Sharing quantum nonlocality in star network scenarios

Tinggui Zhang, Naihuan Jing, Shao-Ming Fei

PDF(3398 KB)
PDF(3398 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (3) : 31302. DOI: 10.1007/s11467-022-1242-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Sharing quantum nonlocality in star network scenarios

Author information +
History +

Abstract

The Bell nonlocality is closely related to the foundations of quantum physics and has significant applications to security questions in quantum key distributions. In recent years, the sharing ability of the Bell nonlocality has been extensively studied. The nonlocality of quantum network states is more complex. We first discuss the sharing ability of the simplest bilocality under unilateral or bilateral POVM measurements, and show that the nonlocality sharing ability of network quantum states under unilateral measurements is similar to the Bell nonlocality sharing ability, but different under bilateral measurements. For the star network scenarios, we present for the first time comprehensive results on the nonlocality sharing properties of quantum network states, for which the quantum nonlocality of the network quantum states has a stronger sharing ability than the Bell nonlocality.

Graphical abstract

Keywords

Bell nonlocality / quantum network / nonlocality sharing / POVM measurements

Cite this article

Download citation ▾
Tinggui Zhang, Naihuan Jing, Shao-Ming Fei. Sharing quantum nonlocality in star network scenarios. Front. Phys., 2023, 18(3): 31302 https://doi.org/10.1007/s11467-022-1242-6

