Rare-earth quantum memories: The experimental status quo

Mucheng Guo, Shuping Liu, Weiye Sun, Miaomiao Ren, Fudong Wang, Manjin Zhong

PDF(6619 KB)
PDF(6619 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (2) : 21303. DOI: 10.1007/s11467-022-1240-8
TOPICAL REVIEW
TOPICAL REVIEW

Rare-earth quantum memories: The experimental status quo

Author information +
History +

Abstract

Rare-earth doped crystals carry great prospect in developing ensemble-based solid state quantum memories for remote quantum communication and fast quantum processing applications. In recent years, with this system, remarkable quantum storage performances have been realized, and more exciting applications have been exploited, while the technical challenges are also significant. In this paper, we outlined the status quo in the development of rare-earth-based quantum memories from the point of view of different storage protocols, with a focus on the experimental demonstrations. We also analyzed the challenges and provided feasible solutions.

Graphical abstract

Keywords

solid-state quantum memory / rare-earth crystals / quantum network / quantum communication

Cite this article

Download citation ▾
Mucheng Guo, Shuping Liu, Weiye Sun, Miaomiao Ren, Fudong Wang, Manjin Zhong. Rare-earth quantum memories: The experimental status quo. Front. Phys., 2023, 18(2): 21303 https://doi.org/10.1007/s11467-022-1240-8

