Recent advances in laser self-injection locking to high-Q microresonators

Nikita M. Kondratiev, Valery E. Lobanov, Artem E. Shitikov, Ramzil R. Galiev, Dmitry A. Chermoshentsev, Nikita Yu. Dmitriev, Andrey N. Danilin, Evgeny A. Lonshakov, Kirill N. Min’kov, Daria M. Sokol, Steevy J. Cordette, Yi-Han Luo, Wei Liang, Junqiu Liu, Igor A. Bilenko

PDF(18696 KB)
PDF(18696 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (2) : 21305. DOI: 10.1007/s11467-022-1245-3
TOPICAL REVIEW
TOPICAL REVIEW

Recent advances in laser self-injection locking to high-Q microresonators

Author information +
History +

Abstract

The stabilization and manipulation of laser frequency by means of an external cavity are nearly ubiquitously used in fundamental research and laser applications. While most of the laser light transmits through the cavity, in the presence of some back-scattered light from the cavity to the laser, the self-injection locking effect can take place, which locks the laser emission frequency to the cavity mode of similar frequency. The self-injection locking leads to dramatic reduction of laser linewidth and noise. Using this approach, a common semiconductor laser locked to an ultrahigh-Q microresonator can obtain sub-Hertz linewidth, on par with state-of-the-art fiber lasers. Therefore it paves the way to manufacture high-performance semiconductor lasers with reduced footprint and cost. Moreover, with high laser power, the optical nonlinearity of the microresonator drastically changes the laser dynamics, offering routes for simultaneous pulse and frequency comb generation in the same microresonator. Particularly, integrated photonics technology, enabling components fabricated via semiconductor CMOS process, has brought increasing and extending interest to laser manufacturing using this method. In this article, we present a comprehensive tutorial on analytical and numerical methods of laser self-injection locking, as well a review of most recent theoretical and experimental achievements.

Graphical abstract

Keywords

self-injection locking / laser stabilization / microresonator / nonlinearity / single-frequency lasing / multi-frequency lasing

Cite this article

Download citation ▾
Nikita M. Kondratiev, Valery E. Lobanov, Artem E. Shitikov, Ramzil R. Galiev, Dmitry A. Chermoshentsev, Nikita Yu. Dmitriev, Andrey N. Danilin, Evgeny A. Lonshakov, Kirill N. Min’kov, Daria M. Sokol, Steevy J. Cordette, Yi-Han Luo, Wei Liang, Junqiu Liu, Igor A. Bilenko. Recent advances in laser self-injection locking to high-Q microresonators. Front. Phys., 2023, 18(2): 21305 https://doi.org/10.1007/s11467-022-1245-3

