Reversible doping polarity and ultrahigh carrier density in two-dimensional van der Waals ferroelectric heterostructures

Yanyan Li, Mingjun Yang, Yanan Lu, Dan Cao, Xiaoshuang Chen, Haibo Shu

PDF(8013 KB)
PDF(8013 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (3) : 33307. DOI: 10.1007/s11467-022-1244-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Reversible doping polarity and ultrahigh carrier density in two-dimensional van der Waals ferroelectric heterostructures

Author information +
History +

Abstract

Van der Waals semiconductor heterostructures (VSHs) composed of two or more two-dimensional (2D) materials with different band gaps exhibit huge potential for exploiting high-performance multifunctional devices. The application of 2D VSHs in atomically thin devices highly depends on the control of their carrier type and density. Herein, on the basis of comprehensive first-principles calculations, we report a new strategy to manipulate the doping polarity and carrier density in a class of 2D VSHs consisting of atomically thin transition metal dichalcogenides (TMDs) and α-In2X3 (X = S, Se) ferroelectrics via switchable polarization field. Our calculated results indicate that the band bending of In2X3 layer driven by the FE polarization can be utilized for engineering the band alignment and doping polarity of TMD/In2X3 VSHs, which enables us to control their carrier density and type of the VSHs by the orientation and magnitude of local FE polarization field. Inspired by these findings, we demonstrate that doping-free p−n junctions achieved in MoTe2/In2Se3 VSHs exhibit high carrier density (1013−1014 cm−2), and the inversion of the VHSs from n−p junctions to p−i−n junctions has been realized by the polarization switching from upward to downward states. This work provides a nonvolatile and nondestructive doping strategy for obtaining programmable p−n van der Waals (vdW) junctions and opens the possibilities for self-powered and multifunctional device applications.

Graphical abstract

Keywords

van der Waals heterostructures / ferroelectric polarization / carrier type / band alignment / density-functional theory

Cite this article

Download citation ▾
Yanyan Li, Mingjun Yang, Yanan Lu, Dan Cao, Xiaoshuang Chen, Haibo Shu. Reversible doping polarity and ultrahigh carrier density in two-dimensional van der Waals ferroelectric heterostructures. Front. Phys., 2023, 18(3): 33307 https://doi.org/10.1007/s11467-022-1244-4