References

[1]
M.A. N. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, 2010
[2]
M. Vogel. Quantum computation and quantum information, by M. A. Nielsen and I. L. Chuang. Contemp. Phys., 2011, 52(6): 604
CrossRef ADS Google scholar
[3]
P. Zoller, T. Beth, D. Binosi, R. Blatt, H. Briegel, D. Bruss, T. Calarco, J. I. Cirac, D. Deutsch, J. Eisert, A. Ekert, C. Fabre, N. Gisin, P. Grangiere, M. Grassl, S. Haroche, A. Imamoglu, A. Karlson, J. Kempe, L. Kouwenhoven, S. Kröll, G. Leuchs, M. Lewenstein, D. Loss, N. Lütkenhaus, S. Massar, J. E. Mooij, M. B. Plenio, E. Polzik, S. Popescu, G. Rempe, A. Sergienko, D. Suter, J. Twamley, G. Wendin, R. Werner, A. Winter, J. Wrachtrup, A. Zeilinger. Quantum information processing and communication. Europ. Phys. J. D, 2005, 36: 203
CrossRef ADS Google scholar
[4]
N. Gisin, G. Ribordy, W. Tittel, H. Zbinden. Quantum cryptography. Rev. Mod. Phys., 2002, 74(1): 145
CrossRef ADS Google scholar
[5]
C. L. Degen, F. Reinhard, P. Cappellaro. Quantum sensing. Rev. Mod. Phys., 2017, 89(3): 035002
CrossRef ADS Google scholar
[6]
I. M. Georgescu, S. Ashhab, F. Nori. Quantum simulation. Rev. Mod. Phys., 2014, 86(1): 153
CrossRef ADS Google scholar
[7]
S. Wehner, D. Elkouss, R. Hanson. Quantum internet: A vision for the road ahead. Science, 2018, 362(6412): eaam9288
CrossRef ADS Google scholar
[8]
H. J. Kimble. The quantum internet. Nature, 2008, 453(7198): 1023
CrossRef ADS Google scholar
[9]
S. H. Wei, B. Jing, X. Y. Zhang, J. Y. Liao, C. Z. Yuan, B. Y. Fan, C. Lyu, D. L. Zhou, Y. Wang, G. W. Deng, H. Z. Song, D. Oblak, G. C. Guo, Q. Zhou. Towards real-world quantum networks: A review. Laser Photonics Rev., 2022, 16(3): 2100219
CrossRef ADS Google scholar
[10]
C.H. BennettG.Brassard, Quantum cryptography: Public key distribution and coin tossing, Theoretical Computer Science 560, 7–11 (2014), Theoretical Aspects of Quantum Cryptography-celebrating 30 years of BB84
[11]
F. Xu, X. Ma, Q. Zhang, H. K. Lo, J. W. Pan. Secure quantum key distribution with realistic devices. Rev. Mod. Phys., 2020, 92(2): 025002
CrossRef ADS Google scholar
[12]
A. Boaron, G. Boso, D. Rusca, C. Vulliez, C. Autebert, M. Caloz, M. Perrenoud, G. Gras, F. Bussières, M. J. Li, D. Nolan, A. Martin, H. Zbinden. Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett., 2018, 121(19): 190502
CrossRef ADS Google scholar
[13]
J. P. Chen, C. Zhang, Y. Liu, C. Jiang, W. Zhang, X. L. Hu, J. Y. Guan, Z. W. Yu, H. Xu, J. Lin, M. J. Li, H. Chen, H. Li, L. You, Z. Wang, X. B. Wang, Q. Zhang, J. W. Pan. Sending-or-not-sending with independent lasers: Secure twin field quantum key distribution over 509 km. Phys. Rev. Lett., 2020, 124(7): 070501
CrossRef ADS Google scholar
[14]
W. K. Wootters, W. H. Zurek. A single quantum cannot be cloned. Nature, 1982, 299(5886): 802
CrossRef ADS Google scholar
[15]
H. J. Briegel, W. Dür, J. I. Cirac, P. Zoller. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett., 1998, 81(26): 5932
CrossRef ADS Google scholar
[16]
N. Sangouard, C. Simon, H. de Riedmatten, N. Gisin. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys., 2011, 83(1): 33
CrossRef ADS Google scholar
[17]
S. Muralidharan, L. Li, J. Kim, N. Lütkenhaus, M. D. Lukin, L. Jiang. Optimal architectures for long distance quantum communication. Sci. Rep., 2016, 6(1): 20463
CrossRef ADS Google scholar
[18]
Z. S. Yuan, X. H. Bao, C. Y. Lu, J. Zhang, C. Z. Peng, J. W. Pan. Entangled photons and quantum communication. Phys. Rep., 2010, 497(1): 1
CrossRef ADS Google scholar
[19]
K. Hammerer, A. S. Sørensen, E. S. Polzik. Quantum interface between light and atomic ensembles. Rev. Mod. Phys., 2010, 82(2): 1041
CrossRef ADS Google scholar
[20]
E. Gouzien, N. Sangouard. Factoring 2048-bit RSA integers in 177 days with 13436 qubits and a multimode memory. Phys. Rev. Lett., 2021, 127(14): 140503
CrossRef ADS Google scholar
[21]
Z. L. Xiang, S. Ashhab, J. Q. You, F. Nori. Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems. Rev. Mod. Phys., 2013, 85(2): 623
CrossRef ADS Google scholar
[22]
P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, G. J. Milburn. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys., 2007, 79(1): 135
CrossRef ADS Google scholar
[23]
L. M. Duan, M. D. Lukin, J. I. Cirac, P. Zoller. Long distance quantum communication with atomic ensembles and linear optics. Nature, 2001, 414(6862): 413
CrossRef ADS Google scholar
[24]
J. Hofmann, M. Krug, N. Ortegel, L. Gérard, M. Weber, W. Rosenfeld, H. Weinfurter. Heralded entanglement between widely separated atoms. Science, 2012, 337(6090): 72
CrossRef ADS Google scholar
[25]
B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, R. Hanson. Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres. Nature, 2015, 526(7575): 682
CrossRef ADS Google scholar
[26]
A. Delteil, Z. Sun, W. Gao, E. Togan, S. Faelt, A. Imamoğlu. Generation of heralded entanglement between distant hole spins. Nat. Phys., 2016, 12(3): 218
CrossRef ADS Google scholar
[27]
R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, S. Gröblacher. Non-classical correlations between single photons and phonons from a mechanical oscillator. Nature, 2016, 530(7590): 313
CrossRef ADS Google scholar
[28]
C. Li, S. Zhang, Y. K. Wu, N. Jiang, Y. F. Pu, L. M. Duan. Multicell atomic quantum memory as a hardware-efficient quantum repeater node. PRX Quantum, 2021, 2(4): 040307
CrossRef ADS Google scholar
[29]
Y. Yu, F. Ma, X. Y. Luo, B. Jing, P. F. Sun, R. Z. Fang, C. W. Yang, H. Liu, M. Y. Zheng, X. P. Xie, W. J. Zhang, L. X. You, Z. Wang, T. Y. Chen, Q. Zhang, X. H. Bao, J. W. Pan. Entanglement of two quantum memories via fibres over dozens of kilometres. Nature, 2020, 578(7794): 240
CrossRef ADS Google scholar
[30]
M. Minder, M. Pittaluga, G. L. Roberts, M. Lucamarini, J. F. Dynes, Z. L. Yuan, A. J. Shields. Experimental quantum key distribution beyond the repeaterless secret key capacity. Nat. Photonics, 2019, 13(5): 334
CrossRef ADS Google scholar
[31]
M. K. Bhaskar, R. Riedinger, B. Machielse, D. S. Levonian, C. T. Nguyen, E. N. Knall, H. Park, D. Englund, M. Lončar, D. D. Sukachev, M. D. Lukin. Experimental demonstration of memory-enhanced quantum communication. Nature, 2020, 580(7801): 60
CrossRef ADS Google scholar