References

[1]
G. Hadley . Injection locking of diode lasers. IEEE J. Quantum Electron., 1986, 22(3): 419
CrossRef ADS Google scholar
[2]
R. W. P. Drever , J. L. Hall , F. V. Kowalski , J. Hough , G. M. Ford , A. J. Munley , H. Ward . Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B, 1983, 31(2): 97
CrossRef ADS Google scholar
[3]
H. R. Telle . Narrow linewidth laser diodes with broad continuous tuning range. Appl. Phys. B, 1989, 49(3): 217
CrossRef ADS Google scholar
[4]
M. Zhu , J. L. Hall . Stabilization of optical phase/frequency of a laser system: Application to a commercial dye laser with an external stabilizer. J. Opt. Soc. Am. B, 1993, 10(5): 802
CrossRef ADS Google scholar
[5]
M. Kourogi , M. Ohtsu . Novel optical frequency discriminator for FM noise reduction of semiconductor lasers. Opt. Commun., 1991, 81(3−4): 204
CrossRef ADS Google scholar
[6]
T. Ohta , K. Murakami . Reducing negative resistance oscillator noise by self-injection. Electron. Commun. Jpn., 1968, 51-B: 80
[7]
T.OhtaS.MakinoH.NakanoS.EndoS.Ono, New self-injection oscillator using directional filter. 1973 3rd European Microwave Conference (1973), Vol. 1, pp 1–4
[8]
T. Ota , M. Nata . Noise reduction of oscillator by injection locking. Trans. IECEJ, 1970, 53-B: 487
[9]
H. C. Chang . Phase noise in self-injection-locked oscillators - theory and experiment. IEEE Trans. Microw. Theory Tech., 2003, 51(9): 1994
CrossRef ADS Google scholar
[10]
H. C. Chang . Stability analysis of self-injection-locked oscillators. IEEE Trans. Microw. Theory Tech., 2003, 51(9): 1989
CrossRef ADS Google scholar
[11]
J. J. Choi , G. W. Choi . Experimental observation of frequency locking and noise reduction in a self-injection-locked magnetron. IEEE Trans. Electron. Devices, 2007, 54: 3430
CrossRef ADS Google scholar
[12]
Y. P. Bliokh , Y. E. Krasik , J. Felsteiner . Self-injection-locked magnetron as an active ring resonator side coupled to a waveguide with a delayed feedback loop. IEEE Trans. Plasma Sci., 2012, 40(1): 78
CrossRef ADS Google scholar
[13]
M. Y. Glyavin , G. G. Denisov , M. L. Kulygin , Y. V. Novozhilova . Stabilization of gyrotron frequency by reflection from nonresonant and resonant loads. Tech. Phys. Lett., 2015, 41(7): 628
CrossRef ADS Google scholar
[14]
M. M. Melnikova , A. G. Rozhnev , N. M. Ryskin , A. V. Tyshkun , M. Y. Glyavin , Y. V. Novozhilova . Frequency stabilization of a 0.67-THz gyrotron by self-injection locking. IEEE Trans. Electron Dev., 2016, 63(3): 1288
CrossRef ADS Google scholar
[15]
L. Zhang , A. K. Poddar , U. L. Rohde , A. S. Daryoush . Self-ilpll using optical feedback for phase noise reduction in microwave oscillators. IEEE Photonics Technol. Lett., 2015, 27(6): 624
CrossRef ADS Google scholar
[16]
L.ZhangA.K. PoddarU.L. RohdeA.S. Daryoush, Phase noise reduction in RF oscillators utilizing self-injection locked and phase locked loop, 2015 IEEE 15th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (2015), pp 86–88
[17]
B. Dahmani , L. Hollberg , R. Drullinger . Frequency stabilization of semiconductor lasers by resonant optical feedback. Opt. Lett., 1987, 12(11): 876
CrossRef ADS Google scholar
[18]
H. Li , N. B. Abraham . Power spectrum of frequency noise of semiconductor lasers with optical feedback from a high-finesse resonator. Appl. Phys. Lett., 1988, 53(23): 2257
CrossRef ADS Google scholar
[19]
P. Laurent , A. Clairon , C. Breant . Frequency noise analysis of optically self-locked diode lasers. IEEE J. Quantum Electron., 1989, 25(6): 1131
CrossRef ADS Google scholar
[20]
W. Liang , V. Ilchenko , A. Savchenkov , A. Matsko , D. Seidel , L. Maleki . Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser. Opt. Lett., 2010, 35(16): 2822
CrossRef ADS Google scholar
[21]
W. Liang , V. Ilchenko , A. D. Eliyahu , A. A. Savchenkov , A. B. Matsko , D. Seidel , L. Maleki . Ultralow noise miniature external cavity semiconductor laser. Nat. Commun., 2015, 6(1): 7371
CrossRef ADS Google scholar
[22]
V. Velichanskii , A. Zibrov , V. Kargopol’tsev , V. Molochev , V. Nikitin , V. Sautenkov . . Minimum line width of an injection laser. Sov. Tech. Phys. Lett., 1978, 4
[23]
R. Lang , K. Kobayashi . External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron., 1980, 16(3): 347
CrossRef ADS Google scholar
[24]
É. Belenov , V. Velichanskiĭ , A. Zibrov , V. Nikitin , V. Sautenkov , A. Uskov . Methods for narrowing the emission line of an injection laser. Sov. J. Quantum Electron., 1983, 13(6): 792
CrossRef ADS Google scholar
[25]
E. Patzak , H. Olesen , A. Sugimura , S. Saito , T. Mukai . Spectral linewidth reduction in semiconductor lasers by an external cavity with weak optical feedback. Electron. Lett., 1983, 19: 938
CrossRef ADS Google scholar
[26]
E. Patzak , A. Sugimura , S. Saito , T. Mukai , H. Olesen . Semiconductor laser linewidth in optical feedback configurations. Electron. Lett., 1983, 19: 1026
CrossRef ADS Google scholar
[27]
C. Henry . Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron., 1982, 18(2): 259
CrossRef ADS Google scholar
[28]
G. Agrawal . Line narrowing in a single-mode injection laser due to external optical feedback. IEEE J. Quantum Electron., 1984, 20(5): 468
CrossRef ADS Google scholar
[29]
R. Tkach , A. Chraplyvy . Regimes of feedback effects in 1.5-µm distributed feedback lasers. J. Lightwave Technol., 1986, 4(11): 1655
CrossRef ADS Google scholar
[30]
H. Olesen , S. Saito , T. Mukai , T. Saitoh , O. Mikami . Solitary spectral linewidth and its reduction with external grating feedback for a 1.55 µm InGaAsP BH laser. Jpn. J. Appl. Phys., 1983, 22(10A): L664
CrossRef ADS Google scholar
[31]
S. Saito , O. Nilsson , Y. Yamamoto . Oscillation center frequency tuning, quantum FM noise, and direct frequency characteristics in external grating loaded semiconductor lasers. IEEE J. Quantum Electron., 1982, 18(6): 961
CrossRef ADS Google scholar
[32]
G. Acket , D. Lenstra , A. Den Boef , B. Verbeek . The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers. IEEE J. Quantum Electron., 1984, 20(10): 1163
CrossRef ADS Google scholar
[33]
K. Petermann . External optical feedback phenomena in semiconductor lasers. IEEE J. Sel. Top. Quantum Electron., 1995, 1(2): 480
CrossRef ADS Google scholar
[34]
S. Donati . Developing self-mixing interferometry for instrumentation and measurements. Laser Photonics Rev., 2012, 6(3): 393
CrossRef ADS Google scholar
[35]
L. Hollberg , M. Ohtsu . Modulatable narrow-linewidth semiconductor lasers. Appl. Phys. Lett., 1988, 53(11): 944
CrossRef ADS Google scholar
[36]
H. Li , N. B. Abraham . Analysis of the noise spectra of a laser diode with optical feedback from a high-finesse resonator. IEEE J. Quantum Electron., 1989, 25(8): 1782
CrossRef ADS Google scholar
[37]
A. Hemmerich , D. McIntyre , D. Jr Schropp , D. Meschede , T. Hansch . Optically stabilized narrow linewidth semiconductor laser for high resolution spectroscopy. Opt. Commun., 1990, 75(2): 118
CrossRef ADS Google scholar
[38]
A. Hemmerich , C. Zimmermann , T. W. Hansch . Compact source of coherent blue light. Appl. Opt., 1994, 33(6): 988
CrossRef ADS Google scholar
[39]
A. Hemmerich , D. H. McIntyre , C. Zimmermann , T. W. Hansen . Second-harmonic generation and optical stabilization of a diode laser in an external ring resonator. Opt. Lett., 1990, 15(7): 372
CrossRef ADS Google scholar
[40]
D. R. Hjelme , A. R. Mickelson , R. G. Beausoleil . Semiconductor laser stabilization by external optical feedback. IEEE J. Quantum Electron., 1991, 27(3): 352
CrossRef ADS Google scholar
[41]
Y. Zhao , Y. Peng , T. Yang , Y. Li , Q. Wang , F. Meng , J. Cao , Z. Fang , T. Li , E. Zang . External cavity diode laser with kilohertz linewidth by a monolithic folded Fabry–Pérot cavity optical feedback. Opt. Lett., 2011, 36(1): 34
CrossRef ADS Google scholar
[42]
Liu Y . Liang W. Compact narrow linewidth external cavity semiconductor laser realized by self-injection locking to Fabry−Pérot cavity. Chin. J. Lasers, 2021, 48: 1715001
CrossRef ADS Google scholar
[43]
V. Braginsky , M. Gorodetsky , V. Ilchenko . Quality-factor and nonlinear properties of optical whispering-gallery modes. Phys. Lett. A, 1989, 137(7−8): 393
CrossRef ADS Google scholar
[44]
A. A. Savchenkov , V. S. Ilchenko , A. B. Matsko , L. Maleki . Kilohertz optical resonances in dielectric crystal cavities. Phys. Rev. A, 2004, 70(5): 051804
CrossRef ADS Google scholar
[45]
A. B. Matsko , V. S. Ilchenko . Optical resonators with whispering-gallery modes (part I): basics. IEEE J. Sel. Top. Quantum Electron., 2006, 12(1): 3
CrossRef ADS Google scholar
[46]
A. A. Savchenkov , A. B. Matsko , V. S. Ilchenko , L. Maleki . Optical resonators with ten million finesse. Opt. Express, 2007, 15(11): 6768
CrossRef ADS Google scholar
[47]
J.WardO.Benson, WGM microresonators: Sensing, lasing and fundamental optics with microspheres, Laser Photonics Rev. 5(4), 553 (2011)
[48]
G. Lin , S. Diallo , R. Henriet , M. Jacquot , Y. K. Chembo . Barium fluoride whispering-gallery-mode disk-resonator with one billion quality-factor. Opt. Lett., 2014, 39: 6009
CrossRef ADS Google scholar
[49]
R. Henriet , G. Lin , A. Coillet , M. Jacquot , L. Furfaro , L. Larger , Y. K. Chembo . Kerr optical frequency comb generation in strontium fluoride whispering-gallery mode resonators with billion quality factor. Opt. Lett., 2015, 40(7): 1567
CrossRef ADS Google scholar
[50]
D. V. Strekalov , C. Marquardt , A. B. Matsko , H. G. L. Schwefel , G. Leuchs . Nonlinear and quantum optics with whispering gallery resonators. J. Opt., 2016, 18(12): 123002
CrossRef ADS Google scholar
[51]
I. S. Grudinin , A. B. Matsko , A. A. Savchenkov , D. Strekalov , V. S. Ilchenko , L. Maleki . Ultra high Q crystalline microcavities. Opt. Commun., 2006, 265(1): 33
CrossRef ADS Google scholar
[52]
C. Lecaplain , C. Javerzac-Galy , M. L. Gorodetsky , T. J. Kippenberg . Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials. Nat. Commun., 2016, 7(1): 13383
CrossRef ADS Google scholar
[53]
A. E. Shitikov , I. A. Bilenko , N. M. Kondratiev , V. E. Lobanov , A. Markosyan , M. L. Gorodetsky . Billion Q-factor in silicon WGM resonators. Optica, 2018, 5(12): 1525
CrossRef ADS Google scholar
[54]
