10-Hertz squeezed light source generation on the cesium D2 line using single photon modulation

Guan-Hua Zuo, Yu-Chi Zhang, Gang Li, Peng-Fei Zhang, Peng-Fei Yang, Yan-Qiang Guo, Shi-Yao Zhu, Tian-Cai Zhang

PDF(4093 KB)
PDF(4093 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (3) : 32301. DOI: 10.1007/s11467-022-1246-2
RESEARCH ARTICLE
RESEARCH ARTICLE

10-Hertz squeezed light source generation on the cesium D2 line using single photon modulation

Author information +
History +

Abstract

Generation of squeezed light source is a promising technique to overcome the standard quantum limit in precision measurement. Here, we demonstrate an experimental generation of quadrature squeezing resonating on the cesium D2 line down to 10 Hz for the first time. The maximum squeezing in audio frequency band is 5.57 dB. Moreover, we have presented a single-photon modulation locking to control the squeezing angle, while effectively suppressing the influence of laser noise on low-frequency squeezing. The whole system operates steadily for hours. The generated low-frequency squeezed light source can be applied in quantum metrology, light−matter interaction investigation and quantum memory in the audio frequency band and even below.

Graphical abstract

Keywords

squeezed state / optical parametric amplifier / low-frequency squeezing

Cite this article

Download citation ▾
Guan-Hua Zuo, Yu-Chi Zhang, Gang Li, Peng-Fei Zhang, Peng-Fei Yang, Yan-Qiang Guo, Shi-Yao Zhu, Tian-Cai Zhang. 10-Hertz squeezed light source generation on the cesium D2 line using single photon modulation. Front. Phys., 2023, 18(3): 32301 https://doi.org/10.1007/s11467-022-1246-2