[32]
Y. F. Pu, S. Zhang, Y. K. Wu, N. Jiang, W. Chang, C. Li, L. M. Duan. Experimental demonstration of memory-enhanced scaling for entanglement connection of quantum repeater segments. Nat. Photonics, 2021, 15(5): 374
CrossRef ADS Google scholar
[33]
N. Jiang, Y. F. Pu, W. Chang, C. Li, S. Zhang, L. M. Duan. Experimental realization of 105-qubit random access quantum memory. npj Quantum Inform., 2019, 5: 28
CrossRef ADS Google scholar
[34]
G. Buser, R. Mottola, B. Cotting, J. Wolters, P. Treutlein. Single-photon storage in a ground-state vapor cell quantum memory. PRX Quantum, 2022, 3(2): 020349
CrossRef ADS Google scholar
[35]
K. B. Dideriksen, R. Schmieg, M. Zugenmaier, E. S. Polzik. Room-temperature single-photon source with near-millisecond built-in memory. Nat. Commun., 2021, 12(1): 3699
CrossRef ADS Google scholar
[36]
O. Katz, O. Firstenberg. Light storage for one second in room-temperature alkali vapor. Nat. Commun., 2018, 9(1): 2074
CrossRef ADS Google scholar
[37]
Z. Yan, L. Wu, X. Jia, Y. Liu, R. Deng, S. Li, H. Wang, C. Xie, K. Peng. Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles. Nat. Commun., 2017, 8(1): 718
CrossRef ADS Google scholar
[38]
B. Jing, X. J. Wang, Y. Yu, P. F. Sun, Y. Jiang, S. J. Yang, W. H. Jiang, X. Y. Luo, J. Zhang, X. Jiang, X. H. Bao, J. W. Pan. Entanglement of three quantum memories via interference of three single photons. Nat. Photonics, 2019, 13(3): 210
CrossRef ADS Google scholar
[39]
X. Y. Luo, Y. Yu, J. L. Liu, M. Y. Zheng, C. Y. Wang, B. Wang, J. Li, X. Jiang, X. P. Xie, Q. Zhang, X. H. Bao, J. W. Pan. Postselected entanglement between two atomic ensembles separated by 12.5 km. Phys. Rev. Lett., 2022, 129(5): 050503
CrossRef ADS Google scholar
[40]
Y. F. Pu, N. Jiang, W. Chang, H. X. Yang, C. Li, L. M. Duan. Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells. Nat. Commun., 2017, 8(1): 15359
CrossRef ADS Google scholar
[41]
L. Heller, P. Farrera, G. Heinze, H. de Riedmatten. Cold atom temporally multiplexed quantum memory with cavity enhanced noise suppression. Phys. Rev. Lett., 2020, 124(21): 210504
CrossRef ADS Google scholar
[42]
M. F. Askarani, A. Das, J. H. Davidson, G. C. Amaral, N. Sinclair, J. A. Slater, S. Marzban, C. W. Thiel, R. L. Cone, D. Oblak, W. Tittel. Long-lived solid-state optical memory for high-rate quantum repeaters. Phys. Rev. Lett., 2021, 127(22): 220502
CrossRef ADS Google scholar
[43]
Z. Q. Zhou, D. L. Chen, M. Jin, L. Zheng, Y. Z. Ma, T. Tu, A. Ferrier, P. Goldner, C. F. Li, G. C. Guo. A transportable long-lived coherent memory for light pulses. Sci. Bull. (Beijing), 2022,
CrossRef ADS Google scholar
[44]
M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, M. J. Sellars. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature, 2015, 517(7533): 177
CrossRef ADS Google scholar
[45]
G. Wolfowicz, F. J. Heremans, C. P. Anderson, S. Kanai, H. Seo, A. Gali, G. Galli, D. D. Awschalom. Quantum guidelines for solid-state spin defects. Nat. Rev. Mater., 2021, 6(10): 906
CrossRef ADS Google scholar
[46]
D. D. Awschalom, R. Hanson, J. Wrachtrup, B. B. Zhou. Quantum technologies with optically interfaced solid-state spins. Nat. Photonics, 2018, 12(9): 516
CrossRef ADS Google scholar
[47]
C. Thiel, T. Böttger, R. Cone. Rare-earth-doped materials for applications in quantum information storage and signal processing. J. Lumin., 2011, 131: 353
CrossRef ADS Google scholar
[48]
R. M. Macfarlane. High-resolution laser spectroscopy of rareearth doped insulators: a personal perspective. J. Lumin., 2002, 100(1−4): 1
CrossRef ADS Google scholar
[49]
R.MacfarlaneR.Shelby, Chapter 3 - Coherent Transient and Holeburning Spectroscopy of Rare Earth Ions in Solids, in: Spectroscopy of Solids Containing Rare Earth Ions, Modern Problems in Condensed Matter Sciences, Vol. 21, edited by A. Kaplyanskii and R. Macfarlane, Elsevier, 1987, pp 51–184
[50]
A. J. Freeman, R. E. Watson. Theoretical investigation of some magnetic and spectroscopic properties of rare-earth ions. Phys. Rev., 1962, 127(6): 2058
CrossRef ADS Google scholar
[51]
N. J. Cerf, A. Ipe, X. Rottenberg. Cloning of continuous quantum variables. Phys. Rev. Lett., 2000, 85(8): 1754
CrossRef ADS Google scholar
[52]
S. Massar, S. Popescu. Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett., 1995, 74(8): 1259
CrossRef ADS Google scholar
[53]
C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, N. Gisin. Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett., 2007, 98(19): 190503
CrossRef ADS Google scholar
[54]
O. A. Collins, S. D. Jenkins, A. Kuzmich, T. A. B. Kennedy. Multiplexed memory-insensitive quantum repeaters. Phys. Rev. Lett., 2007, 98(6): 060502
CrossRef ADS Google scholar
[55]
K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, I. A. Walmsley. Towards highspeed optical quantum memories. Nat. Photonics, 2010, 4(4): 218
CrossRef ADS Google scholar
[56]
T.ChanelièreG.HétetN.Sangouard, Quantum Optical Memory Protocols in Atomic Ensembles, Academic Press, 2018, Chapter 2, pp 77–150
[57]
K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, I. A. Walmsley. Single-photon-level quantum memory at room temperature. Phys. Rev. Lett., 2011, 107(5): 053603
CrossRef ADS Google scholar
[58]
J. Nunn, I. A. Walmsley, M. G. Raymer, K. Surmacz, F. C. Waldermann, Z. Wang, D. Jaksch. Mapping broadband single-photon wave packets into an atomic memory. Phys. Rev. A, 2007, 75(1): 011401
CrossRef ADS Google scholar
[59]
S. E. Harris, J. E. Field, A. Imamoğlu. Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett., 1990, 64(10): 1107
CrossRef ADS Google scholar
[60]
M. Fleischhauer, A. Imamoglu, J. P. Marangos. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys., 2005, 77(2): 633
CrossRef ADS Google scholar
[61]
M.O. ScullyM. S. Zubairy, Quantum Optics, Cambridge University Press, 1997
[62]
E. Kuznetsova, O. Kocharovskaya, P. Hemmer, M. O. Scully. Atomic interference phenomena in solids with a longlived spin coherence. Phys. Rev. A, 2002, 66(6): 063802
CrossRef ADS Google scholar
[63]
B. Ham, P. Hemmer, M. Shahriar. Efficient electromagnetically induced transparency in a rare-earth doped crystal. Opt. Commun., 1997, 144(4-6): 227
CrossRef ADS Google scholar
[64]