V. Vassiliev , V. Velichansky , V. Ilchenko , M. Gorodetsky , L. Hollberg , A. Yarovitsky . Narrow-line-width diode laser with a high-Q microsphere resonator. Opt. Commun., 1998, 158(1-6): 305
CrossRef ADS Google scholar
[55]
M. L. Gorodetsky , A. D. Pryamikov , V. S. Ilchenko . Rayleigh scattering in high-Q microspheres. J. Opt. Soc. Am. B, 2000, 17(6): 1051
CrossRef ADS Google scholar
[56]
V. S. Ilchenko , X. S. Yao , L. Maleki . High-Q microsphere cavity for laser stabilization and optoelectronic microwave oscillator. Laser Resonators II, 1999, 3611: 190
CrossRef ADS Google scholar
[57]
A. N. Oraevsky , A. V. Yarovitsky , V. L. Velichansky . Frequency stabilisation of a diode laser by a whispering-gallery mode. Quantum Electron., 2001, 31(10): 897
CrossRef ADS Google scholar
[58]
J.P. RezacA.T. Rosenberger, Locking and laser-frequency tracking of a microsphere whispering-gallery mode, Laser Resonators IV 4270, 112 (2001) (SPIE)
[59]
I.BilenkoA.SamoilenkoV.S. Ilchenko, Measurement of small stress fluctuations in fused silica fibers using an optical microcavity sensor, Laser Resonators and Beam Control V 4629, 222 (2002) (SPIE)
[60]
A. B. Matsko , A. A. Savchenkov , N. Yu , L. Maleki . Whispering-gallery-mode resonators as frequency references (I): Fundamental limitations. J. Opt. Soc. Am. B, 2007, 24: 1324
CrossRef ADS Google scholar
[61]
N. Kondratiev , M. Gorodetsky . Thermorefractive noise in whispering gallery mode microresonators: Analytical results and numerical simulation. Phys. Lett. A, 2018, 382: 2265
CrossRef ADS Google scholar
[62]
D. Huang , M. A. Tran , J. Guo , J. Peters , T. Komljenovic , A. Malik , P. A. Morton , J. E. Bowers . High-power sub-khz linewidth lasers fully integrated on silicon. Optica, 2019, 6(6): 745
CrossRef ADS Google scholar
[63]
V. Vassiliev , S. Il’ina , V. Velichansky . Diode laser coupled to a high-Q microcavity via a GRIN lens. Appl. Phys. B, 2003, 76(5): 521
CrossRef ADS Google scholar
[64]
E. Dale , M. Bagheri , A. Matsko , C. Frez , W. Liang , S. Forouhar . . Microresonator stabilized 2µm distributed-feedback GaSb-based diode laser. Opt. Lett., 2016, 41: 5559
CrossRef ADS Google scholar
[65]
Z. Xie , W. Liang , A. A. Savchenkov , J. Lim , J. Burkhart , M. McDonald , T. Zelevinsky , V. S. Ilchenko , A. B. Matsko , L. Maleki , C. W. Wong . Extended ultrahigh-Q-cavity diode laser. Opt. Lett., 2015, 40(11): 2596
CrossRef ADS Google scholar
[66]
A. Savchenkov , D. Eliyahu , B. Heist , A. Matsko , M. Bagheri , C. Frez , S. Forouhar . On acceleration sensitivity of 2 µm whispering gallery mode-based semiconductor self-injection locked laser. Appl. Opt., 2019, 58(9): 2138
CrossRef ADS Google scholar
[67]
A. Savchenkov , E. Lopez , I. Solomatine , D. Eliyahu , A. Matsko , L. Maleki . Spectral purity improvement in flickering self-injection locked lasers. IEEE J. Quantum Electron., 2022, 58(5): 1
CrossRef ADS Google scholar
[68]
N. G. Pavlov , S. Koptyaev , G. V. Lihachev , A. S. Voloshin , A. S. Gorodnitskiy , M. V. Ryabko , S. V. Polonsky , M. L. Gorodetsky . Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes. Nat. Photonics, 2018, 12(11): 694
CrossRef ADS Google scholar
[69]
P. Donvalkar , A. Savchenkov , A. Matsko . Self-injection locked blue laser. J. Opt., 2018, 20(4): 045801
CrossRef ADS Google scholar
[70]
R. R. Galiev , N. G. Pavlov , N. M. Kondratiev , S. Koptyaev , V. E. Lobanov , A. S. Voloshin , A. S. Gorodnitskiy , M. L. Gorodetsky . Spectrum collapse, narrow linewidth, and Bogatov effect in diode lasers locked to high-Q optical microresonators. Opt. Express, 2018, 26(23): 30509
CrossRef ADS Google scholar
[71]
N. G. Pavlov , G. V. Lihachev , A. S. Voloshin , S. Koptyaev , N. M. Kondratiev , V. E. Lobanov . . Narrow linewidth diode laser self-injection locked to a high-Q microresonator. AIP Conf. Proc., 2018, 1936: 020005
CrossRef ADS Google scholar
[72]
A. A. Savchenkov , S. W. Chiow , M. Ghasemkhani , S. Williams , N. Yu , R. C. Stirbl , A. B. Matsko . Self-injection locking efficiency of a UV Fabry−Pérot laser diode. Opt. Lett., 2019, 44(17): 4175
CrossRef ADS Google scholar
[73]
A. A. Savchenkov , J. E. Christensen , D. Hucul , W. C. Campbell , E. R. Hudson , S. Williams , A. B. Matsko . Application of a self-injection locked cyan laser for barium ion cooling and spectroscopy. Sci. Rep., 2020, 10(1): 16494
CrossRef ADS Google scholar
[74]
E. Yacoby , C. Goren , S. Goldring , G. Guendelman , S. Pearl . Discretely tunable, single mode lasing from a multimode diode laser, locked to silica microsphere resonator. Opt. Laser Technol., 2021, 143: 107343
CrossRef ADS Google scholar
[75]
J. Ji , H. Wang , J. Ma , J. Guo , J. Zhang , D. Tang , D. Shen . Narrow linewidth self-injection locked fiber laser based on a crystalline resonator in add-drop configuration. Opt. Lett., 2022, 47(6): 1525
CrossRef ADS Google scholar
[76]
L.Maleki, Novel lasers: Whispering-gallery-mode resonators create ultranarrow-linewidth semiconductor lasers, Laser Focus World (2014)
[77]
H. Lee , T. Chen , J. Li , K. Y. Yang , S. Jeon , O. Painter , K. J. Vahala . Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photonics, 2012, 6(6): 369
CrossRef ADS Google scholar
[78]
K. Y. Yang , K. Beha , D. C. Cole , X. Yi , P. Del’Haye , H. Lee , J. Li , D. Y. Oh , S. A. Diddams , S. B. Papp , K. J. Vahala . Broadband dispersion-engineered microresonator on a chip. Nat. Photonics, 2016, 10(5): 316
CrossRef ADS Google scholar
[79]
L. Wu , H. Wang , Q. Yang , Q. Ji , B. Shen , C. Bao , M. Gao , K. Vahala . Greater than one billion Q factor for on-chip microresonators. Opt. Lett., 2020, 45(18): 5129
CrossRef ADS Google scholar
[80]
D. T. Spencer , J. F. Bauters , M. J. R. Heck , J. E. Bowers . Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime. Optica, 2014, 1(3): 153
CrossRef ADS Google scholar
[81]
Y. Xuan , Y. Liu , L. T. Varghese , A. J. Metcalf , X. Xue , P. H. Wang , K. Han , J. A. Jaramillo-Villegas , A. Al Noman , C. Wang , S. Kim , M. Teng , Y. J. Lee , B. Niu , L. Fan , J. Wang , D. E. Leaird , A. M. Weiner , M. Qi . High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation. Optica, 2016, 3(11): 1171
CrossRef ADS Google scholar
[82]
M. H. P. Pfeiffer , A. Kordts , V. Brasch , M. Zervas , M. Geiselmann , J. D. Jost , T. J. Kippenberg . Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics. Optica, 2016, 3(1): 20
CrossRef ADS Google scholar
[83]
Z. Ye , K. Twayana , P. A. Andrekson , V. Torres-Company . High-Q Si3N4 microresonators based on a subtractive processing for Kerr nonlinear optics. Opt. Express, 2019, 27(24): 35719
CrossRef ADS Google scholar
[84]
X. Ji , S. Roberts , M. Corato-Zanarella , M. Lipson . Methods to achieve ultra-high quality factor silicon nitride resonators. APL Photonics, 2021, 6(7): 071101
CrossRef ADS Google scholar
[85]
B. Stern , X. Ji , Y. Okawachi , A. Gaeta , M. Lipson . Battery-operated integrated frequency comb generator. Nature, 2018, 562(7727): 401
CrossRef ADS Google scholar
[86]
Y. Li , Y. Zhang , H. Chen , S. Yang , M. Chen . Tunable self-injected Fabry–Pérot laser diode coupled to an external high-Q Si3N4/SiO2 microring resonator. J. Lightwave Technol., 2018, 36(16): 3269
CrossRef ADS Google scholar
[87]
A. Gaeta , M. Lipson , T. Kippenberg . Photonic-chip-based frequency combs. Nat. Photonics, 2019, 13(3): 158
CrossRef ADS Google scholar
[88]
A. S. Raja , A. S. Voloshin , H. Guo , S. E. Agafonova , J. Liu , A. S. Gorodnitskiy , M. Karpov , N. G. Pavlov , E. Lucas , R. R. Galiev , A. E. Shitikov , J. D. Jost , M. L. Gorodetsky , T. J. Kippenberg . Electrically pumped photonic integrated soliton microcomb. Nat. Commun., 2019, 10(1): 680
CrossRef ADS Google scholar
[89]
B. Shen , L. Chang , J. Liu , H. Wang , Q. F. Yang , C. Xiang , R. N. Wang , J. He , T. Liu , W. Xie , J. Guo , D. Kinghorn , L. Wu , Q. X. Ji , T. J. Kippenberg , K. Vahala , J. E. Bowers . Integrated turnkey soliton microcombs. Nature, 2020, 582(7812): 365
CrossRef ADS Google scholar
[90]
A. S. Raja , J. Liu , N. Volet , R. N. Wang , J. He , E. Lucas , R. Bouchandand , P. Morton , J. Bowers , T. J. Kippenberg . Chip-based soliton microcomb module using a hybrid semiconductor laser. Opt. Express, 2020, 28(3): 2714
CrossRef ADS Google scholar
[91]
A. Kovach , D. Chen , J. He , H. Choi , A. H. Dogan , M. Ghasemkhani . . Emerging material systems for integrated optical Kerr frequency combs. Adv. Opt. Photon., 2020, 12: 135
CrossRef ADS Google scholar
[92]
W. Jin , Q. F. Yang , L. Chang , B. Shen , H. Wang , M. A. Leal , L. Wu , M. Gao , A. Feshali , M. Paniccia , K. J. Vahala , J. E. Bowers . Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photonics, 2021, 15(5): 346
CrossRef ADS Google scholar
[93]
E. Shim , A. Gil-Molina , O. Westreich , Y. Dikmelik , K. Lascola , A. L. Gaeta , M. Lipson . Tunable single-mode chip-scale mid-infrared laser. Commun. Phys., 2021, 4(1): 268
CrossRef ADS Google scholar
[94]
G. Lihachev , J. Riemensberger , W. Weng , J. Liu , H. Tian , A. Siddharth , V. Snigirev , V. Shadymov , A. Voloshin , R. N. Wang , J. He , S. A. Bhave , T. J. Kippenberg . Low-noise frequency-agile photonic integrated lasers for coherent ranging. Nat. Commun., 2022, 13(1): 3522
CrossRef ADS Google scholar
[95]
A. Siddharth , T. Wunderer , G. Lihachev , A. S. Voloshin , C. Haller , R. N. Wang . . Near ultraviolet photonic integrated lasers based on silicon nitride. APL Photon., 2022, 7: 046108
CrossRef ADS Google scholar
[96]
J. Guo , C. A. McLemore , C. Xiang , D. Lee , L. Wu , W. Jin , M. Kelleher , N. Jin , D. Mason , L. Chang , A. Feshali , M. Paniccia , P. T. Rakich , K. J. Vahala , S. A. Diddams , F. Quinlan , J. E. Bowers . Chip-based laser with 1-Hertz integrated linewidth. Sci. Adv., 2022, 8(43): eabp9006
CrossRef ADS Google scholar
[97]
D. A. Korobko , I. O. Zolotovskii , K. Panajotov , V. V. Spirin , A. A. Fotiadi . Self-injection-locking linewidth narrowing in a semiconductor laser coupled to an external fiber-optic ring resonator. Opt. Commun., 2017, 405: 253
CrossRef ADS Google scholar
[98]
V. V. Spirin , J. L. Bueno Escobedo , D. A. Korobko , P. Mégret , A. A. Fotiadi . Stabilizing DFB laser injection-locked to an external fiber-optic ring resonator. Opt. Express, 2020, 28(1): 478
CrossRef ADS Google scholar
[99]