References

[1]
J. Simon , V. Protasenko , C. Lian , H. Xing , D. Jena . Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures. Science, 2010, 327(5961): 60
CrossRef ADS Google scholar
[2]
J. D. Sau , R. M. Lutchyn , S. Tewari , S. Das Sarma . Generic new platform for topological quantum computation using semiconductor heterostructures. Phys. Rev. Lett., 2010, 104(4): 040502
CrossRef ADS Google scholar
[3]
C. Siegert , A. Ghosh , M. Pepper , I. Farrer , D. A. Ritchie . The possibility of an intrinsic spin lattice in high-mobility semiconductor heterostructures. Nat. Phys., 2007, 3(5): 315
CrossRef ADS Google scholar
[4]
J. Narayan , S. Oktyabrsky . Formation of misfit dislocations in thin film heterostructures. J. Appl. Phys., 2002, 92(12): 7122
CrossRef ADS Google scholar
[5]
X. Liu , D. Cao , Y. Yao , P. Tang , M. Zhang , X. Chen , H. Shu . Heteroepitaxial growth and interface band alignment in a large-mismatch CsPbI3/GaN heterojunction. J. Mater. Chem. C, 2022, 10(6): 1984
CrossRef ADS Google scholar
[6]
R. Yang , J. Fan , M. Sun . Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties. Front. Phys., 2022, 17(4): 43202
CrossRef ADS Google scholar
[7]
K. Mak , J. Shan . Photonics and Optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics, 2016, 10(4): 216
CrossRef ADS Google scholar
[8]
H. Liu , Y. Du , Y. Deng , P. D. Ye . Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev., 2015, 44(9): 2732
CrossRef ADS Google scholar
[9]
S. Zhang , S. Guo , Z. Chen , Y. Wang , H. Gao , J. Gómez-Herrero , P. Ares , F. Zamora , Z. Zhu , H. Zeng . Recent progress in 2D group-VA semiconductors: from theory to experiment. Chem. Soc. Rev., 2018, 47(3): 982
CrossRef ADS Google scholar
[10]
Y. Liu , N. O. Weiss , X. Duan , H. C. Cheng , Y. Huang , X. Duan . Van der Waals heterostructures and devices. Nat. Rev. Mater., 2016, 1(9): 16042
CrossRef ADS Google scholar
[11]
Y. Y. Wang , F. P. Li , W. Wei , B. B. Huang , Y. Dai . Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides. Front. Phys., 2021, 16(1): 13501
CrossRef ADS Google scholar
[12]
L. Zhang , Z. Zhang , F. Wu , D. Wang , R. Gogna , S. Hou , K. Watanabe , K. Taniguchi , K. Kulkarni , T. Kuo , S. R. Forrest , H. Deng . Twist-angle dependence of moiré excitons in WS2/MoSe2 heterobilayers. Nat. Commun., 2020, 11(1): 5888
CrossRef ADS Google scholar
[13]
M. R. Rosenberger , H. J. Chuang , M. Phillips , V. P. Oleshko , K. M. McCreary , S. V. Sivaram , C. S. Hellberg , B. T. Jonker . Twist angle-dependent atomic reconstruction and moiré patterns in transition metal dichalcogenide heterostructures. ACS Nano, 2020, 14(4): 4550
CrossRef ADS Google scholar
[14]
H. Chen , X. Wen , J. Zhang , T. Wu , Y. Gong , X. Zhang , J. Yuan , C. Yi , J. Lou , P. M. Ajayan , W. Zhuang , G. Zhang , J. Zheng . Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures. Nat. Commun., 2016, 7(1): 12512
CrossRef ADS Google scholar
[15]
A. F. Rigosi , H. M. Hill , Y. Li , A. Chernikov , T. F. Heinz . Probing interlayer interactions in transition metal dichalcogenide heterostructures by optical spectroscopy: MoS2/WS2 and MoSe2/WSe2. Nano Lett., 2015, 15(8): 5033
CrossRef ADS Google scholar
[16]
J. Guo , L. Wang , Y. Yu , P. Wang , Y. Huang , X. Duan . SnSe/MoS2 van der Waals heterostructure junction field-effect transistors with nearly ideal subthreshold slope. Adv. Mater., 2019, 31(49): 1902962
CrossRef ADS Google scholar
[17]
Y. Cheng , P. Tang , P. Liang , X. Liu , D. Cao , X. Chen , H. Shu . Sulfur-driven transition from vertical to lateral growth of 2D SnS−SnS2 heterostructures and their band alignments. J. Phys. Chem. C, 2020, 124(50): 27820
CrossRef ADS Google scholar
[18]
J. Xu , J. Jia , S. Lai , J. Ju , S. Lee . Tunneling field effect transistor integrated with black phosphorus-MoS2 junction and ion gel dielectric. Appl. Phys. Lett., 2017, 110(3): 033103