A. Turukhin, V. Sudarshanam, M. Shahriar, J. Musser, and P. Hemmer, First observation of ultraslow group velocity of light in a solid, in: Technical Digest, Summaries of papers presented at the Quantum Electronics and Laser Science Conference, Postconference Technical Digest, IEEE Cat. No. 01CH37172, 2001, pp 6–7
[65]
A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, P. R. Hemmer. Observation of ultraslow and stored light pulses in a solid. Phys. Rev. Lett., 2001, 88(2): 023602
CrossRef ADS Google scholar
[66]
J. J. Longdell, E. Fraval, M. J. Sellars, N. B. Manson. Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid. Phys. Rev. Lett., 2005, 95(6): 063601
CrossRef ADS Google scholar
[67]
S. L. McCall, E. L. Hahn. Self-induced transparency. Phys. Rev., 1969, 183(2): 457
CrossRef ADS Google scholar
[68]
A. V. Gorshkov, A. André, M. D. Lukin, A. S. Sørensen. Photon storage in Λ-type optically dense atomic media (ii): Freespace model. Phys. Rev. A, 2007, 76(3): 033805
CrossRef ADS Google scholar
[69]
D. Schraft, M. Hain, N. Lorenz, T. Halfmann. Stopped light at high storage efficiency in a Pr3+: Y2SiO5 crystal. Phys. Rev. Lett., 2016, 116(7): 073602
CrossRef ADS Google scholar
[70]
M. Hain, M. Stabel, T. Halfmann. Few-photon storage on a second timescale by electromagnetically induced transparency in a doped solid. New J. Phys., 2022, 24(2): 023012
CrossRef ADS Google scholar
[71]
G. Heinze, C. Hubrich, T. Halfmann. Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute. Phys. Rev. Lett., 2013, 111(3): 033601
CrossRef ADS Google scholar
[72]
M.Hainn, EIT light storage of weak coherent pulses in a doped solid, Ph.D. thesis, Technischen Universität Darmstadt, 2021
[73]
Y. F. Hsiao, H. S. Chen, P. J. Tsai, Y. C. Chen. Cold atomic media with ultrahigh optical depths. Phys. Rev. A, 2014, 90(5): 055401
CrossRef ADS Google scholar
[74]
Y. W. Lin, H. C. Chou, P. P. Dwivedi, Y. C. Chen, I. A. Yu. Using a pair of rectangular coils in the mot for the production of cold atom clouds with large optical density. Opt. Express, 2008, 16(6): 3753
CrossRef ADS Google scholar
[75]
Y. F. Hsiao, P. J. Tsai, H. S. Chen, S. X. Lin, C. C. Hung, C. H. Lee, Y. H. Chen, Y. F. Chen, I. A. Yu, Y. C. Chen. Highly efficient coherent optical memory based on electromagnetically induced transparency. Phys. Rev. Lett., 2018, 120(18): 183602
CrossRef ADS Google scholar
[76]
Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, S. L. Zhu. Efficient quantum memory for singlephoton polarization qubits. Nat. Photonics, 2019, 13(5): 346
CrossRef ADS Google scholar
[77]
D.Schraft, Composite and adiabatic techniques for efficient EIT light storage in Pr3+:Y2SiO5, Ph.D. thesis, Technische Universität Darmstadt, 2016
[78]
G.Heinze, Coherent optical data storage by EIT in a Pr3+:Y2SiO5 crystal, Ph. D. thesis, Technische Universität Darmstadt, 2013
[79]
I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Sørensen, M. D. Lukin, R. L. Walsworth. Optimal control of light pulse storage and retrieval. Phys. Rev. Lett., 2007, 98(24): 243602
CrossRef ADS Google scholar
[80]
I. Novikova, N. B. Phillips, A. V. Gorshkov. Optimal light storage with full pulse-shape control. Phys. Rev. A, 2008, 78(2): 021802
CrossRef ADS Google scholar
[81]
M. T. Turnbull, P. G. Petrov, C. S. Embrey, A. M. Marino, V. Boyer. Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light. Phys. Rev. A, 2013, 88(3): 033845
CrossRef ADS Google scholar
[82]
V. Boyer, C. F. McCormick, E. Arimondo, P. D. Lett. Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor. Phys. Rev. Lett., 2007, 99(14): 143601
CrossRef ADS Google scholar
[83]
M. D. Lukin, P. R. Hemmer, M. Löffler, M. O. Scully. Resonant enhancement of parametric processes via radiative interference and induced coherence. Phys. Rev. Lett., 1998, 81(13): 2675
CrossRef ADS Google scholar
[84]
M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, N. Davidson. Storing images in warm atomic vapor. Phys. Rev. Lett., 2008, 100(22): 223601
CrossRef ADS Google scholar
[85]
P. K. Vudyasetu, R. M. Camacho, J. C. Howell. Storage and retrieval of multimode transverse images in hot atomic rubidium vapor. Phys. Rev. Lett., 2008, 100(12): 123903
CrossRef ADS Google scholar
[86]
G. Heinze, A. Rudolf, F. Beil, T. Halfmann. Storage of images in atomic coherences in a rare-earth-ion-doped solid. Phys. Rev. A, 2010, 81(1): 011401
CrossRef ADS Google scholar
[87]
G. Heinze, N. Rentzsch, T. Halfmann. Multiplexed image storage by electromagnetically induced transparency in a solid. Phys. Rev. A, 2012, 86(5): 053837
CrossRef ADS Google scholar
[88]
L. Ma, X. Lei, J. Yan, R. Li, T. Chai, Z. Yan, X. Jia, C. Xie, K. Peng. High-performance cavity-enhanced quantum memory with warm atomic cell. Nat. Commun., 2022, 13(1): 2368
CrossRef ADS Google scholar
[89]
S. A. Moiseev, S. Kröll. Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a Doppler-broadened transition. Phys. Rev. Lett., 2001, 87(17): 173601
CrossRef ADS Google scholar
[90]
T. W. Mossberg. Time-domain frequency-selective optical data storage. Opt. Lett., 1982, 7(2): 77
CrossRef ADS Google scholar
[91]
I. D. Abella, N. A. Kurnit, S. R. Hartmann. Photon echoes. Phys. Rev., 1966, 141(1): 391
CrossRef ADS Google scholar
[92]
E. L. Hahn. Spin echoes. Phys. Rev., 1950, 80(4): 580
CrossRef ADS Google scholar
[93]
T. Wang, C. Greiner, J. R. Bochinski, T. W. Mossberg. Experimental study of photon-echo size in optically thick media. Phys. Rev. A, 1999, 60(2): R757
CrossRef ADS Google scholar
[94]
C. S. Cornish, W. R. Babbitt, L. Tsang. Demonstration of highly efficient photon echoes. Opt. Lett., 2000, 25(17): 1276
CrossRef ADS Google scholar
[95]
M. Azadeh, C. Sjaarda Cornish, W. R. Babbitt, L. Tsang. Efficient photon echoes in optically thick media. Phys. Rev. A, 1998, 57(6): 4662
CrossRef ADS Google scholar
[96]
J. Ruggiero, J. L. Le Gouët, C. Simon, T. Chanelière. Why the two-pulse photon echo is not a good quantum memory protocol. Phys. Rev. A, 2009, 79(5): 053851
CrossRef ADS Google scholar
[97]
A. L. Alexander, J. J. Longdell, M. J. Sellars, N. B. Manson. Photon echoes produced by switching electric fields. Phys. Rev. Lett., 2006, 96(4): 043602
CrossRef ADS Google scholar
[98]