References

[1]
R. E. Slusher , L. W. Hollberg , B. Yurke , J. C. Mertz , J. F. Valley . Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys. Rev. Lett., 1985, 55(22): 2409
CrossRef ADS Google scholar
[2]
N. Gisin , R. Thew . Quantum communication. Nat. Photon., 2007, 1(3): 165
CrossRef ADS Google scholar
[3]
X. J. Jia , Z. H. Yan , Z. Y. Duan , X. L. Su , H. Wang , C. D. Xie , K. C. Peng . Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelengths. Phys. Rev. Lett., 2012, 109(25): 253604
CrossRef ADS Google scholar
[4]
C. J. Liu , W. Ye , W. D. Zhou , H. L. Zhang , J. H. Huang , L. Y. Hu . Entanglement of coherent superposition of photon-subtraction squeezed vacuum. Front. Phys., 2017, 12(5): 120307
CrossRef ADS Google scholar
[5]
L. Tian , S. P. Shi , Y. H. Tian , Y. J. Wang , Y. H. Zheng , K. C. Peng . Resource reduction for simultaneous generation of two types of continuous variable nonclassical states. Front. Phys., 2021, 16(2): 21502
CrossRef ADS Google scholar
[6]
K. Honda , D. Akamatsu , M. Arikawa , Y. Yokoi , K. Akiba , S. Nagatsuka , T. Tanimura , A. Furusawa , M. Kozuma . Storage and retrieval of a squeezed vacuum. Phys. Rev. Lett., 2008, 100(9): 093601
CrossRef ADS Google scholar
[7]
J. Appel , E. Figueroa , D. Korystov , M. Lobino , A. I. Lvovsky . Quantum memory for squeezed light. Phys. Rev. Lett., 2008, 100(9): 093602
CrossRef ADS Google scholar
[8]
J. Hald , J. L. Sørensen , C. Schori , E. S. Polzik . Spin squeezed atoms: A macroscopic entangled ensemble created by light. Phys. Rev. Lett., 1999, 83(7): 1319
CrossRef ADS Google scholar
[9]
A. Dantan , M. Pinard . Quantum-state transfer between fields and atoms in electromagnetically induced transparency. Phys. Rev. A, 2004, 69(4): 043810
CrossRef ADS Google scholar
[10]
N. Otterstrom , R. C. Pooser , B. J. Lawrie . Nonlinear optical magnetometry with accessible in situ optical squeezing. Opt. Lett., 2014, 39(22): 6533
CrossRef ADS Google scholar
[11]
X. Y. Hu , C. P. Wei , Y. F. Yu , Z. M. Zhang . Enhanced phase sensitivity of an SU(1, 1) interferometer with displaced squeezed vacuum light. Front. Phys., 2016, 11(3): 114203
CrossRef ADS Google scholar
[12]
R. C. Pooser , B. Lawrie . Ultrasensitive measurement of microcantilever displacement below the shot-noise limit. Optica, 2015, 2(5): 393
CrossRef ADS Google scholar
[13]
P. Grangier , R. E. Slusher , B. Yurke , A. LaPorta . Squeezed-light-enhanced polarization interferometer. Phys. Rev. Lett., 1987, 59(19): 2153
CrossRef ADS Google scholar
[14]
J. Liu , Y. Yu , C. Y. Wang , Y. Chen , J. W. Wang , H. X. Chen , D. We , H. Gao , F. L. Li . Optimal phase sensitivity by quantum squeezing based on a Mach-Zehnder interferometer. New J. Phys., 2020, 22(1): 013031
CrossRef ADS Google scholar
[15]
Y. Zhang . Generation of non-classical states from an optical parametric oscillator/amplifier and their applications. Front. Phys. China, 2008, 3(2): 126
CrossRef ADS Google scholar
[16]
T. Serikawa , J. I. Yoshikawa , K. Makino , A. Frusawa . Creation and measurement of broadband squeezed vacuum from a ring optical parametric oscillator. Opt. Express, 2016, 24(25): 28383
CrossRef ADS Google scholar
[17]
M. Mehmet , S. Ast , T. Eberle , S. Steinlechner , H. Vahlbruch , R. Schnabel . Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB. Opt. Express, 2011, 19(25): 25763
CrossRef ADS Google scholar
[18]
R. Schnabel , N. Mavalvala , D. E. McClelland , P. K. Lam . Quantum metrology for gravitational wave astronomy. Nat. Commun., 2010, 1(1): 121
CrossRef ADS Google scholar
[19]
M. A. Taylor , J. Janousek , V. Daria , J. Knittel , B. Hage , H. A. Bachor , W. P. Bowen . Biological measurement beyond the quantum limit. Nat. Photon., 2013, 7(3): 229
CrossRef ADS Google scholar
[20]
D. Budker , M. Romalis . Optical magnetometry. Nat. Photon., 2007, 3(4): 227
[21]
D. Akamatsu , K. Akiba , M. Kozuma . Electromagnetically induced transparency with squeezed vacuum. Phys. Rev. Lett., 2004, 92(20): 203602
CrossRef ADS Google scholar
[22]
C. Xu , L. D. Zhang , S. T. Huang , T. X. Ma , F. Liu , H. Yonezawa , Y. Zhang , M. Xiao . Sensing and tracking enhanced by quantum squeezing. Photon. Res., 2019, 7(6): A14