References

[1]
A. Einstein , B. Podolsky , N. Rosen . Can quantum-mechanical description of physical reality be considered complete. Phys. Rev., 1935, 47(10): 777
CrossRef ADS Google scholar
[2]
H. Cao , Z. Guo . Characterizing Bell nonlocality and EPR steering. Sci. China Phys. Mech. Astron., 2019, 62(3): 30311
CrossRef ADS Google scholar
[3]
N. Brunner , D. Cavalcanti , S. Pironio , V. Scarani , S. Wehner . Bell nonlocality. Rev. Mod. Phys., 2014, 86(2): 419
CrossRef ADS Google scholar
[4]
A. Acín , N. Brunner , N. Gisin , S. Massar , S. Pironio , V. Scarani . Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett., 2007, 98(23): 230501
CrossRef ADS Google scholar
[5]
S. Pironio , A. Acín , S. Massar , A. B. de la Giroday , D. N. Matsukevich , P. Maunz , S. Olmschenk , D. Hayes , L. Luo , T. A. Manning , C. Monroe . Random numbers certified by Bell’s theorem. Nature, 2010, 464(7291): 1021
CrossRef ADS Google scholar
[6]
R. Colbeck , R. Renner . Free randomness can be amplified. Nat. Phys., 2012, 8(6): 450
CrossRef ADS Google scholar
[7]
M. H. Li , X. Zhang , W. Z. Liu , S. R. Zhao , B. Bai , Y. Liu , Q. Zhao , Y. Peng , J. Zhang , Y. Zhang , W. J. Munro , X. Ma , Q. Zhang , J. Fan , J. W. Pan . Experimental realization of device-independent quantum randomness expansion. Phys. Rev. Lett., 2021, 126(5): 050503
CrossRef ADS Google scholar
[8]
W. Z. Liu , M. H. Li , S. Ragy , S. R. Zhao , B. Bai , Y. Liu , P. J. Brown , J. Zhang , R. Colbeck , J. Fan , Q. Zhang , J. W. Pan . Device-independent randomness expansion against quantum side information. Nat. Phys., 2021, 17(4): 448
CrossRef ADS Google scholar
[9]
L. K. Shalm , Y. Zhang , J. C. Bienfang , C. Schlager , M. J. Stevens , M. D. Mazurek , C. Abellán , W. Amaya , M. W. Mitchell , M. A. Alhejji , H. Fu , J. Ornstein , R. P. Mirin , S. W. Nam , E. Knill . Device-independent randomness expansion with entangled photons. Nat. Phys., 2021, 17(4): 452
CrossRef ADS Google scholar
[10]
R. Silva , N. Gisin , Y. Guryanova , S. Popescu . Multiple observers can share the nonlocality of half of an entangled pair by using optimal weak measurements. Phys. Rev. Lett., 2015, 114(25): 250401
CrossRef ADS Google scholar
[11]
J. S. Bell . On the Einstein−Podolsky−Rosen paradox. Physics, 1964, 1(3): 195
CrossRef ADS Google scholar
[12]
J. F. Clauser , M. A. Horne , A. Shimony , R. A. Holt . Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett., 1969, 23(15): 880
CrossRef ADS Google scholar
[13]
S. Mal , A. Majumdar , D. Home . Sharing of nonlocality of a single member of an entangled pair of qubits is not possible by more than two unbiased observers on the other wing. Mathematics, 2016, 4(3): 48
CrossRef ADS Google scholar
[14]
A. Shenoy H. , S. Designolle , F. Hirsch , R. Silva , N. Gisin , N. Brunner . Unbounded sequence of observers exhibiting Einstein−Podolsky−Rosen steering. Phys. Rev. A, 2019, 99: 022317
CrossRef ADS Google scholar
[15]
D. Das , A. Ghosal , S. Sasmal , S. Mal , A. S. Majum-dar . Facets of bipartite nonlocality sharing by multiple observers via sequential measurements. Phys. Rev. A, 2019, 99(2): 022305
CrossRef ADS Google scholar
[16]
S. Datta , A. S. Majumdar . Sharing of nonlocal advantage of quantum coherence by sequential observers. Phys. Rev. A, 2018, 98(4): 042311
CrossRef ADS Google scholar
[17]
C. Ren , T. Feng , D. Yao , H. Shi , J. Chen , X. Zhou . Passive and active nonlocality sharing for a two-qubit system via weak measurements. Phys. Rev. A, 2019, 100(5): 052121
CrossRef ADS Google scholar
[18]
A. Kumari , A. K. Pan . Sharing nonlocality and nontrivial preparation contextuality using the same family of Bell expressions. Phys. Rev. A, 2019, 100(6): 062130
CrossRef ADS Google scholar
[19]