H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, N. Gisin. A solid-state light–matter interface at the singlephoton level. Nature, 2008, 456(7223): 773
CrossRef ADS Google scholar
[99]
G. Hétet, J. J. Longdell, M. J. Sellars, P. K. Lam, B. C. Buchler. Multimodal properties and dynamics of gradient echo quantum memory. Phys. Rev. Lett., 2008, 101(20): 203601
CrossRef ADS Google scholar
[100]
S. A. Moiseev, V. F. Tarasov, B. S. Ham. Quantum memory photon echo-like techniques in solids. J. Opt. B Quantum Semiclassical Opt., 2003, 5(4): S497
CrossRef ADS Google scholar
[101]
M. Nilsson, S. Kröll. Solid state quantum memory using complete absorption and re-emission of photons by tailored and externally controlled inhomogeneous absorption profiles. Opt. Commun., 2005, 247(4−6): 393
CrossRef ADS Google scholar
[102]
N. Sangouard, C. Simon, M. Afzelius, N. Gisin. Analysis of a quantum memory for photons based on controlled reversible inhomogeneous broadening. Phys. Rev. A, 2007, 75(3): 032327
CrossRef ADS Google scholar
[103]
G. Hétet, J. J. Longdell, A. L. Alexander, P. K. Lam, M. J. Sellars. Electro-optic quantum memory for light using two-level atoms. Phys. Rev. Lett., 2008, 100(2): 023601
CrossRef ADS Google scholar
[104]
A.AlexanderJ. LongdellM.SellarsN.Manson, Coherent information storage with photon echoes produced by switching electric fields, J. Lumin. 127(1), 94 (2007) (Proceedings of the Ninth International Meeting on Hole Burning, Single Molecule, and Related Spectroscopies: Science and Applications)
[105]
B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, N. Gisin. Telecommunicationwavelength solid-state memory at the single photon level. Phys. Rev. Lett., 2010, 104(8): 080502
CrossRef ADS Google scholar
[106]
M.P. Hedges, High performance solid state quantum memory, Ph.D. thesis, The Australian National University, 2011
[107]
B. Lauritzen, S. R. Hastings-Simon, H. de Riedmatten, M. Afzelius, N. Gisin. State preparation by optical pumping in erbium-doped solids using stimulated emission and spin mixing. Phys. Rev. A, 2008, 78(4): 043402
CrossRef ADS Google scholar
[108]
M. P. Hedges, J. J. Longdell, Y. Li, M. J. Sellars. Efficient quantum memory for light. Nature, 2010, 465(7301): 1052
CrossRef ADS Google scholar
[109]
F. Grosshans, P. Grangier. Quantum cloning and teleportation criteria for continuous quantum variables. Phys. Rev. A, 2001, 64(1): 010301
CrossRef ADS Google scholar
[110]
B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K. Lam, N. P. Robins, B. C. Buchler. Gradient echo memory in an ultra-high optical depth cold atomic ensemble. New J. Phys., 2013, 15(8): 085027
CrossRef ADS Google scholar
[111]
Y. W. Cho, G. T. Campbell, J. L. Everett, J. Bernu, D. B. Higginbottom, M. T. Cao, J. Geng, N. P. Robins, P. K. Lam, B. C. Buchler. Highly efficient optical quantum memory with long coherence time in cold atoms. Optica, 2016, 3(1): 100
CrossRef ADS Google scholar
[112]
M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, B. C. Buchler. High efficiency coherent optical memory with warm rubidium vapour. Nat. Commun., 2011, 2(1): 174
CrossRef ADS Google scholar
[113]
M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, B. C. Buchler. Unconditional room-temperature quantum memory. Nat. Phys., 2011, 7(10): 794
CrossRef ADS Google scholar
[114]
M. Hosseini, B. M. Sparkes, G. T. Campbell, P. K. Lam, B. C. Buchler. Storage and manipulation of light using a Raman gradient-echo process. J. Phys. At. Mol. Opt. Phys., 2012, 45(12): 124004
CrossRef ADS Google scholar
[115]
G. Hétet, M. Hosseini, B. M. Sparkes, D. Oblak, P. K. Lam, B. C. Buchler. Photon echoes generated by reversing magnetic field gradients in a rubidium vapor. Opt. Lett., 2008, 33(20): 2323
CrossRef ADS Google scholar
[116]
R. L. Ahlefeldt, W. D. Hutchison, N. B. Manson, M. J. Sellars. Method for assigning satellite lines to crystallographic sites in rare-earth crystals. Phys. Rev. B, 2013, 88(18): 184424
CrossRef ADS Google scholar
[117]
R. L. Ahlefeldt, D. L. McAuslan, J. J. Longdell, N. B. Manson, M. J. Sellars. Precision measurement of electronic ion-ion interactions between neighboring Eu3+ optical centers. Phys. Rev. Lett., 2013, 111(24): 240501
CrossRef ADS Google scholar
[118]
R. L. Ahlefeldt, M. R. Hush, M. J. Sellars. Ultranarrow optical inhomogeneous linewidth in a stoichiometric rare-earth crystal. Phys. Rev. Lett., 2016, 117(25): 250504
CrossRef ADS Google scholar
[119]
A. Ortu, J. V. Rakonjac, A. Holzäpfel, A. Seri, S. Grandi, M. Mazzera, H. de Riedmatten, M. Afzelius. Multimode capacity of atomic-frequency comb quantum memories. Quantum Sci. Technol., 2022, 7(3): 035024
CrossRef ADS Google scholar
[120]
M. R. Hush, C. D. B. Bentley, R. L. Ahlefeldt, M. R. James, M. J. Sellars, V. Ugrinovskii. Quantum state transfer through time reversal of an optical channel. Phys. Rev. A, 2016, 94(6): 062302
CrossRef ADS Google scholar
[121]
J. I. Cirac, P. Zoller, H. J. Kimble, H. Mabuchi. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett., 1997, 78(16): 3221
CrossRef ADS Google scholar
[122]
M. Afzelius, C. Simon, H. de Riedmatten, N. Gisin. Multimode quantum memory based on atomic frequency combs. Phys. Rev. A, 2009, 79(5): 052329
CrossRef ADS Google scholar
[123]
J. Nunn, K. Reim, K. C. Lee, V. O. Lorenz, B. J. Sussman, I. A. Walmsley, D. Jaksch. Multimode memories in atomic ensembles. Phys. Rev. Lett., 2008, 101(26): 260502
CrossRef ADS Google scholar
[124]
I. Usmani, M. Afzelius, H. de Riedmatten, N. Gisin. Mapping multiple photonic qubits into and out of one solid-state atomic ensemble. Nat. Commun., 2010, 1(1): 12
CrossRef ADS Google scholar
[125]
N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, W. Tittel. Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control. Phys. Rev. Lett., 2014, 113(5): 053603
CrossRef ADS Google scholar
[126]
Z. Q. Zhou, Y. L. Hua, X. Liu, G. Chen, J. S. Xu, Y. J. Han, C. F. Li, G. C. Guo. Quantum storage of three-dimensional orbital-angular-momentum entanglement in a crystal. Phys. Rev. Lett., 2015, 115(7): 070502
CrossRef ADS Google scholar
[127]
B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Gisin. Approaches for a quantum memory at telecommunication wavelengths. Phys. Rev. A, 2011, 83(1): 012318