S. Shao , J. Li , Y. Wu , S. Yang , H. Chen , M. Chen . Modulation bandwidth enhanced self-injection locking laser with an external high-Q microring reflector. Opt. Lett., 2021, 46: 3251
CrossRef ADS Google scholar
[100]
L. Jiang , L. Shi , J. Luo , Q. Gao , T. Lan , L. Huang , T. Zhu . Narrow linewidth VCSEL based on resonant optical feedback from an on-chip microring add-drop filter. Opt. Lett., 2021, 46(10): 2320
CrossRef ADS Google scholar
[101]
L. Jiang , L. Shi , J. Luo , Q. Gao , M. Bai , T. Lan , P. I. Iroegbu , L. Dang , L. Huang , T. Zhu . Simultaneous self-injection locking of two VCSELs to a single whispering-gallery-mode microcavity. Opt. Express, 2021, 29(23): 37845
CrossRef ADS Google scholar
[102]
V. V. Vasil’ev , V. L. Velichansky , M. L. Gorodetskii , V. S. Il’chenko , L. Holberg , A. V. Yarovitsky . High-coherence diode laser with optical feedback via a microcavity with “whispering gallery” modes. Quantum Electron., 1996, 26(8): 657
CrossRef ADS Google scholar
[103]
W. Liang , V. S. Ilchenko , D. Eliyahu , E. Dale , A. A. Savchenkov , D. Seidel . . Compact stabilized semiconductor laser for frequency metrology. Appl. Opt., 2015, 54: 3353
CrossRef ADS Google scholar
[104]
B. Sprenger , H. G. L. Schwefel , L. J. Wang . Whispering-gallery-mode-resonator-stabilized narrow-linewidth fiber loop laser. Opt. Lett., 2009, 34(21): 3370
CrossRef ADS Google scholar
[105]
R. R. Galiev , N. M. Kondratiev , V. E. Lobanov , A. B. Matsko , I. A. Bilenko . Optimization of laser stabilization via self-injection locking to a whispering-gallery-mode microresonator. Phys. Rev. Appl., 2020, 14(1): 014036
CrossRef ADS Google scholar
[106]
N. M. Kondratiev , V. E. Lobanov , A. V. Cherenkov , A. S. Voloshin , N. G. Pavlov , S. Koptyaev , M. L. Gorodetsky . Self-injection locking of a laser diode to a high-Q WGM microresonator. Opt. Express, 2017, 25(23): 28167
CrossRef ADS Google scholar
[107]
R. Kazarinov , C. Henry . The relation of line narrowing and chirp reduction resulting from the coupling of a semiconductor laser to passive resonator. IEEE J. Quantum Electron., 1987, 23(9): 1401
CrossRef ADS Google scholar
[108]
M. Osinski , J. Buus . Linewidth broadening factor in semiconductor lasers–an overview. IEEE J. Quantum Electron., 1987, 23(1): 9
CrossRef ADS Google scholar
[109]
N.M. KondratievR.GalievI.GorelovA.ShitikovV.Lobanov, Strong-feedback regime of self-injection locking and external cavity laser, Eds. : M. Sciamanna, K. Panajotov, and S. Hofling, Semiconductor Lasers and Laser Dynamics X. International Society for Optics and Photonics (SPIE) (2022), Vol. 12141, 121410K
[110]
N. M. Kondratiev , V. E. Lobanov , E. A. Lonshakov , N. Y. Dmitriev , A. S. Voloshin , I. A. Bilenko . Numerical study of solitonic pulse generation in the self-injection locking regime at normal and anomalous group velocity dispersion. Opt. Express, 2020, 28(26): 38892
CrossRef ADS Google scholar
[111]
A. E. Shitikov , I. I. Lykov , O. V. Benderov , D. A. Chermoshentsev , I. K. Gorelov , A. N. Danilin , R. R. Galiev , N. M. Kondratiev , S. J. Cordette , A. V. Rodin , A. V. Masalov , V. E. Lobanov , I. A. Bilenko . Optimization of laser stabilization via self-injection locking to a whispering-gallery-mode microresonator: Experimental study. Opt. Express, 2023, 31(1): 313
CrossRef ADS Google scholar
[112]
A. E. Shitikov , O. V. Benderov , N. M. Kondratiev , V. E. Lobanov , A. V. Rodin , I. A. Bilenko . Microresonator and laser parameter definition via self-injection locking. Phys. Rev. Appl., 2020, 14(6): 064047
CrossRef ADS Google scholar
[113]
A. P. Bogatov , P. G. Eliseev , B. N. Sverdlov . Anomalous interaction of spectral modes in a semiconductor laser. Sov. J. Quantum Electron., 1975, 4(10): 1275
CrossRef ADS Google scholar
[114]
A. Bogatov , P. Eliseev , B. Sverdlov . Anomalous interaction of spectral modes in a semiconductor laser. IEEE J. Quantum Electron., 1975, 11(7): 510
CrossRef ADS Google scholar
[115]
M. Yamada . Theoretical analysis of nonlinear optical phenomena taking into account the beating vibration of the electron density in semiconductor lasers. J. Appl. Phys., 1989, 66(1): 81
CrossRef ADS Google scholar
[116]
M. Yamada , Y. Suematsu . Analysis of gain suppression in undoped injection lasers. J. Appl. Phys., 1981, 52(4): 2653
CrossRef ADS Google scholar
[117]
H. Ishikawa , M. Yano , M. Takusagawa . Mechanism of asymmetric longitudinal mode competition in InGaAsP/InP lasers. Appl. Phys. Lett., 1982, 40(7): 553
CrossRef ADS Google scholar
[118]
N.M. KondratievR.R. GalievV.E. LobanovI.A. Bilenko, Multimode laser diode self-injection locking to a whispering gallery mode microresonator modeling, Frontiers in Optics + Laser Science 2021 (Optica Publishing Group) (2021), JTu1A. 119
[119]
Y. A. Demchenko , M. L. Gorodetsky . Analytical estimates of eigenfrequencies, dispersion, and field distribution in whispering gallery resonators. J. Opt. Soc. Am. B, 2013, 30(11): 3056
CrossRef ADS Google scholar
[120]
E. Lucas , G. Lihachev , R. Bouchand , N. G. Pavlov , A. S. Raja , M. Karpov , M. L. Gorodetsky , T. J. Kippenberg . Spatial multiplexing of soliton microcombs. Nat. Photonics, 2018, 12(11): 699
CrossRef ADS Google scholar
[121]
P. Spano , S. Piazzolla , M. Tamburrini . Theory of noise in semiconductor lasers in the presence of optical feedback. IEEE J. Quantum Electron., 1984, 20(4): 350
CrossRef ADS Google scholar
[122]
A. Savchenkov , S. Williams , A. Matsko . On stiffness of optical self-injection locking. Photonics, 2018, 5(4): 43
CrossRef ADS Google scholar
[123]
R. R. Galiev , N. M. Kondratiev , V. E. Lobanov , A. B. Matsko , I. A. Bilenko . Mirror-assisted self-injection locking of a laser to a whispering-gallery-mode microresonator. Phys. Rev. Appl., 2021, 16(6): 064043
CrossRef ADS Google scholar
[124]
M.Corato-ZanarellaA.Gil-MolinaX.JiM.C. ShinA.MohantyM.Lipson, Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths, Nat. Photonics (2022)
[125]
de Cumis M. Siciliani , S. Borri , G. Insero , I. Galli , A. Savchenkov , D. Eliyahu . . Microcavity-stabilized quantum cascade laser. Laser Photon. Rev., 2016, 10: 153
CrossRef ADS Google scholar
[126]
J. Lim , A. A. Savchenkov , E. Dale , W. Liang , D. Eliyahu , V. Ilchenko , A. B. Matsko , L. Maleki , C. W. Wong . Chasing the thermodynamical noise limit in whispering-gallery-mode resonators for ultrastable laser frequency stabilization. Nat. Commun., 2017, 8(1): 8
CrossRef ADS Google scholar
[127]
A. Savchenkov , A. Matsko . Calcium fluoride whispering gallery mode optical resonator with reduced thermal sensitivity. J. Opt., 2018, 20(3): 035801
CrossRef ADS Google scholar
[128]
Q. Zhao , R. O. Behunin , P. T. Rakich , N. Chauhan , A. Isichenko , J. Wang , C. Hoyt , C. Fertig , M. Lin , D. J. Blumenthal . Low-loss low thermo-optic coefficient Ta2O5 on crystal quartz planar optical waveguides. APL Photonics, 2020, 5(11): 116103
CrossRef ADS Google scholar
[129]
M. Fu , Y. Zheng , G. Li , H. Hu , M. Pu , L. K. Oxenløwe , L. H. Frandsen , X. Li , X. Guan . High-Q titanium dioxide micro-ring resonators for integrated nonlinear photonics. Opt. Express, 2020, 28(26): 39084
CrossRef ADS Google scholar
[130]
I. Hegeman , M. Dijkstra , F. B. Segerink , W. Lee , S. M. Garcia-Blanco . Development of low-loss TiO2 waveguides. Opt. Express, 2020, 28(5): 5982
CrossRef ADS Google scholar
[131]
L. He , Y. F. Xiao , C. Dong , J. Zhu , V. Gaddam , L. Yang . Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating. Appl. Phys. Lett., 2008, 93(20): 201102
CrossRef ADS Google scholar
[132]
B. Guha , J. Cardenas , M. Lipson . Athermal silicon microring resonators with titanium oxide cladding. Opt. Express, 2013, 21(22): 26557
CrossRef ADS Google scholar
[133]
S.S. DjordjevicK.ShangB.GuanS.T. S. CheungL.LiaoJ.BasakH.F. LiuS.J. B. Yoo, CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide, Opt. Express 21(12), 13958 (2013)
[134]
F. Qiu , A. M. Spring , S. Yokoyama . Athermal and high-Q hybrid TiO2–Si3N4 ring resonator via an etching-free fabrication technique. ACS Photonics, 2015, 2(3): 405
CrossRef ADS Google scholar
[135]
J. Ling , Y. He , R. Luo , M. Li , H. Liang , Q. Lin . Athermal lithium niobate microresonator. Opt. Express, 2020, 28(15): 21682
CrossRef ADS Google scholar
[136]
Z. Yang , Z. Wang , R. Zhang , P. Xu , W. Zhang , Z. Kang , R. Wang . Athermal chalcogenide microresonator cladded with polymer. IEEE Photonics J., 2022, 14(5): 1
CrossRef ADS Google scholar
[137]
T. J. Wang , P. K. Chen , Y. T. Li , A. N. Sung . Athermal high-Q tantalum-pentoxide-based microresonators on silicon substrates. Opt. Laser Technol., 2021, 138: 106925
CrossRef ADS Google scholar
[138]
M. Wang , D. J. Perez-Morelo , V. Aksyuk . Overcoming thermo-optical dynamics in broadband nanophotonic sensing. Microsyst. Nanoeng., 2021, 7(1): 52
CrossRef ADS Google scholar
[139]
Y. Levin . Fluctuation–dissipation theorem for thermo-refractive noise. Phys. Lett. A, 2008, 372(12): 1941
CrossRef ADS Google scholar
[140]
M. L. Gorodetsky , I. S. Grudinin . Fundamental thermal fluctuations in microspheres. J. Opt. Soc. Am. B, 2004, 21(4): 697
CrossRef ADS Google scholar
[141]
L. Duan . General treatment of the thermal noises in optical fibers. Phys. Rev. A, 2012, 86(2): 023817
CrossRef ADS Google scholar
[142]
G. Huang , E. Lucas , J. Liu , A. S. Raja , G. Lihachev , M. L. Gorodetsky , N. J. Engelsen , T. J. Kippenberg . Thermorefractive noise in silicon−nitride microresonators. Phys. Rev. A, 2019, 99(6): 061801
CrossRef ADS Google scholar
[143]
V.I. PavlovI.Y. BlinovN.P. KhatyrevN.M. KondratievI.A. Bilenko, Numerical simulation of influence of the thermal and mechanical fluctuations in the coupling elements of microresonators, 2021 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS) (2021), pp 1–4
[144]
C. Panuski , D. Englund , R. Hamerly . Fundamental thermal noise limits for optical microcavities. Phys. Rev. X, 2020, 10(4): 041046
CrossRef ADS Google scholar
[145]
B. Li , W. Jin , L. Wu , L. Chang , H. Wang , B. Shen , Z. Yuan , A. Feshali , M. Paniccia , K. J. Vahala , J. E. Bowers . Reaching fiber-laser coherence in integrated photonics. Opt. Lett., 2021, 46(20): 5201
CrossRef ADS Google scholar
[146]
B. Merkel , D. Repp , A. Reiserer . Laser stabilization to a cryogenic fiber ring resonator. Opt. Lett., 2021, 46(2): 444