S. Saha , D. Das , S. Sasmal , D. Sarkar , K. Mukherjee , A. Roy , S. S. Bhattacharya . Sharing of tripartite nonlocality by multiple observers measuring sequentially at one side. Quantum Inform. Process., 2019, 18(2): 42
CrossRef ADS Google scholar
[20]
K. Mohan , A. Tavakoli , N. Brunner . Sequential random access codes and self-testing of quantum instruments. New J. Phys., 2019, 21: 083034
CrossRef ADS Google scholar
[21]
P. J. Brown , R. Colbeck . Arbitrarily many independent observers can share the nonlocality of a single maximally entangled qubit pair. Phys. Rev. Lett., 2020, 125(9): 090401
CrossRef ADS Google scholar
[22]
T. Zhang , S. M. Fei . Sharing quantum nonlocality and genuine nonlocality with independent observables. Phys. Rev. A, 2021, 103(3): 032216
CrossRef ADS Google scholar
[23]
T. Zhang , Q. Luo , X. Huang . Quantum Bell nonlocality cannot be shared under a special kind of bilateral measurements for high-dimensional quantum states. Quantum Inform. Process., 2022, 21(10): 350
CrossRef ADS Google scholar
[24]
S. Mukherjee , A. K. Pan . Semi-device-independent certification of multiple unsharpness parameters through sequential measurements. Phys. Rev. A, 2021, 104(6): 062214
CrossRef ADS Google scholar
[25]
M. J. Hu , Z. Y. Zhou , X. M. Hu , C. F. Li , G. C. Guo , Y. S. Zhang . Observation of non-locality sharing among three observers with one entangled pair via optimal weak measurement. npj Quantum Inf., 2018, 4(1): 63
CrossRef ADS Google scholar
[26]
M. Schiavon , L. Calderaro , M. Pittaluga , G. Vallone , P. Villoresi . Three-observer Bell inequality violation on a two-qubit entangled state. Quantum Sci. Technol., 2017, 2(1): 015010
CrossRef ADS Google scholar
[27]
T. Feng , C. Ren , Y. Tian , M. Luo , H. Shi , J. Chen , X. Zhou . Observation of nonlocality sharing via not-so-weak measurements. Phys. Rev. A, 2020, 102(3): 032220
CrossRef ADS Google scholar
[28]
S. Cheng , L. Liu , T. J. Baker , M. J. W. Hall . Limitations on sharing Bell nonlocality between sequential pairs of observers. Phys. Rev. A, 2021, 104(6): L060201
CrossRef ADS Google scholar
[29]
S. Cheng , L. Liu , T. J. Baker , M. J. W. Hall . Recycling qubits for the generation of Bell nonlocality between independent sequential observers. Phys. Rev. A, 2022, 105(2): 022411
CrossRef ADS Google scholar
[30]
F. Arute , K. Arya , R. Babbush , D. Bacon , J. C. Bardin . . Quantum supremacy using a programmable superconducting processor. Nature, 2019, 574(7779): 505
CrossRef ADS Google scholar
[31]
H. S. Zhong , H. Wang , Y. H. Deng , M. C. Chen , L. C. Peng , Y. H. Luo , J. Qin , D. Wu , X. Ding , Y. Hu , P. Hu , X. Y. Yang , W. J. Zhang , H. Li , Y. Li , X. Jiang , L. Gan , G. Yang , L. You , Z. Wang , L. Li , N. L. Liu , C. Y. Lu , J. W. Pan . Quantum computational advantage using photons. Science, 2020, 370(6523): 1460
CrossRef ADS Google scholar
[32]
H. S. Zhong , Y. H. Deng , J. Qin , H. Wang , M. C. Chen , L. C. Peng , Y. H. Luo , D. Wu , S. Q. Gong , H. Su , Y. Hu , P. Hu , X. Y. Yang , W. J. Zhang , H. Li , Y. Li , X. Jiang , L. Gan , G. Yang , L. You , Z. Wang , L. Li , N. L. Liu , J. J. Renema , C. Y. Lu , J. W. Pan . Phase-programmable Gaussian Boson sampling using stimulated squeezed light. Phys. Rev. Lett., 2021, 127(18): 180502
CrossRef ADS Google scholar
[33]
M. Gong , S. Wang , C. Zha , M. C. Chen , H. L. Huang . . Quantum walks on a programmable two-dimensional 62-qubit superconducting processor. Science, 2021, 372(6545): 948
CrossRef ADS Google scholar
[34]
Y. Wu , W. S. Bao , S. Cao , F. Chen , M. C. Chen . . Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett., 2021, 127(18): 180501
CrossRef ADS Google scholar
[35]
J. M. Liang , S. Q. Shen , M. Li , S. M. Fei . Quantum algorithms for the generalized eigenvalue problem. Quantum Inform. Process., 2022, 21(1): 23
CrossRef ADS Google scholar
[36]