CrossRef ADS Google scholar
[128]
M. Gündoğan, P. M. Ledingham, A. Almasi, M. Cristiani, H. de Riedmatten. Quantum storage of a photonic polarization qubit in a solid. Phys. Rev. Lett., 2012, 108(19): 190504
CrossRef ADS Google scholar
[129]
Z. Q. Zhou, W. B. Lin, M. Yang, C. F. Li, G. C. Guo. Realization of reliable solid-state quantum memory for photonic polarization qubit. Phys. Rev. Lett., 2012, 108(19): 190505
CrossRef ADS Google scholar
[130]
C. Clausen, F. Bussières, M. Afzelius, N. Gisin. Quantum storage of heralded polarization qubits in birefringent and anisotropically absorbing materials. Phys. Rev. Lett., 2012, 108(19): 190503
CrossRef ADS Google scholar
[131]
C. Laplane, P. Jobez, J. Etesse, N. Timoney, N. Gisin, M. Afzelius. Multiplexed on-demand storage of polarization qubits in a crystal. New J. Phys., 2015, 18(1): 013006
CrossRef ADS Google scholar
[132]
A. Tiranov, P. C. Strassmann, J. Lavoie, N. Brunner, M. Huber, V. B. Verma, S. W. Nam, R. P. Mirin, A. E. Lita, F. Marsili, M. Afzelius, F. Bussières, N. Gisin. Temporal multimode storage of entangled photon pairs. Phys. Rev. Lett., 2016, 117(24): 240506
CrossRef ADS Google scholar
[133]
J. Jin, E. Saglamyurek, M. G. Puigibert, V. Verma, F. Marsili, S. W. Nam, D. Oblak, W. Tittel. Telecom-wavelength atomic quantum memory in optical fiber for heralded polarization qubits. Phys. Rev. Lett., 2015, 115(14): 140501
CrossRef ADS Google scholar
[134]
C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, N. Gisin. Quantum storage of photonic entanglement in a crystal. Nature, 2011, 469(7331): 508
CrossRef ADS Google scholar
[135]
E. Saglamyurek, N. Sinclair, J. Jin, J. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, W. Tittel. Broadband waveguide quantum memory for entangled photons. Nature, 2011, 469(7331): 512
CrossRef ADS Google scholar
[136]
I. Usmani, C. Clausen, F. Bussières, N. Sangouard, M. Afzelius, N. Gisin. Heralded quantum entanglement between two crystals. Nat. Photonics, 2011, 6: 234
CrossRef ADS Google scholar
[137]
J. Rakonjac, G. Corrielli, D. Lago-Rivera, A. Seri, M. Mazzera, S. Grandi, R. Osellame, H. de Riedmatten. Storage and analysis of light−matter entanglement in a fiber-integrated system. Sci. Adv., 2022, 8(27): eabn3919
CrossRef ADS Google scholar
[138]
E. Saglamyurek, J. Jin, V. Verma, M. Shaw, F. Marsili, S. Nam, D. Oblak, W. Tittel. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre. Nat. Photonics, 2015, 9(2): 83
CrossRef ADS Google scholar
[139]
D. Lago-Rivera, S. Grandi, J. Rakonjac, A. Seri, H. de Riedmatten. Telecom-heralded entanglement between multimode solid-state quantum memories. Nature, 2021, 594(7861): 37
CrossRef ADS Google scholar
[140]
A. Seri, A. Lenhard, D. Rieländer, M. Gündoğan, P. M. Ledingham, M. Mazzera, H. de Riedmatten. Quantum correlations between single telecom photons and a multimode ondemand solid-state quantum memory. Phys. Rev. X, 2017, 7(2): 021028
CrossRef ADS Google scholar
[141]
X. Liu, J. Hu, Z. F. Li, X. Li, P. Y. Li, P. J. Liang, Z. Q. Zhou, C. F. Li, G. C. Guo. Heralded entanglement distribution between two absorptive quantum memories. Nature, 2021, 594(7861): 41
CrossRef ADS Google scholar
[142]
D.Lago-RiveraJ.RakonjacS.Grandi H.Riedmatten, Long-distance multiplexed quantum teleportation from a telecom photon to a solid-state qubit, arXiv: 2209.00802 (2022)
[143]
J. S. Tang, Z. Q. Zhou, Y. T. Wang, Y. L. Li, X. Liu, Y. L. Hua, Y. Zou, S. Wang, D. Y. He, G. Chen, Y. N. Sun, Y. Yu, M. F. Li, G. W. Zha, H. Q. Ni, Z. C. Niu, C. F. Li, G. C. Guo. Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory. Nat. Commun., 2015, 6(1): 8652
CrossRef ADS Google scholar
[144]
N. Gisin, R. Thew. Quantum communication. Nat. Photonics, 2007, 1(3): 165
CrossRef ADS Google scholar
[145]
F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, N. Gisin. Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory. Nat. Photonics, 2014, 8(10): 775
CrossRef ADS Google scholar
[146]
M. Gündoğan, P. M. Ledingham, K. Kutluer, M. Mazzera, H. de Riedmatten. Solid state spin-wave quantum memory for time-bin qubits. Phys. Rev. Lett., 2015, 114(23): 230501
CrossRef ADS Google scholar
[147]
P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner, N. Gisin, M. Afzelius. Towards highly multimode optical quantum memory for quantum repeaters. Phys. Rev. A, 2016, 93(3): 032327
CrossRef ADS Google scholar
[148]
S. Welinski, A. Ferrier, M. Afzelius, P. Goldner. Highresolution optical spectroscopy and magnetic properties of Yb3+ in Y2SiO5. Phys. Rev. B, 2016, 94(15): 155116
CrossRef ADS Google scholar
[149]
A. Ortu, A. Tiranov, S. Welinski, F. Fröwis, N. Gisin, A. Ferrier, P. Goldner, M. Afzelius. Simultaneous coherence enhancement of optical and microwave transitions in solid-state electronic spins. Nat. Mater., 2018, 17(8): 671
CrossRef ADS Google scholar
[150]
T. Böttger, C. W. Thiel, Y. Sun, R. L. Cone. Optical decoherence and spectral diffusion at 1.5 μm in Er3+:Y2SiO5 versus magnetic field, temperature, and Er3+ concentration. Phys. Rev. B, 2006, 73(7): 075101
CrossRef ADS Google scholar
[151]
M. Businger, L. Nicolas, T. S. Mejia, A. Ferrier, P. Goldner, M. Afzelius. Non-classical correlations over 1250 modes between telecom photons and 979-nm photons stored in 171Yb3+:Y2SiO5. Nat. Commun., 2022, 13(1): 6438
CrossRef ADS Google scholar
[152]
E. Saglamyurek, M. Grimau Puigibert, Q. Zhou, L. Giner, F. Marsili, V. B. Verma, S. Woo Nam, L. Oesterling, D. Nippa, D. Oblak, W. Tittel. A multiplexed light-matter interface for fibre-based quantum networks. Nat. Commun., 2016, 7(1): 11202
CrossRef ADS Google scholar
[153]
A. Seri, D. Lago-Rivera, A. Lenhard, G. Corrielli, R. Osellame, M. Mazzera, H. de Riedmatten. Quantum storage of frequency-multiplexed heralded single photons. Phys. Rev. Lett., 2019, 123(8): 080502
CrossRef ADS Google scholar
[154]
S.H. WeiB. JingX.Y. ZhangJ.Y. LiaoH.Li L.X. YouZ. WangY.WangG.W. DengH.Z. Song D.OblakG. C. GuoQ.Zhou, Storage of 1650 modes of single photons at telecom wavelength, arXiv: 2209.00802 (2022)
[155]
M. Sabooni, Q. Li, S. Kröll, L. Rippe. Efficient quantum memory using a weakly absorbing sample. Phys. Rev. Lett., 2013, 110(13): 133604
CrossRef ADS Google scholar