CrossRef ADS Google scholar
[147]
G. Moille , X. Lu , A. Rao , Q. Li , D. A. Westly , L. Ranzani . . Kerr-microresonator soliton frequency combs at cryogenic temperatures. Phys. Rev. Appl., 2019, 12: 034057
CrossRef ADS Google scholar
[148]
A. B. Matsko , A. A. Savchenkov , V. S. Ilchenko , D. Seidel , L. Maleki . Self-referenced stabilization of temperature of an optomechanical microresonator. Phys. Rev. A, 2011, 83(2): 021801
CrossRef ADS Google scholar
[149]
A. A. Savchenkov , A. B. Matsko , V. S. Ilchenko , N. Yu , L. Maleki . Whispering-gallery-mode resonators as frequency references (ii): Stabilization. J. Opt. Soc. Am. B, 2007, 24: 2988
CrossRef ADS Google scholar
[150]
J. Lim , W. Liang , A. A. Savchenkov , A. B. Matsko , L. Maleki , C. W. Wong . Probing 10 µk stability and residual drifts in the cross-polarized dual-mode stabilization of single-crystal ultrahigh-Q optical resonators. Light Sci. Appl., 2019, 8(1): 1
CrossRef ADS Google scholar
[151]
Q. Zhao , M. W. Harrington , A. Isichenko , K. Liu , R. O. Behunin , S. B. Papp , P. T. Rakich , C. W. Hoyt , C. Fertig , D. J. Blumenthal . Integrated reference cavity with dual-mode optical thermometry for frequency correction. Optica, 2021, 8(11): 1481
CrossRef ADS Google scholar
[152]
W. Loh , S. Yegnanarayanan , F. O’Donnell , P. W. Juodawlkis . Ultra-narrow linewidth brillouin laser with nanokelvin temperature self-referencing. Optica, 2019, 6(2): 152
CrossRef ADS Google scholar
[153]
X. Sun , R. Luo , X. C. Zhang , Q. Lin . Squeezing the fundamental temperature fluctuations of a high-Q microresonator. Phys. Rev. A, 2017, 95(2): 023822
CrossRef ADS Google scholar
[154]
T. E. Drake , J. R. Stone , T. C. Briles , S. B. Papp . Thermal decoherence and laser cooling of Kerr microresonator solitons. Nat. Photonics, 2020, 14(8): 480
CrossRef ADS Google scholar
[155]
F. Lei , Z. Ye , V. Torres-Company . Thermal noise reduction in soliton microcombs via laser self-cooling. Opt. Lett., 2022, 47(3): 513
CrossRef ADS Google scholar
[156]
V. Ilchenko , M. L. Gorodetskii . Thermal nonlinear effects in optical whispering gallery microresonators. Laser Phys., 1992, 2: 1004
[157]
W. Liang , D. Eliyahu , V. S. Ilchenko , A. A. Savchenkov , A. B. Matsko , D. Seidel , L. Maleki . High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun., 2015, 6(1): 7957
CrossRef ADS Google scholar
[158]
A. D. Ludlow , X. Huang , M. Notcutt , T. Zanon-Willette , S. M. Foreman , M. M. Boyd , S. Blatt , J. Ye . Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10−15. Opt. Lett., 2007, 32(6): 641
CrossRef ADS Google scholar
[159]
Y.ZhaoY.LiQ.WangF.MengY.LinS.Wang, ., 100-Hz linewidth diode laser with external optical feedback, IEEE Photon. Technol. Lett. 24, 1795 (2012)
[160]
Y. Zhao , Q. Wang , F. Meng , Y. Lin , S. Wang , Y. Li , B. Lin , S. Cao , J. Cao , Z. Fang , T. Li , E. Zang . High-finesse cavity external optical feedback DFB laser with hertz relative linewidth. Opt. Lett., 2012, 37(22): 4729
CrossRef ADS Google scholar
[161]
Z. Newman , V. Maurice , T. Drake , J. Stone , T. Briles , D. Spencer , C. Fredrick , Q. Li , D. Westly , B. R. Ilic , B. Shen , M. G. Suh , K. Y. Yang , C. Johnson , D. M. S. Johnson , L. Hollberg , K. J. Vahala , K. Srinivasan , S. A. Diddams , J. Kitching , S. B. Papp , M. T. Hummon . Architecture for the photonic integration of an optical atomic clock. Optica, 2019, 6(5): 680
CrossRef ADS Google scholar
[162]
W. Lewoczko-Adamczyk , C. Pyrlik , J. Hager , S. Schwertfeger , A. Wicht , A. Peters , G. Erbert , G. Tränkle . Ultra-narrow linewidth DFB-laser with optical feedback from a monolithic confocal Fabry-Pérot cavity. Opt. Express, 2015, 23(8): 9705
CrossRef ADS Google scholar
[163]
H.ChristopherB.ArarA.BawamiaC.KurbisW.Lewoczko-AdamczykM.Schiemangk, ., Narrow linewidth micro-integrated high power diode laser module for deployment in space, 2017 IEEE International Conference on Space Optical Systems and Applications (ICSOS) (IEEE) (2017), pp 150–153
[164]
W.LiangY.Liu, Compact sub-Hz linewidth laser enabled by self injection lock to a sub-mL FP cavity, arXiv: 2212.00426 (2022)
[165]
F. Favre , D. Guen . Spectral properties of a semiconductor laser coupled to a single mode fiber resonator. IEEE J. Quantum Electron., 1985, 21(12): 1937
CrossRef ADS Google scholar
[166]
L. Hao , X. Wang , D. Guo , K. Jia , P. Fan , J. Guo , X. Ni , G. Zhao , Z. Xie , S. Zhu . Narrow-linewidth self-injection locked diode laser with a high-Q fiber Fabry–Pérot resonator. Opt. Lett., 2021, 46(6): 1397
CrossRef ADS Google scholar
[167]
K. Jia , X. Wang , D. Kwon , J. Wang , E. Tsao , H. Liu , X. Ni , J. Guo , M. Yang , X. Jiang , J. Kim , S. Zhu , Z. Xie , S. W. Huang . Photonic flywheel in a monolithic fiber resonator. Phys. Rev. Lett., 2020, 125(14): 143902
CrossRef ADS Google scholar
[168]
K.JiaX.YiX.WangY.LiuS.W. HuangX.Jiang, ., Automated turnkey microcomb for low-noise microwave synthesis, arXiv: 2211.10031 (2022)
[169]
A. S. Voloshin , N. M. Kondratiev , G. V. Lihachev , J. Liu , V. E. Lobanov , N. Y. Dmitriev , W. Weng , T. J. Kippenberg , I. A. Bilenko . Dynamics of soliton self-injection locking in optical microresonators. Nat. Commun., 2021, 12(1): 235
CrossRef ADS Google scholar
[170]
N. Y. Dmitriev , S. N. Koptyaev , A. S. Voloshin , N. M. Kondratiev , K. N. Min’kov , V. E. Lobanov . . Hybrid integrated dual-microcomb source. Phys. Rev. Appl., 2022, 18: 034068
CrossRef ADS Google scholar
[171]
N.KondratievV.LobanovN.DmitrievS.CordetteI.Bilenko, Detailed analysis of ultimate soliton microcomb generation efficiency, arXiv: 2209.03707 (2022)
[172]
G. Lihachev , W. Weng , J. Liu , L. Chang , J. Guo , J. He , R. N. Wang , M. H. Anderson , Y. Liu , J. E. Bowers , T. J. Kippenberg . Platicon microcomb generation using laser self-injection locking. Nat. Commun., 2022, 13(1): 1771
CrossRef ADS Google scholar
[173]
V. Lobanov , G. Lihachev , T. J. Kippenberg , M. Gorodetsky . Frequency combs and platicons in optical microresonators with normal GVD. Opt. Express, 2015, 23(6): 7713
CrossRef ADS Google scholar
[174]
V. E. Lobanov , N. M. Kondratiev , A. E. Shitikov , R. R. Galiev , I. A. Bilenko . Generation and dynamics of solitonic pulses due to pump amplitude modulation at normal group-velocity dispersion. Phys. Rev. A, 2019, 100(1): 013807
CrossRef ADS Google scholar
[175]
X. Xue , Y. Xuan , P. H. Wang , Y. Liu , D. E. Leaird , M. Qi . . Normal-dispersion microcombs enabled by controllable mode interactions. Laser Photon. Rev., 2015, 9: L23
CrossRef ADS Google scholar
[176]
A. E. Fomin , M. L. Gorodetsky , I. S. Grudinin , V. S. Ilchenko . Nonstationary nonlinear effects in optical microspheres. J. Opt. Soc. Am. B, 2005, 22(2): 459
CrossRef ADS Google scholar
[177]
T. Carmon , L. Yang , K. J. Vahala . Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express, 2004, 12(20): 4742
CrossRef ADS Google scholar
[178]
S. Diallo , G. Lin , Y. K. Chembo . Giant thermo-optical relaxation oscillations in millimeter-size whispering gallery mode disk resonators. Opt. Lett., 2015, 40: 3834
CrossRef ADS Google scholar
[179]
A. Leshem , Z. Qi , T. F. Carruthers , C. R. Menyuk , O. Gat . Thermal instabilities, frequency-comb formation, and temporal oscillations in Kerr microresonators. Phys. Rev. A, 2021, 103(1): 013512
CrossRef ADS Google scholar
[180]
T. Herr , V. Brasch , J. D. Jost , C. Y. Wang , N. M. Kondratiev , M. L. Gorodetsky , T. J. Kippenberg . Temporal solitons in optical microresonators. Nat. Photonics, 2014, 8(2): 145
CrossRef ADS Google scholar
[181]
C. Bao , Y. Xuan , J. A. Jaramillo-Villegas , D. E. Leaird , M. Qi , A. M. Weiner . Direct soliton generation in microresonators. Opt. Lett., 2017, 42(13): 2519
CrossRef ADS Google scholar
[182]
V. E. Lobanov , N. M. Kondratiev , I. A. Bilenko . Thermally induced generation of platicons in optical microresonators. Opt. Lett., 2021, 46(10): 2380
CrossRef ADS Google scholar
[183]
N. M. Kondratiev , V. E. Lobanov . Modulational instability and frequency combs in whispering-gallery-mode microresonators with backscattering. Phys. Rev. A, 2020, 101: 013816
CrossRef ADS Google scholar
[184]
N. M. Kondratiev , S. E. Agafonova , A. S. Gorodnitskiy , A. S. Voloshin , V. E. Lobanov . Modification of the self-injection locking effect due to the microresonator nonlinearity. AIP Conf. Proc., 2020, 2241: 020021
CrossRef ADS Google scholar
[185]
N.M. KondratievR.R. GalievV.E. Lobanov, Thermal influence on laser self-injection locking to nonlinear microresonator, Eds. : M. Bertolotti, A. V. Zayats, and A. M. Zheltikov, Nonlinear Optics and Applications XII, International Society for Optics and Photonics (SPIE) (2021), Vol. 11770, 117700Q
[186]
V. E. Lobanov , G. V. Lihachev , N. G. Pavlov , A. V. Cherenkov , T. J. Kippenberg , M. L. Gorodetsky . Harmonization of chaos into a soliton in Kerr frequency combs. Opt. Express, 2016, 24(24): 27382
CrossRef ADS Google scholar
[187]
H. Guo , M. Karpov , E. Lucas , A. Kordts , M. H. P. Pfeiffer , V. Brasch , G. Lihachev , V. E. Lobanov , M. L. Gorodetsky , T. J. Kippenberg . Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys., 2017, 13(1): 94
CrossRef ADS Google scholar
[188]
C. Xiang , J. Liu , J. Guo , L. Chang , R. N. Wang , W. Weng , J. Peters , W. Xie , Z. Zhang , J. Riemensberger , J. Selvidge , T. J. Kippenberg , J. E. Bowers . Laser soliton microcombs heterogeneously integrated on silicon. Science, 2021, 373(6550): 99
CrossRef ADS Google scholar
[189]
D. A. Chermoshentsev , A. E. Shitikov , E. A. Lonshakov , G. V. Grechko , E. A. Sazhina , N. M. Kondratiev , A. V. Masalov , I. A. Bilenko , A. I. Lvovsky , A. E. Ulanov . Dual-laser self-injection locking to an integrated microresonator. Opt. Express, 2022, 30(10): 17094
CrossRef ADS Google scholar
[190]
J. Liu , E. Lucas , A. S. Raja , J. He , J. Riemensberger , R. N. Wang , M. Karpov , H. Guo , R. Bouchand , T. J. Kippenberg . Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photonics, 2020, 14(8): 486
CrossRef ADS Google scholar
[191]
M. H. Khan , H. Shen , Y. Xuan , L. Zhao , S. Xiao , D. E. Leaird , A. M. Weiner , M. Qi . Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nat. Photonics, 2010, 4(2): 117
CrossRef ADS Google scholar
[192]