CrossRef ADS Google scholar
[19]
S. J. Liang , B. Cheng , X. Cui , F. Miao . Van der Waals heterostructures for high-performance device applications: Challenges and opportunities. Adv. Mater., 2020, 32: 1903800
[20]
R. Cheng , F. Wang , L. Yin , Z. Wang , Y. Wen , T. A. Shifa , J. He . High-performance, multifunctional devices based on asymmetric van der Waals heterostructures. Nat. Electron., 2018, 1(6): 356
CrossRef ADS Google scholar
[21]
H. P. Komsa , J. Kotakoski , S. Kurasch , O. Lehtinen , U. Kaiser , A. V. Krasheninnikov . Two-dimensional transition metal dichalcogenides under electron irradiation: Defect production and doping. Phys. Rev. Lett., 2012, 109(3): 035503
CrossRef ADS Google scholar
[22]
Q. Zhang , H. Ying , X. Li , R. Xiang , Y. Zheng , H. Wang , J. Su , M. Xu , X. Zheng , S. Maruyama , X. Zhang . Controlled doping engineering in 2D MoS2 crystals toward performance augmentation of optoelectronic devices. ACS Appl. Mater. Interfaces, 2021, 13(27): 31861
CrossRef ADS Google scholar
[23]
Y. Gong , H. Yuan , C. L. Wu , P. Tang , S. Z. Yang , A. Yang , G. Li , B. Liu , J. van de Groep , M. L. Brongersma , M. F. Chisholm , S. C. Zhang , W. Zhou , Y. Cui . Spatial controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat. Nanotechnol., 2018, 13(4): 294
CrossRef ADS Google scholar
[24]
D. Kiriya , M. Tosun , P. Zhao , J. S. Kang , A. Javey . Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc., 2014, 136(22): 7853
CrossRef ADS Google scholar
[25]
W. Shi , S. Kahn , L. Jiang , S. Y. Wang , H. Z. Tsai , D. Wong , T. Taniguchi , K. Watanabe , F. Wang , M. F. Crommie , A. Zettl . Reversible writing of high mobility and high-carrier density doping patterns in two-dimensional van der Waals heterostructures. Nat. Electron., 2020, 3(2): 99
CrossRef ADS Google scholar
[26]
R. Zhang , Z. Xie , C. An , S. Fan , Q. Zhang , S. Wu , L. Xu , X. Hu , D. Zhang , D. Sun , J. Chen , J. Liu . Ultraviolet light-induced persistent and degenerated doping in MoS2 for potential photocontrollable electronics applications. ACS Appl. Mater. Interfaces, 2018, 10(33): 27840
CrossRef ADS Google scholar
[27]
M. Buscema , D. J. Groenendijk , G. A. Steele , H. S. J. van der Zant , A. Castellanos-Gomez . Photovoltaic effect in few-layer phosphorus PN junctions defined local electrostatic gating. Nat. Commun., 2014, 5(1): 4651
CrossRef ADS Google scholar
[28]
P. Agnihotri , P. Dhakras , J. U. Lee . Bipolar junction transistors in two-dimensional WSe2 with large current and photocurrent grains. Nano Lett., 2016, 16(7): 4355
CrossRef ADS Google scholar
[29]
S. J. Lee , Z. Lin , X. Duan , Y. Huang . Doping on demand in 2D devices. Nat. Electron., 2020, 3(2): 77
CrossRef ADS Google scholar
[30]
L. Kong , X. Zhang , Q. Tao , M. Zhang , W. Dang , Z. Li , L. Feng , L. Liao , X. Duan , Y. Liu . Doping-free complementary WSe2 circuit via van der Waals metal integration. Nat. Commun., 2020, 11(1): 1866
CrossRef ADS Google scholar
[31]
D. Wijethunge , L. Zhang , C. Tang , A. Du . Tunning band alignment and optical properites of 2D van der Waals heterostructure via ferroelectric polarization switching. Front. Phys., 2020, 15(6): 63504
CrossRef ADS Google scholar
[32]
J.W. ChenS.T. LoS.C. HoS.S. WongT.H. Y. VuX.Q. ZhangY.D. LiuY.Y. ChiouY.X. ChenJ.C. YangY.C. ChenY.H. ChuY.H. LeeC.J. ChungT.M. ChenC.H. ChenC.L. Wu, A gate-free monolayer WSe2 PN diode, Nat. Commun. 9(1), 3143 (2018)
[33]
Z. Lu , C. Serrao , A. I. Khan , L. You , J. C. Wong , Y. Ye , H. Zhu , X. Zhang , S. Salahuddin . Nonvolatile MoS2 field effect transistors directly gated by single crystalline epitaxial ferroelectric. Appl. Phys. Lett., 2017, 111(2): 023104
CrossRef ADS Google scholar
[34]