[156]
Y. Ma, Y. Z. Ma, Z. Q. Zhou, C. F. Li, G. C. Guo. One hour coherent optical storage in an atomic frequency comb memory. Nat. Commun., 2021, 12(1): 2381
CrossRef ADS Google scholar
[157]
A. Ortu, A. Holzäpfel, J. Etesse, M. Afzelius. Storage of photonic time-bin qubits for up to 20 ms in a rare-earth doped crystal. npj Quantum Inform., 2022, 8: 29
CrossRef ADS Google scholar
[158]
B. Kraus, W. Tittel, N. Gisin, M. Nilsson, S. Kröll, J. I. Cirac. Quantum memory for nonstationary light fields based on controlled reversible inhomogeneous broadening. Phys. Rev. A, 2006, 73(2): 020302
CrossRef ADS Google scholar
[159]
S. A. Moiseev, S. N. Andrianov, F. F. Gubaidullin. Efficient multimode quantum memory based on photon echo in an optimal QED cavity. Phys. Rev. A, 2010, 82(2): 022311
CrossRef ADS Google scholar
[160]
M. Afzelius, C. Simon. Impedance-matched cavity quantum memory. Phys. Rev. A, 2010, 82(2): 022310
CrossRef ADS Google scholar
[161]
P. Jobez, I. Usmani, N. Timoney, C. Laplane, N. Gisin, M. Afzelius. Cavity-enhanced storage in an optical spin-wave memory. New J. Phys., 2014, 16(8): 083005
CrossRef ADS Google scholar
[162]
J. H. Davidson, P. Lefebvre, J. Zhang, D. Oblak, W. Tittel. Improved light-matter interaction for storage of quantum states of light in a thulium-doped crystal cavity. Phys. Rev. A, 2020, 101(4): 042333
CrossRef ADS Google scholar
[163]
S.Duranti, Highly efficient qubit storage in an atomic frequency comb based quantum memory, in: Rare Earth Ions for Quantum Information Workshop, 2022
[164]
M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minář, H. de Riedmatten, N. Gisin, S. Kröll. Demonstration of atomic frequency comb memory for light with spin-wave storage. Phys. Rev. Lett., 2010, 104(4): 040503
CrossRef ADS Google scholar
[165]
L. Rippe, M. Nilsson, S. Kröll, R. Klieber, D. Suter. Experimental demonstration of efficient and selective population transfer and qubit distillation in a rare-earth-metal-ion-doped crystal. Phys. Rev. A, 2005, 71(6): 062328
CrossRef ADS Google scholar
[166]
M. S. Silver, R. I. Joseph, D. I. Hoult. Selective spin inversion in nuclear magnetic resonance and coherent optics through an exact solution of the Bloch-Riccati equation. Phys. Rev. A, 1985, 31(4): 2753
CrossRef ADS Google scholar
[167]
M. Tian, T. Chang, K. D. Merkel, W. Randall. Reconfiguration of spectral absorption features using a frequency-chirped laser pulse. Appl. Opt., 2011, 50(36): 6548
CrossRef ADS Google scholar
[168]
M. Businger, A. Tiranov, K. T. Kaczmarek, S. Welinski, Z. Zhang, A. Ferrier, P. Goldner, M. Afzelius. Optical spin-wave storage in a solid-state hybridized electron-nuclear spin ensemble. Phys. Rev. Lett., 2020, 124(5): 053606
CrossRef ADS Google scholar
[169]
S. E. Beavan, P. M. Ledingham, J. J. Longdell, M. J. Sellars. Photon echo without a free induction decay in a double-λ system. Opt. Lett., 2011, 36(7): 1272
CrossRef ADS Google scholar
[170]
Y. Z. Ma, M. Jin, D. L. Chen, Z. Q. Zhou, C. F. Li, G. C. Guo. Elimination of noise in optically rephased photon echoes. Nat. Commun., 2021, 12(1): 4378
CrossRef ADS Google scholar
[171]
J. V. Rakonjac, Y. H. Chen, S. P. Horvath, J. J. Longdell. Long spin coherence times in the ground state and in an optically excited state of 167Er3+: Y2SiO5 at zero magnetic field. Phys. Rev. B, 2020, 101(18): 184430
CrossRef ADS Google scholar
[172]
M. Rančić, M. P. Hedges, R. L. Ahlefeldt, M. J. Sellars. Coherence time of over a second in a telecom-compatible quantum memory storage material. Nat. Phys., 2018, 14(1): 50
CrossRef ADS Google scholar
[173]
M.Zhong, Development of persistent quantum memories, Ph. D. thesis, The Australian National University, 2017
[174]
V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, J. L. L. Gouët. Revival of silenced echo and quantum memory for light. New J. Phys., 2011, 13(9): 093031
CrossRef ADS Google scholar
[175]
M. Bonarota, J. Dajczgewand, A. Louchet-Chauvet, J. L. L. Gouët, T. Chanelière. Photon echo with a few photons in two-level atoms. Laser Phys., 2014, 24(9): 094003
CrossRef ADS Google scholar
[176]
C. Liu, Z. Q. Zhou, T. X. Zhu, L. Zheng, M. Jin, X. Liu, P. Y. Li, J. Y. Huang, Y. Ma, T. Tu, T. S. Yang, C. F. Li, G. C. Guo. Reliable coherent optical memory based on a laser-written waveguide. Optica, 2020, 7(2): 192
CrossRef ADS Google scholar
[177]
J. Dajczgewand, J. L. L. Gouët, A. Louchet-Chauvet, T. Chanelière. Large efficiency at telecom wavelength for optical quantum memories. Opt. Lett., 2014, 39(9): 2711
CrossRef ADS Google scholar
[178]
M. Jin, Y. Z. Ma, Z. Q. Zhou, C. F. Li, G. C. Guo. A faithful solid-state spin-wave quantum memory for polarization qubits. Sci. Bull. (Beijing), 2022, 67(7): 676
CrossRef ADS Google scholar
[179]
Z.Q. Zhou, A spin-wave integrated quantum memory, in: Rare Earth Ions for Quantum Information Workshop, 2022
[180]
S. P. Horvath, M. K. Alqedra, A. Kinos, A. Walther, J. M. Dahlström, S. Kröll, L. Rippe. Noise-free on-demand atomic frequency comb quantum memory. Phys. Rev. Res., 2021, 3(2): 023099
CrossRef ADS Google scholar
[181]
T. X. Zhu, C. Liu, M. Jin, M. X. Su, Y. P. Liu, W. J. Li, Y. Ye, Z. Q. Zhou, C. F. Li, G. C. Guo. On-demand integrated quantum memory for polarization qubits. Phys. Rev. Lett., 2022, 128(18): 180501
CrossRef ADS Google scholar
[182]
C. Liu, T. X. Zhu, M. X. Su, Y. Z. Ma, Z. Q. Zhou, C. F. Li, G. C. Guo. On-demand quantum storage of photonic qubits in an on-chip waveguide. Phys. Rev. Lett., 2020, 125(26): 260504
CrossRef ADS Google scholar
[183]
I. Craiciu, M. Lei, J. Rochman, J. G. Bartholomew, A. Faraon. Multifunctional on-chip storage at telecommunication wavelength for quantum networks. Optica, 2021, 8(1): 114
CrossRef ADS Google scholar
[184]
A. Tiranov, J. Lavoie, A. Ferrier, P. Goldner, V. B. Verma, S. W. Nam, R. P. Mirin, A. E. Lita, F. Marsili, H. Herrmann, C. Silberhorn, N. Gisin, M. Afzelius, F. Bussières. Storage of hyperentanglement in a solid-state quantum memory. Optica, 2015, 2(4): 279
CrossRef ADS Google scholar
[185]
C. Simon, J. W. Pan. Polarization entanglement purification using spatial entanglement. Phys. Rev. Lett., 2002, 89(25): 257901
CrossRef ADS Google scholar
[186]