X. Hu , W. Wang , L. Wang , W. Zhang , Y. Wang , W. Zhao . Numerical simulation and temporal characterization of dual-pumped microring-resonator-based optical frequency combs. Photon. Res., 2017, 5(3): 207
CrossRef ADS Google scholar
[193]
W. Wang , S. T. Chu , B. E. Little , A. Pasquazi , Y. Wang , L. Wang , W. Zhang , L. Wang , X. Hu , G. Wang , H. Hu , Y. Su , F. Li , Y. Liu , W. Zhao . Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing. Sci. Rep., 2016, 6(1): 28501
CrossRef ADS Google scholar
[194]
J. Wen , L. Duan , W. Fan . Influences of pump power and high-order dispersion on dual-pumped silicon-on-insulator micro-ring resonator-based optical frequency combs. Mod. Phys. Lett. B, 2019, 33(10): 1950117
CrossRef ADS Google scholar
[195]
J. Wen , L. Duan , C. Ma , W. Fan . Numerical investigation of dual-pumped optical frequency combs based on silicon-on-insulator microring resonator. Microw. Opt. Technol. Lett., 2019, 61(11): 2640
CrossRef ADS Google scholar
[196]
Y. Okawachi , M. Yu , K. Luke , D. O. Carvalho , S. Ramelow , A. Farsi . . Dual-pumped degenerate Kerr oscillator in a silicon nitride microresonator. Opt. Lett., 2015, 40: 5267
CrossRef ADS Google scholar
[197]
Y. Okawachi , M. Yu , K. Luke , D. O. Carvalho , M. Lipson , A. L. Gaeta . Quantum random number generator using a microresonator-based Kerr oscillator. Opt. Lett., 2016, 41: 4194
CrossRef ADS Google scholar
[198]
V. D. Vaidya , B. Morrison , L. G. Helt , R. Shahrokshahi , D. H. Mahler , M. J. Collins , K. Tan , J. Lavoie , A. Repingon , M. Menotti , N. Quesada , R. C. Pooser , A. E. Lita , T. Gerrits , S. W. Nam , Z. Vernon . Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device. Sci. Adv., 2020, 6(39): eaba9186
CrossRef ADS Google scholar
[199]
J. M. Arrazola , V. Bergholm , K. Bradler , T. R. Bromley , M. J. Collins , I. Dhand , A. Fumagalli , T. Gerrits , A. Goussev , L. G. Helt , J. Hundal , T. Isacsson , R. B. Israel , J. Izaac , S. Jahangiri , R. Janik , N. Killoran , S. P. Kumar , J. Lavoie , A. E. Lita , D. H. Mahler , M. Menotti , B. Morrison , S. W. Nam , L. Neuhaus , H. Y. Qi , N. Quesada , A. Repingon , K. K. Sabapathy , M. Schuld , D. Su , J. Swinarton , A. Száva , K. Tan , P. Tan , V. D. Vaidya , Z. Vernon , Z. Zabaneh , Y. Zhang . Quantum circuits with many photons on a programmable nanophotonic chip. Nature, 2021, 591(7848): 54
CrossRef ADS Google scholar
[200]
Y. Zhao , Y. Okawachi , J. K. Jang , X. Ji , M. Lipson , A. L. Gaeta . Near-degenerate quadrature-squeezed vacuum generation on a silicon-nitride chip. Phys. Rev. Lett., 2020, 124(19): 193601
CrossRef ADS Google scholar
[201]
Y. Okawachi , M. Yu , J. K. Jang , X. Ji , Y. Zhao , B. Y. Kim , M. Lipson , A. L. Gaeta . Demonstration of chip-based coupled degenerate optical parametric oscillators for realizing a nanophotonic spin-glass. Nat. Commun., 2020, 11(1): 4119
CrossRef ADS Google scholar
[202]
H. Taheri , A. B. Matsko , L. Maleki , K. Sacha . All-optical dissipative discrete time crystals. Nat. Commun., 2022, 13(1): 848
CrossRef ADS Google scholar
[203]
A. E. Shitikov , V. E. Lobanov , N. M. Kondratiev , A. S. Voloshin , E. A. Lonshakov , I. A. Bilenko . Self-injection locking of a gain-switched laser diode. Phys. Rev. Appl., 2021, 15(6): 064066
CrossRef ADS Google scholar
[204]
S. Shao , J. Li , H Chen , S. Yang , M. Chen . Gain-switched optical frequency comb source using a hybrid integrated self-injection locking DFB laser. IEEE Photon. J., 2022, 14: 1
CrossRef ADS Google scholar
[205]
T. J. Kippenberg , A. L. Gaeta , M. Lipson , M. L. Gorodetsky . Dissipative Kerr solitons in optical microresonators. Science, 2018, 361(6402): eaan8083
CrossRef ADS Google scholar
[206]
Q. Li , M. Davanço , K. Srinivasan . Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics. Nat. Photonics, 2016, 10: 406
CrossRef ADS Google scholar
[207]
S. Gundavarapu , G. M. Brodnik , M. Puckett , T. Huffman , D. Bose , R. Behunin , J. Wu , T. Qiu , C. Pinho , N. Chauhan , J. Nohava , P. T. Rakich , K. D. Nelson , M. Salit , D. J. Blumenthal . Sub-Hertz fundamental linewidth photonic integrated Brillouin laser. Nat. Photonics, 2019, 13(1): 60
CrossRef ADS Google scholar
[208]
X. Ji , J. Liu , J. He , R. N. Wang , Z. Qiu , J. Riemensberger , T. J. Kippenberg . Compact, spatial-mode-interaction-free, ultralow-loss, nonlinear photonic integrated circuits. Commun. Phys., 2022, 5(1): 1
CrossRef ADS Google scholar
[209]
Z. Ye , F. Lei , K. Twayana , M. Girardi , P. A. Andrekson , V. Torres-Company . Integrated, ultra-compact high-Q silicon nitride microresonators for low-repetition-rate soliton microcombs. Laser Photon. Rev., 2021, 16(3): 2100147
CrossRef ADS Google scholar
[210]
V.SnigirevA.RiedhauserG.LihachevJ.RiemensbergerR.N. WangC.Moehl, ., Ultrafast tunable lasers using lithium niobate integrated photonics, arXiv: 2112.02036 (2021)
[211]
A. Gondarenko , J. S. Levy , M. Lipson . High confinement micron-scale silicon nitride high Q ring resonator. Opt. Express, 2009, 17(14): 11366
CrossRef ADS Google scholar
[212]
J.S. LevyA.GondarenkoM.A. FosterA.C. Turner-FosterA.L. GaetaM.Lipson, CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects, Nat. Photonics 4(1), 37 (2010)
[213]
X. Ji , F. A. S. Barbosa , S. P. Roberts , A. Dutt , J. Cardenas , Y. Okawachi , A. Bryant , A. L. Gaeta , M. Lipson . Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica, 2017, 4(6): 619
CrossRef ADS Google scholar
[214]
K. Wu , A. W. Poon . Stress-released si3n4 fabrication process for dispersion-engineered integrated silicon photonics. Opt. Express, 2020, 28(12): 17708
CrossRef ADS Google scholar
[215]
J. Liu , G. Huang , R. N. Wang , J. He , A. S. Raja , T. Liu , N. J. Engelsen , T. J. Kippenberg . High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun., 2021, 12(1): 2236
CrossRef ADS Google scholar
[216]
D. J. Moss , R. Morandotti , A. L. Gaeta , M. Lipson . New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics, 2013, 7(8): 597
CrossRef ADS Google scholar
[217]
C. Xiang , W. Jin , J. E. Bowers . Silicon nitride passive and active photonic integrated circuits: Trends and prospects. Photon. Res., 2022, 10(6): A82
CrossRef ADS Google scholar
[218]
C. H. Henry , R. F. Kazarinov , H. J. Lee , K. J. Orlowsky , L. E. Katz . Low loss Si3N4–SiO2 optical waveguides on Si. Appl. Opt., 1987, 26(13): 2621
CrossRef ADS Google scholar
[219]
F. Gyger , J. Liu , F. Yang , J. He , A. S. Raja , R. N. Wang , S. A. Bhave , T. J. Kippenberg , L. Thévenaz . Observation of stimulated Brillouin scattering in silicon nitride integrated waveguides. Phys. Rev. Lett., 2020, 124(1): 013902
CrossRef ADS Google scholar
[220]
B. Stern , X. Ji , A. Dutt , M. Lipson . Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator. Opt. Lett., 2017, 42(21): 4541
CrossRef ADS Google scholar
[221]
Y. Fan , A. van Rees , P. J. M. van der Slot , J. Mak , R. M. Oldenbeuving , M. Hoekman , D. Geskus , C. G. H. Roeloffzen , K. J. Boller . Hybrid integrated InP-Si3N4 diode laser with a 40-Hz intrinsic linewidth. Opt. Express, 2020, 28(15): 21713
CrossRef ADS Google scholar
[222]
J. Liu , A. S. Raja , M. Karpov , B. Ghadiani , M. H. P. Pfeiffer , B. Du , N. J. Engelsen , H. Guo , M. Zervas , T. J. Kippenberg . Ultralow-power chip-based soliton microcombs for photonic integration. Optica, 2018, 5(10): 1347
CrossRef ADS Google scholar
[223]
V. Brasch , M. Geiselmann , M. H. P. Pfeiffer , T. J. Kippenberg . Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state. Opt. Express, 2016, 24: 29312
CrossRef ADS Google scholar
[224]
Q. Li , T. C. Briles , D. A. Westly , T. E. Drake , J. R. Stone , B. R. Ilic , S. A. Diddams , S. B. Papp , K. Srinivasan . Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica, 2017, 4(2): 193
CrossRef ADS Google scholar
[225]
J. R. Stone , T. C. Briles , T. E. Drake , D. T. Spencer , D. R. Carlson , S. A. Diddams , S. B. Papp . Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs. Phys. Rev. Lett., 2018, 121(6): 063902
CrossRef ADS Google scholar
[226]
H. Zhou , Y. Geng , W. Cui , S. W. Huang , Q. Zhou , K. Qiu , C. Wei Wong . Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci. Appl., 2019, 8(1): 50
CrossRef ADS Google scholar
[227]
S.P. YuE.LucasJ.ZangS.B. Papp, A continuum of bright and dark-pulse states in a photonic-crystal resonator, Nat. Commun. 13(1), 3134 (2022)
[228]
H. Wang , B. Shen , Y. Yu , Z. Yuan , C. Bao , W. Jin , L. Chang , M. A. Leal , A. Feshali , M. Paniccia , J. E. Bowers , K. Vahala . Self-regulating soliton switching waves in microresonators. Phys. Rev. A, 2022, 106(5): 053508
CrossRef ADS Google scholar
[229]
J. Liu , H. Tian , E. Lucas , A. S. Raja , G. Lihachev , R. N. Wang , J. He , T. Liu , M. H. Anderson , W. Weng , S. A. Bhave , T. J. Kippenberg . Monolithic piezoelectric control of soliton microcombs. Nature, 2020, 583(7816): 385
CrossRef ADS Google scholar
[230]
C. Xiang , J. Guo , W. Jin , L. Wu , J. Peters , W. Xie , L. Chang , B. Shen , H. Wang , Q. F. Yang , D. Kinghorn , M. Paniccia , K. J. Vahala , P. A. Morton , J. E. Bowers . High-performance lasers for fully integrated silicon nitride photonics. Nat. Commun., 2021, 12(1): 6650
CrossRef ADS Google scholar
[231]
T. Komljenovic , M. Davenport , J. Hulme , A. Y. Liu , C. T. Santis , A. Spott , S. Srinivasan , E. J. Stanton , C. Zhang , J. E. Bowers . Heterogeneous silicon photonic integrated circuits. J. Lightwave Technol., 2016, 34(1): 20
CrossRef ADS Google scholar
[232]
H. Park , C. Zhang , M. A. Tran , T. Komljenovic . Heterogeneous silicon nitride photonics. Optica, 2020, 7(4): 336
CrossRef ADS Google scholar
[233]
C. Xiang , W. Jin , J. Guo , J. D. Peters , M. J. Kennedy , J. Selvidge . . Narrow-linewidth III-V/Si/Si3N4 laser using multilayer heterogeneous integration. Optica, 2020, 7: 20
CrossRef ADS Google scholar
[234]
C. Joshi , J. K. Jang , K. Luke , X. Ji , S. A. Miller , A. Klenner . . Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett., 2016, 41: 2565
CrossRef ADS Google scholar
[235]
X. Xue , Y. Xuan , C. Wang , P. H. Wang , Y. Liu , B. Niu , D. E. Leaird , M. Qi , A. M. Weiner . Thermal tuning of Kerr frequency combs in silicon nitride microring resonators. Opt. Express, 2016, 24(1): 687
CrossRef ADS Google scholar
[236]