J. M. Liang , S. J. Wei , S. M. Fei . Quantum gradient descent algorithms for nonequilibrium steady states and linear algebraic systems. Sci. China Phys. Mech. Astron., 2022, 65(5): 250313
CrossRef ADS Google scholar
[37]
C. Branciard , N. Gisin , S. Pironio . Characterizing the nonlocal correlations created via entanglement swapping. Phys. Rev. Lett., 2010, 104(17): 170401
CrossRef ADS Google scholar
[38]
D. Cavalcanti , M. L. Almeida , V. Scarani , A. Acín . Quantum networks reveal quantum nonlocality. Nat. Commun., 2011, 2(1): 184
CrossRef ADS Google scholar
[39]
C. Branciard , D. Rosset , N. Gisin , S. Pironio . Bilocal versus nonbilocal correlations in entanglement-swapping experiments. Phys. Rev. A, 2012, 85(3): 032119
CrossRef ADS Google scholar
[40]
A. Tavakoli , P. Skrzypczyk , D. Cavalcanti , A. Acin . Nonlocal correlations in the star-network configuration. Phys. Rev. A, 2014, 90(6): 062109
CrossRef ADS Google scholar
[41]
M. X. Luo . Computationally efficient nonlinear Bell inequalities for quantum networks. Phys. Rev. Lett., 2018, 120(14): 140402
CrossRef ADS Google scholar
[42]
M. O. Renou , E. Bäumer , S. Boreiri , N. Brunner , N. Gisin , S. Beigi . Genuine quantum nonlocality in the triangle network. Phys. Rev. Lett., 2019, 123(14): 140401
CrossRef ADS Google scholar
[43]
A. Tavakoli , A. Pozas-Kerstjens , M. X. Luo , M. O. Renou . Bell nonlocality in networks. Rep. Prog. Phys., 2022, 85(5): 056001
CrossRef ADS Google scholar
[44]
P. Contreras-Tejada , C. Palazuelos , J. I. de Vicente . Genuine multipartite nonlocality is intrinsic to quantum networks. Phys. Rev. Lett., 2021, 126(4): 040501
CrossRef ADS Google scholar
[45]
L. Y. Hsu , C. H. Chen . Exploring Bell nonlocality of quantum networks with stabilizing and logical operators. Phys. Rev. Res., 2021, 3(2): 023139
CrossRef ADS Google scholar
[46]
L. Yang , X. Qi , J. Hou . Nonlocal correlations in the tree-tensor-network configuration. Phys. Rev. A, 2021, 104(4): 042405
CrossRef ADS Google scholar
[47]
A. Pozas-Kerstjens , N. Gisin , A. Tavakoli . Full network nonlocality. Phys. Rev. Lett., 2022, 128(1): 010403
CrossRef ADS Google scholar
[48]
M. O. Renou , S. Beigi . Nonlocality for generic networks. Phys. Rev. Lett., 2022, 128(6): 060401
CrossRef ADS Google scholar
[49]
W. Hou , X. Liu , C. Ren . Network nonlocality sharing via weak measurements in the extended bilocal scenario. Phys. Rev. A, 2022, 105(4): 042436
CrossRef ADS Google scholar
[50]
N. Gisin , Q. Mei , A. Tavakoli , M. O. Renou , N. Brunner . All entangled pure quantum states violate the bilocality inequality. Phys. Rev. A, 2017, 96: 020304(R)
CrossRef ADS Google scholar
[51]
F. Andreoli , G. Carvacho , L. Santodonato , R. Chaves , F. Sciarrino . Maximal qubit violation of n-locality inequalities in a star-shaped quantum network. New J. Phys., 2017, 19(11): 113020
CrossRef ADS Google scholar
[52]
J. I. de Vicente . Separability criteria based on the Bloch representation of density matrices. Quantum Inf. Comput., 2007, 7(7): 624
CrossRef ADS Google scholar
[53]
R. Horodecki , P. Horodecki , M. Horodecki . Violating Bell inequality by mixed states: Necessary and sufficient condition. Phys. Lett. A, 1995, 200(5): 340
CrossRef ADS Google scholar
[54]
C. Ren , X. Liu , W. Hou , T. Feng , X. Zhou . Nonlocality sharing for a three-qubit system via multilateral sequential measurements. Phys. Rev. A, 2022, 105(5): 052221
CrossRef ADS Google scholar
[55]
S. Sasmal , D. Das , S. Mal , A. S. Majumdar . Steering a single system sequentially by multiple observers. Phys. Rev. A, 2018, 98(1): 012305
CrossRef ADS Google scholar
[56]
A. Bera , S. Mal , A. Sen(De) , U. Sen . Witnessing bipartite entanglement sequentially by multiple observers. Phys. Rev. A, 2018, 98(6): 062304
CrossRef ADS Google scholar
[57]