A. Nguyen , P. Sharma , T. Scott , E. Preciado , V. Klee , D. Sun , I. H. D. Lu , D. Barroso , S. H. Kim , V. Y. Shur , A. R. Akhmatkhanov , A. Gruverman , L. Bartels , P. A. Dowben . Toward ferroelectric control of monolayer MoS2. Nano Lett., 2015, 15(5): 3364
CrossRef ADS Google scholar
[35]
X. Liu , X. Zhou , Y. Pan , J. Yang , H. Xiang , Y. Yuan , S. Liu , H. Luo , D. Zhang , J. Sun . Charge–ferroelectric transition in ultrathin Na0.5Bi4.5Ti4O15 flakes probed via a dual-gated full van der Waals transistor. Adv. Mater., 2020, 32(49): 2004813
CrossRef ADS Google scholar
[36]
G. Wu , X. Wang , Y. Chen , S. Wu , B. Wu , Y. Jiang , S. Shen , T. Lin , Q. Liu , X. Wang , P. Zhou , S. Zhang , W. Hu , X. Meng , J. Chu , J. Wang . MoTe2 p–n homojunctions defined by ferroelectric polarization. Adv. Mater., 2020, 32(16): 1907937
CrossRef ADS Google scholar
[37]
G. Wu , B. Tian , L. Liu , W. Lv , S. Wu , X. Wang , Y. Chen , J. Li , Z. Wang , S. Wu , H. Shen , T. Lin , P. Zhou , Q. Liu , C. Duan , S. Zhang , X. Meng , S. Wu , W. Hu , X. Wang , J. Chu , J. Wang . Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains. Nat. Electron., 2020, 3(1): 43
CrossRef ADS Google scholar
[38]
N. A. Spaldin . Fundamental size limits in ferroelectricity. Science, 2004, 304(5677): 1606
CrossRef ADS Google scholar
[39]
M. Dawber , K. M. Rabe , J. F. Scott . Physics of thin-film ferroelectric oxides. Rev. Mod. Phys., 2005, 77(4): 1083
CrossRef ADS Google scholar
[40]
A. Belianinov , Q. He , A. Dziaugys , P. Maksymovych , E. Eliseev , A. Borisevich , A. Morozovska , J. Banys , Y. Vysochanskii , S. V. Kalinin . CuInP2S6 room temperature layered ferroelectric. Nano Lett., 2015, 15(6): 3808
CrossRef ADS Google scholar
[41]
W. Ding , J. Zhu , J. Wang , Y. Gao , D. Xiao , Y. Gu , Z. Zhang , W. Zhu . Prediction of intrinsic two-dimensional frroelectrics in In2Se3 and other III2−VI3 van der Waals materials. Nat. Commun., 2017, 8(1): 14956
CrossRef ADS Google scholar
[42]
N. Higashitarumizu , H. Kawamoto , C. J. Lee , B. H. Lin , F. H. Chu , I. Yonemori , T. Nishimura , K. Wakabayashi , W. Chang , K. Nagashio . Purely in-plane ferroelectricity in monolayer SnS at room temperature. Nat. Commun., 2020, 11(1): 2428
CrossRef ADS Google scholar
[43]
S. Yuan , X. Luo , H. L. Chan , C. Xiao , Y. Dai , M. Xie , J. Hao . Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun., 2019, 10(1): 1775
CrossRef ADS Google scholar
[44]
F. Xue , W. Hu , K. C. Lee , L. S. Lu , J. Zhang , H. L. Tang , A. Han , W. T. Hsu , S. Tu , W. H. Chang , C. H. Lien , J. H. He , Z. Zhang , L. J. Li , X. Zhang . Room-temperature ferroelectricity in hexagonally layered α-In2Se3 nanoflakes down to the monolayer limit. Adv. Funct. Mater., 2018, 28(50): 1803738
CrossRef ADS Google scholar
[45]
J. Quereda , R. Biele , G. Rubio-Bollinger , N. Agrait , R. D’Agosta , A. Castellanos-Gomez . Strong quantum confinement effect in the optical properties of ultrathinα-In2Se3. Adv. Opt. Mater., 2016, 4(12): 1939
CrossRef ADS Google scholar
[46]
M. Yang , H. Shu , Y. Li , D. Cao , X. Chen . Polarization-induced band alignment transition and nonvolatile p−n junctions in 2D van der Waals heterostructures. Adv. Electron. Mater., 2022, 8(3): 2101022
CrossRef ADS Google scholar
[47]
G. Kresse , J. Furthmüller . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169
CrossRef ADS Google scholar
[48]
M. C. Payne , M. P. Teter , D. C. Allan , T. A. Arias , J. D. Joannopoulos . Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys., 1992, 64(4): 1045
CrossRef ADS Google scholar
[49]
S. Grimme . Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem., 2006, 27(15): 1787
CrossRef ADS Google scholar
[50]
J. Heyd , G. E. Scuseria , M. Ernzerhof . Hybrid functionals based on a screened coulomb potential. J. Chem. Phys., 2003, 118(18): 8207