CrossRef ADS Google scholar
[23]
W. Wasilewski , K. Jensen , H. Krauter , J. J. Renema , M. V. Balabas , E. S. Polzik . Quantum noise limited and entanglement-assisted magnetometry. Phys. Rev. Lett., 2010, 104(13): 133601
CrossRef ADS Google scholar
[24]
T. Horrom , R. Singh , J. P. Dowling , E. E. Mikhailov . Quantum-enhanced magnetometer with low-frequency squeezing. Phys. Rev. A, 2012, 86(2): 023803
CrossRef ADS Google scholar
[25]
TheLIGO Scientific Collaboration, A gravitational wave observatory operating beyond the quantum shot-noise limit, Nat. Phys. 7(12), 962 (2011)
[26]
S. S. Y. Chua , B. J. J. Slagmolen , D. A. Shaddock , D. E. McClelland . Quantum squeezed light in gravitational-wave detectors. Class. Quantum Grav., 2014, 31(18): 183001
CrossRef ADS Google scholar
[27]
M. Tse , H. Yu , N. Kijbunchoo , A. Fernandez-Galiana , P. Dupej . . Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy. Phys. Rev. Lett., 2019, 123(23): 231107
CrossRef ADS Google scholar
[28]
L. L. Bai , X. Wen , Y. L. Yang , L. L. Zhang , J. He , Y. H. Wang , J. M. Wang . Quantum-enhanced rubidium atomic magnetometer based on Faraday rotation via 795 nm Stokes operator squeezed light. J. Opt., 2021, 23(8): 085202
CrossRef ADS Google scholar
[29]
B. B. Li , J. Bílek , U. Hoff , L. Madsen , S. Forstner , V. Prakash , C. Schäfermeier , T. Gehring , W. Bowen , U. Andersen . Quantum enhanced optomechanical magnetometry. Optica, 2018, 5(7): 850
CrossRef ADS Google scholar
[30]
F. Wolfgramm , A. Cerè , F. A. Beduini , A. Predojević , M. Koschorreck , M. W. Mitchell . Squeezed-light optical magnetometry. Phys. Rev. Lett., 2010, 105(5): 053601
CrossRef ADS Google scholar
[31]
K. McKenzie , M. B. Gray , P. K. Lam , D. E. McClelland . Technical limitations to homodyne detection at audio frequencies. Appl. Opt., 2007, 46(17): 3389
CrossRef ADS Google scholar
[32]
M. S. Stefszky , C. M. Mow-Lowry , S. S. Y. Chua , D. A. Shaddock , B. C. Buchler , H. Vahlbruch , A. Khalaidovski , R. Schnabel , P. K. Lam , D. E. McClelland . Balanced homodyne detection of optical quantum states at audio-band frequencies and below. Class. Quantum Gravity, 2012, 29(14): 145015
CrossRef ADS Google scholar
[33]
K. McKenzie , N. Grosse , W. P. Bowen , S. E. Whitcomb , M. B. Gray , D. E. McClelland , P. K. Lam . Squeezing in the audio gravitational-wave detection band. Phys. Rev. Lett., 2004, 93(16): 161105
CrossRef ADS Google scholar
[34]
H. Vahlbruch , S. Chelkowski , K. Danzmann , R. Schnabel . Quantum engineering of squeezed states for quantum communication and metrology. New J. Phys., 2007, 9(10): 371
CrossRef ADS Google scholar
[35]
W. P. Bowen , R. Schnabel , N. Treps , H. A. Bachor , P. K. Lam . Recovery of continuous wave squeezing at low frequencies. J. Opt. B, 2002, 4(6): 421
CrossRef ADS Google scholar
[36]
K. McKenzie , M. B. Gray , S. Goßler , P. K. Lam , D. E. McClelland . Squeezed state generation for interferometric gravitational-wave detection. Class. Quantum Grav., 2006, 23(8): S245
CrossRef ADS Google scholar
[37]
R. Schnabel , H. Vahlbruch , A. Franzen , S. Chelkowski , N. Grosse , H. A. Bachor , W. P. Bowen , P. K. Lam , K. Danzmann . Squeezed light at sideband frequencies below 100 kHz from a single OPA. Opt. Commun., 2004, 240(1−3): 185
CrossRef ADS Google scholar
[38]
E. Oelker , G. Mansell , M. Tse , J. Miller , F. Matichard , L. Barsotti , P. Fritschel , D. E. McClelland , M. Evans , N. Mavalvala . Ultra-low phase noise squeezed vacuum source for gravitational wave detectors. Optica, 2016, 3(7): 682
CrossRef ADS Google scholar
[39]
K. McKenzie , E. E. Mikhailov , K. Goda , P. K. Lam , N. Grosse , M. B. Gray , N. Mavalvala , D. E. McClelland . Quantum noise locking. J. Opt. B, 2005, 7(10): S421
CrossRef ADS Google scholar
[40]
F. Torabi-Goudarzi , E. Riis . Efficient CW high-power frequency doubling in periodically poled KTP. Opt. Commun., 2003, 227(4−6): 389
CrossRef ADS Google scholar
[41]
X. Wen , Y. S. Han , J. Y. Liu , J. He , J. M. Wang . Polarization squeezing at the audio frequency band for the rubidium D1 line. Opt. Express, 2017, 25(17): 20737