S. Ecker, F. Bouchard, L. Bulla, F. Brandt, O. Kohout, F. Steinlechner, R. Fickler, M. Malik, Y. Guryanova, R. Ursin, M. Huber. Overcoming noise in entanglement distribution. Phys. Rev. X, 2019, 9(4): 041042
CrossRef ADS Google scholar
[187]
L. Sheridan, V. Scarani. Security proof for quantum key distribution using qudit systems. Phys. Rev. A, 2010, 82(3): 030301
CrossRef ADS Google scholar
[188]
K.R. Ferguson, Generation and storage of optical entanglement in a solid state spin-wave quantum memory, Ph. D. thesis, The Australian National University, 2016
[189]
S.E. Beavan, Photon-echo rephasing of spontaneous emission from an ensemble of rare-earth ions, Ph. D. thesis, The Australian National University, 2012
[190]
P. M. Ledingham, W. R. Naylor, J. J. Longdell, S. E. Beavan, M. J. Sellars. Nonclassical photon streams using rephased amplified spontaneous emission. Phys. Rev. A, 2010, 81(1): 012301
CrossRef ADS Google scholar
[191]
P. M. Ledingham, W. R. Naylor, J. J. Longdell. Experimental realization of light with time-separated correlations by rephasing amplified spontaneous emission. Phys. Rev. Lett., 2012, 109(9): 093602
CrossRef ADS Google scholar
[192]
S. E. Beavan, M. P. Hedges, M. J. Sellars. Demonstration of photon-echo rephasing of spontaneous emission. Phys. Rev. Lett., 2012, 109(9): 093603
CrossRef ADS Google scholar
[193]
K. R. Ferguson, S. E. Beavan, J. J. Longdell, M. J. Sellars. Generation of light with multimode time-delayed entanglement using storage in a solid-state spin-wave quantum memory. Phys. Rev. Lett., 2016, 117(2): 020501
CrossRef ADS Google scholar
[194]
C. Laplane, P. Jobez, J. Etesse, N. Gisin, M. Afzelius. Multimode and long-lived quantum correlations between photons and spins in a crystal. Phys. Rev. Lett., 2017, 118(21): 210501
CrossRef ADS Google scholar
[195]
K. Kutluer, M. Mazzera, H. de Riedmatten. Solid-state source of nonclassical photon pairs with embedded multimode quantum memory. Phys. Rev. Lett., 2017, 118(21): 210502
CrossRef ADS Google scholar
[196]
K. Kutluer, E. Distante, B. Casabone, S. Duranti, M. Mazzera, H. de Riedmatten. Time entanglement between a photon and a spin wave in a multimode solid-state quantum memory. Phys. Rev. Lett., 2019, 123(3): 030501
CrossRef ADS Google scholar
[197]
P. Sekatski, N. Sangouard, N. Gisin, H. de Riedmatten, M. Afzelius. Photon-pair source with controllable delay based on shaped inhomogeneous broadening of rare-earth-metal-doped solids. Phys. Rev. A, 2011, 83(5): 053840
CrossRef ADS Google scholar
[198]
C. Ottaviani, C. Simon, H. de Riedmatten, M. Afzelius, B. Lauritzen, N. Sangouard, N. Gisin. Creating single collective atomic excitations via spontaneous Raman emission in inhomogeneously broadened systems: Beyond the adiabatic approximation. Phys. Rev. A, 2009, 79(6): 063828
CrossRef ADS Google scholar
[199]
L. Béguin, J. P. Jahn, J. Wolters, M. Reindl, Y. Huo, R. Trotta, A. Rastelli, F. Ding, O. G. Schmidt, P. Treutlein, R. J. Warburton. On-demand semiconductor source of 780-nm single photons with controlled temporal wave packets. Phys. Rev. B, 2018, 97(20): 205304
CrossRef ADS Google scholar
[200]
A. J. Bennett, J. P. Lee, D. J. P. Ellis, T. Meany, E. Murray, F. F. Floether, J. P. Griffths, I. Farrer, D. A. Ritchie, A. J. Shields. Cavity-enhanced coherent light scattering from a quantum dot. Sci. Adv., 2016, 2(4): e1501256
CrossRef ADS Google scholar
[201]
T. M. Sweeney, S. G. Carter, A. S. Bracker, M. Kim, C. S. Kim, L. Yang, P. M. Vora, P. G. Brereton, E. R. Cleveland, D. Gammon. Cavity-stimulated Raman emission from a single quantum dot spin. Nat. Photonics, 2014, 8(6): 442
CrossRef ADS Google scholar
[202]
X.Y. ZhangB. JingB.ZhangH.LiS.H. Wei C.LiJ.Y. Liao G.W. DengY. WangH.Z. SongL.X. YouF.Chen G.C. GuoQ. Zhou, Storage of 147 temporal modes of telecom-band single photon with fiber-pigtailed Er3+: Linbo3 waveguide, in: Conference on Lasers and Electro-Optics, Optica Publishing Group, 2022, p. JTh6A. 9
[203]
I. Craiciu, M. Lei, J. Rochman, J. M. Kindem, J. G. Bartholomew, E. Miyazono, T. Zhong, N. Sinclair, A. Faraon. Nanophotonic quantum storage at telecommunication wavelength. Phys. Rev. Appl., 2019, 12(2): 024062
CrossRef ADS Google scholar
[204]
T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, A. Faraon. Nanophotonic rare-earth quantum memory with optically controlled retrieval. Science, 2017, 357(6358): 1392
CrossRef ADS Google scholar
[205]
T. Zhong, P. Goldner. Emerging rare-earth doped material platforms for quantum nanophotonics. Nanophotonics, 2019, 8(11): 2003
CrossRef ADS Google scholar
[206]
A. Fossati, S. Liu, J. Karlsson, A. Ikesue, A. Tallaire, A. Ferrier, D. Serrano, P. Goldner. A frequency-multiplexed coherent electro-optic memory in rare earth doped nanoparticles. Nano Lett., 2020, 20: 7087
CrossRef ADS Google scholar
[207]
M. F. Askarani, M. G. Puigibert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam, N. Sinclair, D. Oblak, W. Tittel. Storage and reemission of heralded telecommunication-wavelength photons using a crystal waveguide. Phys. Rev. Appl., 2019, 11(5): 054056
CrossRef ADS Google scholar
[208]
R. Valivarthi, S. I. Davis, C. Peña, S. Xie, N. Lauk, L. Narváez, J. P. Allmaras, A. D. Beyer, Y. Gim, M. Hussein, G. Iskander, H. L. Kim, B. Korzh, A. Mueller, M. Rominsky, M. Shaw, D. Tang, E. E. Wollman, C. Simon, P. Spentzouris, D. Oblak, N. Sinclair, M. Spiropulu. Teleportation systems toward a quantum internet. PRX Quantum, 2020, 1(2): 020317
CrossRef ADS Google scholar
[209]
E. Miyazono, T. Zhong, I. Craiciu, J. M. Kindem, A. Faraon. Coupling of erbium dopants to yttrium orthosilicate photonic crystal cavities for on-chip optical quantum memories. Appl. Phys. Lett., 2016, 108(1): 011111
CrossRef ADS Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11904159 and 12004168), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2021A1515110191), Guangdong Innovative and Entrepreneurial Research Team Program (Grant No. 2019ZT08X324), the Guangdong Provincial Key Laboratory (Grant No. 2019B121203002), and the Key-Area Research and Development Program of Guangdong Province (Grant No. 2018B030326001).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(6619 KB)

Accesses

Citations

Detail

Sections
Recommended

/