiv: 2106.02014
[906]
LHCb Collaboration, Framework TDR for the LHCb Upgrade: Technical Design Report, CERN-LHCC-2012-007, 2012
[907]
O.Aberle, ., High-Luminosity Large Hadron Collider (HL-LHC): Technical design report, CERN Yellow Reports: Monographs, CERN, Geneva, 10 (2020)
[908]
LHCb Collaboration, Expression of Interest for a Phase-II LHCb Upgrade: Opportunities in flavour physics, and beyond, in the HL-LHC era, CERN-LHCC-2017-003, 2017
[909]
S.Hashimoto, ., Letter of intent for KEK super B factory KEK-REPORT-2004-4, 2004
[910]
Y. Ohnishi. . Accelerator design at SuperKEKB. Prog. Theor. Exp. Phys., 2013, 2013: 03A011
CrossRef ADS Google scholar
[911]
CEPC Study GroupM. Dong,., ., CEPC Conceptual Design Report: Volume 2, Physics & Detector, arXiv: 1811.10545 (2018)
[912]
FCC CollaborationA., FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2, Eur. Phys. J. ST 228, 261 (2019)
[913]
BESIII CollaborationM., Design and construction of the BESIII Detector, Nucl. Instrum. Meth. A 614, 345 (2010), arXiv: 0911.4960
[914]
BESIII CollaborationM., Future physics programme of BESIII, Chin. Phys. C 44, 040001 (2020), arXiv: 1912.05983
[915]
G. Wilkinson, Charming synergies: The role of charm-threshold studies in the search for physics beyond the Standard Model, Sci. Bull. 66, 2251 (2021), arXiv: 2107.08414
[916]
SCTF Collaboration D. A. Epifanov.. Project of super charm-tau factory. Phys. Atom. Nucl., 2020, 83: 944
CrossRef ADS Google scholar
[917]
H. P. Peng, Y. H. Zheng, X. R. Zhou. Super tau-charm facility of China. Physics, 2020, 49: 513
CrossRef ADS Google scholar
[918]
LHCb Collaboration, LHCb Trigger and Online Upgrade Technical Design Report, CERN-LHCC-2014-016, 2014
[919]
LHCb Collaboration, LHCb VELO Upgrade Technical Design Report, CERN-LHCC-2013-021, 2013
[920]
LHCb Collaboration, LHCb Tracker Upgrade Technical Design Report, CERNLHCC-2014-001, 2014
[921]
LHCb Collaboration, LHCb PID Upgrade Technical Design Report, CERN-LHCC-2013-022, 2013
[922]
LHCb Collaboration, LHCb Upgrade Software and Computing, CERN-LHCC-2018-007, 2018
[923]
LHCb Collaboration, Computing Model of the Upgrade LHCb experiment, CERNLHCC-2018-014, 2018
[924]
LHCb Collaboration, LHCb Upgrade GPU High Level Trigger Technical Design Report, CERN-LHCC-2020-006, 2020
[925]
LHCb Collaboration, LHCb SMOG Upgrade, CERN-LHCC-2019-005, 2019
[926]
I.Efthymiopoulos, ., LHCb Upgrades and operation at 1034 cm−2·s−1 luminosity — a first study, CERN-ACC-NOTE-2018-0038, 2018
[927]
LHCb Collaboration, LHCb Framework TDR for the LHCb Upgrade II Opportunities in flavour physics, and beyond, in the HL-LHC era, CERN-LHCC-2021-012, 2022
[928]
LHCb CollaborationR., Implications of LHCb measurements and future prospects, Eur. Phys. J. C 73, 2373 (2013), arXiv: 1208.3355
[929]
LHCb Collaboration, Updated sensitivity projections for the LHCb Upgrade, LHCb-PUB-2013-015, CERN-LHCb-PUB-2013-015, CERN, Geneva, 2013
[930]
Belle-IICollaborationW.Altmannshofer, ., The Belle II physics book, Prog. Theor. Exp. Phys. 2019, 123C01 (2019), Erratum: Prog. Theor. Exp. Phys. 2020, 029201 (2020), arXiv: 1808.10567
[931]
LHCb Collaboration, Updated LHCb combination of the CKM angle γ, LHCb- CONF-2020-003, 2020
[932]
LHCb CollaborationR., Measurement of CP violation in B0 → J/ ψKS0 and B0 → ψ(2S)KS0 decays, J. High Energy Phys. 11, 170 (2017), arXiv: 1709.03944
[933]
LHCb Collaboration, R. Aaij et al., Precision measurement of CP violation in B s0 → J/ψK+K decays, Phys. Rev. Lett. 114, 041801 (2015), arXiv: 1411.3104
[934]
ATLAS Collaboration, ATLAS B-physics studies at increased LHC luminosity, potential for CP-violation measurement in the Bs0 → J/ψϕ decay, ATL-PHYS-PUB-2013-010, 2013
[935]
CMS Collaboration, CP-violation studies at the HL-LHC with CMS using Bs0 decays to J/ψϕ (1020), CMS-PAS-FTR-18-041, 2018
[936]
LHCb CollaborationR., Measurement of CP violation in B s0 → ϕϕ decays, Phys. Rev. D 90, 052011 (2014), arXiv: 1407.2222
[937]
CMS Collaboration, ECFA 2016: Prospects for selected standard model measurements with the CMS experiment at the High-Luminosity LHC, CMS-PAS-FTR-16-006, 2017
[938]
LHCb CollaborationR., Measurement of the CP asymmetry in B s0− B¯s0 mising, Phys. Rev. Lett. 117, 061803 (2016), arXiv: 1605.09768
[939]
CMS Collaboration, B Physics analyses for the Phase-II Upgrade Technical Proposal, CMS-PAS-FTR-14-015, 2015
[940]
CMS Collaboration, Measurement of rare Bµ+µdecays with the Phase-2 upgraded CMS detector at the HL-LHC, CMS-PAS-FTR-18-013, 2018
[941]
LHCb CollaborationR. Aaij,., ., Measurement of the ratio of branching fractions B( B¯0D∗+τν ¯τ)/B(B¯0D∗+μ ν¯μ), Phys. Rev. Lett. 115, 111803 (2015) Publisher’s Note, Phys. Rev. Lett. 115, 159901, (2015), arXiv: 1506.08614
[942]
LHCb CollaborationR., Test of lepton flavor universality by the measurement of the B0D∗−τ+ντ branching fraction using three-prong τ decays, Phys. Rev. D 97, 072013 (2018), arXiv: 1711.02505
[943]
LHCb CollaborationR., Measurement of the ratio of branching fractions B( Bc+ → J/ψτ+ντ)/B(Bc+ → J/ψµ+νµ), Phys. Rev. Lett 120, 121801 (2018), arXiv: 1711.05623

Acknowledgements

This work was partially supported by the National Key Research and Development Program of China under Grant Nos. 2017YFA0402100 and 2022YFA1601900, the National Natural Science Foundation of China (NSFC) under Grant Nos. 11435003, 11575091, 11575094, 11925504, 11975015, 12175245, 12175005, 11705209, 12205312, 12275100, 11961141015 and 12061141007, Chinese Academy of Sciences, Fundamental Research Funds for the Central Universities, Peking University Funds for the New Faculty Startup program. We thank Franz Muheim and Niels Tuning for suggestions in improving the draft.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(25848 KB)

Accesses

Citations

Detail

Sections
Recommended

/