G. Liang , H. Huang , A. Mohanty , M. C. Shin , X. Ji , M. J. Carter , S. Shrestha , M. Lipson , N. Yu . Robust, efficient, micrometre-scale phase modulators at visible wavelengths. Nat. Photonics, 2021, 15(12): 908
CrossRef ADS Google scholar
[237]
A. Arbabi , L. L. Goddard . Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiOx using microring resonances. Opt. Lett., 2013, 38(19): 3878
CrossRef ADS Google scholar
[238]
J. Komma , C. Schwarz , G. Hofmann , D. Heinert , R. Nawrodt . Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures. Appl. Phys. Lett., 2012, 101(4): 041905
CrossRef ADS Google scholar
[239]
H. Tian , J. Liu , B. Dong , J. C. Skehan , M. Zervas , T. J. Kippenberg , S. A. Bhave . Hybrid integrated photonics using bulk acoustic resonators. Nat. Commun., 2020, 11(1): 3073
CrossRef ADS Google scholar
[240]
M. Huang . Stress effects on the performance of optical waveguides. Int. J. Solids Struct., 2003, 40(7): 1615
CrossRef ADS Google scholar
[241]
P. J. M. van der Slot , M. A. G. Porcel , K. J. Boller . Surface acoustic waves for acousto-optic modulation in buried silicon nitride waveguides. Opt. Express, 2019, 27(2): 1433
CrossRef ADS Google scholar
[242]
N. Hosseini , R. Dekker , M. Hoekman , M. Dekkers , J. Bos , A. Leinse , R. Heideman . Stress-optic modulator in TriPlex platform using a piezoelectric lead zirconate titanate (PZT) thin film. Opt. Express, 2015, 23(11): 14018
CrossRef ADS Google scholar
[243]
K. Alexander , J. P. George , J. Verbist , K. Neyts , B. Kuyken , D. Van Thourhout , J. Beeckman . Nanophotonic Pockels modulators on a silicon nitride platform. Nat. Commun., 2018, 9(1): 3444
CrossRef ADS Google scholar
[244]
W. Jin , R. G. Polcawich , P. A. Morton , J. E. Bowers . Piezoelectrically tuned silicon nitride ring resonator. Opt. Express, 2018, 26: 3174
CrossRef ADS Google scholar
[245]
Y.H. LaiA.E. AmiliD.EliyahuR.MossS.GanjiS.Singer, ., Ultra-narrow-linewidth lasers for quantum applications. Conference on Lasers and Electro-Optics (Optica Publishing Group) (2022), STu5O.2
[246]
T.WundererA.SiddharthN.M. JohnsonC.L. ChuaM.TeepeZ.Yang, ., Low-noise hybrid photonic integrated violet and blue lasers for quantum applications, 2022 IEEE Research and Applications of Photonics in Defense Conference (RAPID) (2022), pp 1–2
[247]
J. Geng , L. Yang , S. Zhao , Y. Zhang . Resonant micro-optical gyro based on self-injection locking. Opt. Express, 2020, 28(22): 32907
CrossRef ADS Google scholar
[248]
J. Geng , L. Yang , J. Liang , S. Liu , Y. Zhang . Stability in self-injection locking of the DFB laser through a fiber optic resonator. Opt. Commun., 2022, 505: 127531
CrossRef ADS Google scholar
[249]
Y. Zhang , J. Geng , L. Li , Y. Wang , L. Yang . Exceptional-point-enhanced Brillouin micro-optical gyroscope based on self-injection locking. Opt. Commun., 2023, 528: 129008
CrossRef ADS Google scholar
[250]
E.DaleW.LiangD.EliyahuA.SavchenkovV.IlchenkoA.B. Matsko, ., Ultra-narrow line tunable semiconductor lasers for coherent lidar applications, Imaging and Applied Optics 2014 (Optical Society of America) (2014), JTu2C.3
[251]
C. A. Lopez-Mercado , D. A. Korobko , I. O. Zolotovskii , A. A. Fotiadi . Application of dual-frequency self-injection locked DFB laser for Brillouin optical time domain analysis. Sensors (Basel), 2021, 21(20): 6859
CrossRef ADS Google scholar
[252]
F. Karim , A. F. Mitul , B. Zhou , M. Han . High-sensitivity demodulation of fiber-optic acoustic emission sensor using self-injection locked diode laser. IEEE Photonics J., 2022, 14(4): 1
CrossRef ADS Google scholar
[253]
D.J. Blumenthal, Integrated ultra-narrow linewidth stabilized SBS lasers. Optical Fiber Communication Conference (OFC) 2022 (Optica Publishing Group) (2022), Tu3D. 1
[254]
Y.H. LaiS.LoveA.SavchenkovD.EliyahuR.MossL.Maleki, 871 nm ultra-narrow-linewidth laser for Yb+ clock, Conference on Lasers and Electro-Optics (Optica Publishing Group) (2021), SF2P. 3
[255]
R.AminJ.GreenbergB.HeffernanT.NagatsumaA.Rolland, Exceeding octave tunable terahertz waves with zepto-second level timing noise, arXiv: 2207.07750 (2022)
[256]
R.AminJ.GreenbergB.M. HeffernanA.Rolland, 0.5 THz wave based on two wavelength difference beat with self-injected diode lasers, 2022 47th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) (2022), pp 1–2
[257]
T. J. Kippenberg , R. Holzwarth , S. A. Diddams . Microresonator-based optical frequency combs. Science, 2011, 332(6029): 555
CrossRef ADS Google scholar
[258]
A. Pasquazi , M. Peccianti , L. Razzari , D. J. Moss , S. Coen , M. Erkintalo , Y. K. Chembo , T. Hansson , S. Wabnitz , P. Del’Haye , X. Xue , A. M. Weiner , R. Morandotti . Micro-combs: A novel generation of optical sources. Phys. Rep., 2018, 729: 1
CrossRef ADS Google scholar
[259]
S. Papp , K. Beha , P. Del’Haye , F. Quinlan , H. Lee , K. Vahala , S. A. Diddams . Microresonator frequency comb optical clock. Optica, 2014, 1(1): 10
CrossRef ADS Google scholar
[260]
M. G. Suh , Q. F. Yang , K. Yang , X. Yi , K. Vahala . Microresonator soliton dual-comb spectroscopy. Science, 2016, 354(6312): 600
CrossRef ADS Google scholar
[261]
Q. F. Yang , B. Shen , H. Wang , M. Tran , Z. Zhang , K. Y. Yang , L. Wu , C. Bao , J. Bowers , A. Yariv , K. Vahala . Vernier spectrometer using counterpropagating soliton microcombs. Science, 2019, 363(6430): 965
CrossRef ADS Google scholar
[262]
M. G. Suh , K. J. Vahala . Soliton microcomb range measurement. Science, 2018, 359(6378): 884
CrossRef ADS Google scholar
[263]
P. Trocha , M. Karpov , D. Ganin , M. H. P. Pfeiffer , A. Kordts , S. Wolf , J. Krockenberger , P. Marin-Palomo , C. Weimann , S. Randel , W. Freude , T. J. Kippenberg , C. Koos . Ultrafast optical ranging using microresonator soliton frequency combs. Science, 2018, 359(6378): 887
CrossRef ADS Google scholar
[264]
M. G. Suh , X. Yi , Y. H. Lai , S. Leifer , I. S. Grudinin , G. Vasisht , E. C. Martin , M. P. Fitzgerald , G. Doppmann , J. Wang , D. Mawet , S. B. Papp , S. A. Diddams , C. Beichman , K. Vahala . Searching for exoplanets using a microresonator astrocomb. Nat. Photonics, 2019, 13(1): 25
CrossRef ADS Google scholar
[265]
E.ObrzudM.RainerA.HarutyunyanM.H. AndersonJ.LiuM.GeiselmannB.ChazelasS.KundermannS.LecomteM.CecconiA.GhedinaE.MolinariF.PepeF.WildiF.BouchyT.J. KippenbergT.Herr, A microphotonic astrocomb, Nat. Photonics 13(1), 31 (2019)
[266]
P. Marin-Palomo , J. N. Kemal , M. Karpov , A. Kordts , J. Pfeifle , M. H. P. Pfeiffer , P. Trocha , S. Wolf , V. Brasch , M. H. Anderson , R. Rosenberger , K. Vijayan , W. Freude , T. J. Kippenberg , C. Koos . Microresonator-based solitons for massively parallel coherent optical communications. Nature, 2017, 546(7657): 274
CrossRef ADS Google scholar
[267]
A. Fölöp , M. Mazur , A. Lorences-Riesgo , Ó. Helgason , P. H. Wang , Y. Xuan . . High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators. Nat. Commun., 2018, 9(1): 1598
CrossRef ADS Google scholar
[268]
Ó. B. Helgason , A. Fülöp , J. Schröder , P. A. Andrekson , A. M. Weiner , V. Torres-Company . Superchannel engineering of microcombs for optical communications. J. Opt. Soc. Am. B, 2019, 36(8): 2013
CrossRef ADS Google scholar
[269]
B. Y. Kim , Y. Okawachi , J. K. Jang , M. Yu , X. Ji , Y. Zhao , C. Joshi , M. Lipson , A. L. Gaeta . Turnkey, high-efficiency Kerr comb source. Opt. Lett., 2019, 44(18): 4475
CrossRef ADS Google scholar
[270]
H. Liu , S. W. Huang , W. Wang , J. Yang , M. Yu , D. L. Kwong , P. Colman , C. W. Wong . Stimulated generation of deterministic platicon frequency microcombs. Photon. Res., 2022, 10(8): 1877
CrossRef ADS Google scholar
[271]
J.LingJ.StaffaH.WangB.ShenL.ChangU.A. Javid, ., Self-injection-locked second-harmonic integrated source, arXiv: 2207.03071 (2022)
[272]
A. W. Bruch , X. Liu , Z. Gong , J. B. Surya , M. Li , C. L. Zou , H. X. Tang . Pockels soliton microcomb. Nat. Photonics, 2021, 15(1): 21
CrossRef ADS Google scholar
[273]
X. Liu , Z. Gong , A. W. Bruch , J. B. Surya , J. Lu , H. X. Tang . Aluminum nitride nanophotonics for beyond-octave soliton microcomb generation and self-referencing. Nat. Commun., 2021, 12(1): 5428
CrossRef ADS Google scholar
[274]
H. Jung , S. P. Yu , D. R. Carlson , T. E. Drake , T. C. Briles , S. B. Papp . Tantala Kerr nonlinear integrated photonics. Optica, 2021, 8(6): 811
CrossRef ADS Google scholar
[275]
D. J. Wilson , K. Schneider , S. Honl , M. Anderson , Y. Baumgartner , L. Czornomaz , T. J. Kippenberg , P. Seidler . Integrated gallium phosphide nonlinear photonics. Nat. Photonics, 2020, 14(1): 57
CrossRef ADS Google scholar
[276]
M. Pu , L. Ottaviano , E. Semenova , K. Yvind . Efficient frequency comb generation in AlGaAs-on-insulator. Optica, 2016, 3(8): 823
CrossRef ADS Google scholar
[277]
L. Chang , W. Xie , H. Shu , Q. F. Yang , B. Shen , A. Boes , J. D. Peters , W. Jin , C. Xiang , S. Liu , G. Moille , S. P. Yu , X. Wang , K. Srinivasan , S. B. Papp , K. Vahala , J. E. Bowers . Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nat. Commun., 2020, 11(1): 1331
CrossRef ADS Google scholar
[278]
M. A. Guidry , D. M. Lukin , K. Y. Yang , R. Trivedi , J. Vučković . Quantum optics of soliton microcombs. Nat. Photonics, 2022, 16(1): 52
CrossRef ADS Google scholar
[279]
C. Wang , J. Li , A. Yi , Z. Fang , L. Zhou , Z. Wang , R. Niu , Y. Chen , J. Zhang , Y. Cheng , J. Liu , C. H. Dong , X. Ou . Soliton formation and spectral translation into visible on CMOS-compatible 4H-silicon-carbide-on-insulator platform. Light Sci. Appl., 2022, 11(1): 341
CrossRef ADS Google scholar
[280]
D. Xia , Z. Yang , P. Zeng , B. Zhang , J. Wu , Z. Wang , J. Zhao , J. Huang , L. Luo , D. Liu , S. Yang , H. Guo , Z. Li . Integrated chalcogenide photonics for microresonator soliton combs. Laser Photon. Rev., 2022, 2200219
CrossRef ADS Google scholar
[281]
X. Xue , X. Zheng , B. Zhou . Super-efficient temporal solitons in mutually coupled optical cavities. Nat. Photonics, 2019, 13(9): 616
CrossRef ADS Google scholar
[282]
J. M. C. Boggio , D. Bodenmuller , S. Ahmed , S. Wabnitz , D. Modotto , T. Hansson . Efficient Kerr soliton comb generation in micro-resonator with interferometric back-coupling. Nat. Commun., 2022, 13(1): 1292
CrossRef ADS Google scholar
[283]
O.B. HelgasonM.GirardiZ.YeF.LeiJ.SchröderV.T. Company, Power-efficient soliton microcombs, arXiv: 2202.09410 (2022)