CrossRef ADS Google scholar
[51]
R. D. King-Smith , D. Vanderbilt . Theory of polarization of crystalline solids. Phys. Rev. B, 1993, 47(3): 1651
CrossRef ADS Google scholar
[52]
R.F. Bader, A quantum theory of molecular structure and its applications, Chem. Rev. 91(5), 893 (1991)
[53]
W. F. Io , S. Yuan , S. Y. Pang , L. W. Wong , J. Zhao , J. Hao . Temperature- and thickness-dependence of robust out-of-plane ferroelectricity in CVD grown ultrathin van der Waals α-In2Se3 layers. Nano Res., 2020, 13(7): 1897
CrossRef ADS Google scholar
[54]
R. Peng , Y. Ma , S. Zhang , B. Huang , L. Kou , Y. Dai . Self-doped p–n junctions in two-dimensional In2X3 van der Waals materials. Mater. Horiz., 2020, 7(2): 504
CrossRef ADS Google scholar
[55]
T. Björkman , A. Gulans , A. V. Krasheninnikov , R. M. Nieminen . Van der Waals bonding in layered compounds from advanced density-functional first-principles calculations. Phys. Rev. Lett., 2012, 108(23): 235502
CrossRef ADS Google scholar
[56]
M. Yang , H. Shu , P. Tang , P. Liang , D. Cao , X. Chen . Intrinsic polarization-induced enhanced ferromagnetism and self-doped p–n junctions in CrBr3/GaN van der Waals heterostructures. ACS Appl. Mater. Interfaces, 2021, 13(7): 8764
CrossRef ADS Google scholar
[57]
P. J. Jeon , Y. T. Lee , J. Y. Lim , J. S. Kim , D. K. Hwang , S. Im . Black phosphorus−zinc oxide nanomaterial heterojunction for p−n diode and junction field-effect transistor. Nano Lett., 2016, 16(2): 1293
CrossRef ADS Google scholar
[58]
P. K. Srivastava , Y. Hassan , Y. Gebredingle , J. Jung , B. Kang , W. J. Yoo , B. Singh , C. Lee . Van der waals broken-gap p−n heterojunction tunnel diode based on black Phosphorus and rhenium disulfide. ACS Appl. Mater. Interfaces, 2019, 11(8): 8266
CrossRef ADS Google scholar
[59]
D. Qu , X. Liu , M. Huang , C. Lee , F. Ahmed , H. Kim , R. S. Ruoff , J. Hone , W. J. Yoo . Carrier-type modulation and mobility improvement of thin MoTe2. Adv. Mater., 2017, 29(39): 1606433
CrossRef ADS Google scholar
[60]
Y. Xie , E. Wu , S. Fan , G. Geng , X. Hu , L. Xu , S. Wu , J. Liu , D. Zhang . Modulation of MoTe2/MoS2 van der Waals heterojunctions for multifunctional devices using N2O plasma with an opposite doping effect. Nanoscale, 2021, 13(16): 7851
CrossRef ADS Google scholar
[61]
J. E. Kim , W. T. Kang , V. Tu Vu , Y. R. Kim , Y. S. Shin , I. Lee , U. Y. Won , B. H. Lee , K. Kim , T. L. Phan , Y. H. Lee , W. J. Yu . Ideal PN photodiode using doping controlled WSe2−MoSe2 lateral heterostructure. J. Mater. Chem. C, 2021, 9(10): 3504
CrossRef ADS Google scholar
[62]
C. H. Lee , G. H. Lee , A. M. van der Zande , W. Chen , Y. Li , M. Han , X. Cui , G. Arefe , C. Nuckolls , T. F. Heinz , J. Guo , J. Hone , P. Kim . Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol., 2014, 9(9): 676
CrossRef ADS Google scholar

Electronic supplementary materials

Supplementary materials (interfacial configurations and stabilities of 2D TMD/In2X3 VSHs, electrostatic potentials and band structures of 2D α-In2X3 nanosheets, thickness effect on projected band structures of MoTe2/In2Se3 VSHs, band alignments of MoSe2/In2S3 VSHs, and the band evoltion of In2Se3 and MoTe2 layer in MoTe2/In2Se3 VSHs associated to the ferroelectric phase transition) are available in the online version of this article at http://doi.org/10.1007/s11467-022-1244-4 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-022-1244-4.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 62174151 and 61775201) and the Fund of Zhejiang Provincial Natural Science Foundation of China (Grant No. LZ22F040003 and LY22A040002). Computational resources from the Shanghai Supercomputer Center are acknowledged.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(8013 KB)

Accesses

Citations

Detail

Sections
Recommended

/