A. G. Maity , D. Das , A. Ghosal , A. Roy , A. S. Majumdar . Detection of genuine tripartite entanglement by multiple sequential observers. Phys. Rev. A, 2020, 101(4): 042340
CrossRef ADS Google scholar
[58]
S. Datta , A. S. Majumdar . Sharing of nonlocal advantage of quantum coherence by sequential observers. Phys. Rev. A, 2018, 98(4): 042311
CrossRef ADS Google scholar
[59]
M. L. Hu , J. R. Wang , H. Fan . Limits on sequential sharing of nonlocal advantage of quantum coherence. Sci. China Phys. Mech. Astron., 2022, 65(6): 260312
CrossRef ADS Google scholar
[60]
F. J. Curchod , M. Johansson , R. Augusiak , M. J. Hoban , P. Wittek , A. Acin . Unbounded randomness certification using sequences of measurements. Phys. Rev. A, 2017, 95(2): 020102
CrossRef ADS Google scholar
[61]
S. Roy , A. Bera , S. Mal , A. Sen(De) , U. Sen . Recycling the resource: Sequential usage of shared state in quantum teleportation with weak measurements. Phys. Lett. A, 2021, 392: 127143
CrossRef ADS Google scholar
[62]
K. Mohan , A. Tavakoli , N. Brunner . Sequential random access codes and self-testing of quantum measurement instruments. New J. Phys., 2019, 21(8): 083034
CrossRef ADS Google scholar
[63]
Y. F. Yan , L. Zhou , W. Zhong , Y. B. Sheng . Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon. Front. Phys., 2021, 16(1): 11501
CrossRef ADS Google scholar
[64]
Y. M. Xie , Y. S. Lu , C. X. Weng , X. Y. Cao , Z. Y. Jia , Y. Bao , Y. Wang , Y. Fu , H. L. Yin , Z. B. Chen . Breaking the rate-loss bound of quantum key distribution with asynchronous two-photon interference. PRX Quantum, 2022, 3(2): 020315
CrossRef ADS Google scholar
[65]
J. Gu , X. Y. Cao , Y. Fu , Z. W. He , Z. J. Yin , H. L. Yin , Z. B. Chen . Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Sci. Bull. (Beijing), 2022, 67(21): 2167
CrossRef ADS Google scholar
[66]
H. L. Yin , Y. Fu , C. L. Li , C. X. Weng , B. H. Li , J. Gu , Y. S. Lu , S. Huang , Z. B. Chen . Experimental quantum secure network with digital signatures and encryption. Natl. Sci. Rev., 2022, nwac228
CrossRef ADS Google scholar
[67]
Z. D. Ye , D. Pan , Z. Sun , C. G. Du , L. G. Yin , G. L. Long . Generic security analysis framework for quantum secure direct communication. Front. Phys., 2021, 16(2): 21503
CrossRef ADS Google scholar
[68]
S. S. Mahato , A. K. Pan . Pan, Sharing nonlocality in a quantum network by unbounded sequential observers. Phys. Rev. A, 2022, 106: 042218
CrossRef ADS Google scholar
[69]
J. H. Wang , Y. J. Wang , L. J. Wang , Q. Chen . Network nonlocality sharing via weak measurements in the generalized star network configuration. Phys. Rev. A, 2022, 106: 052412
CrossRef ADS Google scholar
[70]
Y.L. MaoZ.D.LiA. Steffinlongo, B. Guo, B. Liu, S. Xu, N. Gisin, A. Tavakoli, and J. Fan, Recycling nonlocality in a quantum network, arXiv: 2202.04840 (2022)

Note added

While completing this manuscript, we became aware of Refs. [68-70] studied the same topic and got similar results. However, we all used different methods. Compared with our strict theoretical proofs, Ref. [68] used symmetric and anti-symmetric methods, Ref. [69] mainly used weak measurement theory, Ref. [70] focused on experimental simulation.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 12126314, 12126351, 11861031, 12075159, and 12171044; the Hainan Provincial Natural Science Foundation of China under Grant No. 121RC539, the Specific Research Fund of the Innovation Platform for Academicians of Hainan Province under Grant No. YSPTZX202215, Beijing Natural Science Foundation (Grant No. Z190005); Academy for Multidisciplinary Studies, Capital Normal University; Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology (No. SIQSE202001).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(3398 KB)

Accesses

Citations

Detail

Sections
Recommended

/