CrossRef ADS Google scholar
[42]
J. F. Tian , G. H. Zuo , Y. C. Zhang , G. Li , P. F. Zhang , T. C. Zhang . Generation of squeezed vacuum on cesium D2 line down to kilohertz range. Chin. Phys. B, 2017, 26(12): 124206
CrossRef ADS Google scholar
[43]
S. Burks , J. Ortalo , A. Chiummo , X. Jia , F. Villa , A. Bramati , J. Laurat , E. Giacobino . Vacuum squeezed light for atomic memories at the D2 cesium line. Opt. Express, 2009, 17(5): 3777
CrossRef ADS Google scholar
[44]
C. J. Liu , J. T. Jing , Z. F. Zhou , R. C. Pooser , F. Hudelist , W. P. Zhang . Realization of low frequency and controllable bandwidth squeezing based on a four-wave-mixing amplifier in rubidium vapor. Opt. Lett., 2011, 36(15): 2979
CrossRef ADS Google scholar
[45]
R. Ma , W. Liu , Z. Z. Qin , X. L. Su , X. J. Jia , J. X. Zhang , J. R. Gao . Compact sub-kilohertz low-frequency quantum light source based on four-wave mixing in cesium vapor. Opt. Lett., 2018, 43(6): 1243
CrossRef ADS Google scholar
[46]
L. McCuller , C. Whittle , D. Ganapathy , K. Komori , M. Tse , A. Fernandez-Galiana , L. Barsotti , P. Fritschel , M. MacInnis , F. Matichard , K. Mason , N. Mavalvala , R. Mittleman , H. Yu , M. E. Zucker , M. Evans . Frequency dependent squeezing for advanced LIGO. Phys. Rev. Lett., 2020, 124(17): 171102
CrossRef ADS Google scholar
[47]
K. McKenzie , D. A. Shaddock , D. E. McClelland , B. C. Buchler , P. K. Lam . Experimental demonstration of a squeezing-enhanced power-recycled Michelson interferometer for gravitational wave detection. Phys. Rev. Lett., 2002, 88(23): 231102
CrossRef ADS Google scholar
[48]
F. Liu , Y. Y. Zhou , J. Yu , J. L. Guo , Y. Wu , S. X. Xiao , D. Wei , Y. Zhang , X. Jia , M. Xiao . Squeezing-enhanced fiber Mach-Zehnder interferometer for low-frequency phase measurement. Appl. Phys. Lett., 2017, 110(2): 021106
CrossRef ADS Google scholar
[49]
Y. Q. Guo , H. J. Zhang , X. M. Guo , Y. C. Zhang , T. C. Zhang . High-order continuous-variable coherence of phase-dependent squeezed state. Opt. Express, 2022, 30(6): 8461
CrossRef ADS Google scholar
[50]
W. P. Bowen , R. Schnabel , H. A. Bachor , P. K. Lam . Polarization squeezing of continuous variable stokes parameters. Phys. Rev. Lett., 2002, 88(9): 093601
CrossRef ADS Google scholar
[51]
H. Vahlbruch , S. Chelkowski , B. Hage , A. Franzen , K. Danzmann , R. Schnabel . Coherent control of vacuum squeezing in the gravitational-wave detection band. Phys. Rev. Lett., 2006, 97(1): 011101
CrossRef ADS Google scholar
[52]
Y. Takeno , M. Yukawa , H. Yonezawa , A. Furusawa . Observation of −9 dB quadrature squeezing with improvement of phase stability in homodyne measurement. Opt. Express, 2007, 15(7): 4321
CrossRef ADS Google scholar
[53]
S. A. Haine , M. K. Olsen , J. J. Hope . Generating controllable atom−light entanglement with a Raman atom laser system. Phys. Rev. Lett., 2006, 96(13): 133601
CrossRef ADS Google scholar
[54]
C. Troullinou , R. Jiménez-Martínez , J. Kong , V. G. Lucivero , M. W. Mitchell . Squeezed-light enhancement and backaction evasion in a high sensitivity optically pumped magnetometer. Phys. Rev. Lett., 2021, 127(19): 193601
CrossRef ADS Google scholar
[55]
M. T. L. Hsu , G. Hétet , O. Glöckl , J. J. Longdell , B. C. Buchler , H. A. Bachor , P. K. Lam . Quantum study of information delay in electromagnetically induced transparency. Phys. Rev. Lett., 2006, 97(18): 183601
CrossRef ADS Google scholar
[56]
J. Appel , E. Figueroa , D. Korystov , M. Lobino , A. I. Lvovsky . Quantum memory for squeezed light. Phys. Rev. Lett., 2008, 100(9): 093602
CrossRef ADS Google scholar
[57]
J. Junker , D. Wilken , N. Johny , D. Steinmeyer , M. Heurs . Frequency-dependent squeezing from a detuned squeezer. Phys. Rev. Lett., 2022, 129(3): 033602
CrossRef ADS Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. U21A6006, 11634008, 61875147, and 62175176) and the National Key Research and Development Program of China (No. 2017YFA0304502).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(4093 KB)

Accesses

Citations

Detail

Sections
Recommended

/