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author contributions

N.M.K., V.E.L., I.A.B., and J.L. contributed to conception and organization of the manuscript. N.M.K., V.E.L., W.L., J.L. and I.A.B. wrote the introduction. N.M.K., R.R.G., V.E.L., and D.A.C. organized and wrote the theoretical review part. A.E.S., D.A.C., N.Y.D., A.N.D., E.A.L., Y.-H.L., W.L., and J.L. organized and wrote the experimental review part. All authors contributed to manuscript revision, read, and approved the submitted version.

Funding information

The results presented in Sections 2.5 and 3.2 were obtained with the support of the Russian Science Foundation (project 22-22-00872). The results presented in Sections 2.3, 3.4 and 4 were obtained with the support of the Russian Science Foundation (Project 20-12-00344). Y.-H. L. acknowledges support from the China Postdoctoral Science Foundation (Grant No. 2022M721482). W. L. acknowledges support from the National Natural Science Foundation of China (Grant No. 62075233) and the CAS Project for Young Scientists in Basic Research (Grant No. YSBR-69). J. L. acknowledges support from the National Natural Science Foundation of China (Grant No.12261131503), Shenzhen−Hong Kong Cooperation Zone for Technology and Innovation (HZQB-KCZYB2020050), and from the Guangdong Provincial Key Laboratory (2019B121203002).

Data availability statement

All original data used in this review are available from the corresponding authors upon reasonable request.

Acknowledgements

The authors are grateful for the fruitful discussion and collaboration with colleagues at EPFL, UCSB, Caltech, Purdue, and OEWaves, during and especially prior to the preparation of this review.

RIGHTS & PERMISSIONS

2023 The Authors
AI Summary AI Mindmap
PDF(18696 KB)

Accesses

Citations

Detail

Sections
Recommended

/