Theoretical investigation on optical properties of Möbius carbon nanobelts in one- and two-photon absorption

Zhiqiang Yang, Yichuan Chen, Jing Li, Chen Lu, Junfang Zhao, Mengtao Sun

PDF(4644 KB)
PDF(4644 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (3) : 33303. DOI: 10.1007/s11467-022-1237-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Theoretical investigation on optical properties of Möbius carbon nanobelts in one- and two-photon absorption

Author information +
History +

Abstract

The first successful synthesis of fully fused and fully conjugated Möbius carbon nanobelts (CNBs) has attracted considerable attention. However, theoretical calculations based on such π-conjugated Möbius CNB are still insufficient. Herein, we theoretically investigated molecular spectroscopy of Möbius CNBs without and with n-butoxy groups via visualization methods. The results show that the presence of n-butoxy groups can significantly affect Möbius CNBs’ optical performance, changing electron-hole coherence and enhancing two-photon absorption cross-sections. Our work provides a deeper understanding of photophysical mechanisms of Möbius CNBs in one- and two-photon absorption and reveals possible applications on optoelectronic devices.

Graphical abstract

Keywords

optical properties / Möbius carbon nanobelts / photon / spectroscopy

Cite this article

Download citation ▾
Zhiqiang Yang, Yichuan Chen, Jing Li, Chen Lu, Junfang Zhao, Mengtao Sun. Theoretical investigation on optical properties of Möbius carbon nanobelts in one- and two-photon absorption. Front. Phys., 2023, 18(3): 33303 https://doi.org/10.1007/s11467-022-1237-3

References

[1]
Y. Segawa , T. Watanabe , K. Yamanoue , M. Kuwayama , K. Watanabe , J. Pirillo , Y. Hijikata , K. Itami . Synthesis of a Möbius carbon nanobelt. Nat. Synth., 2022, 1(7): 535
CrossRef ADS Google scholar
[2]
B. Yao , X. Liu , T. Guo , H. Sun , W. Wang . Molecular Möbius strips: Twist for a bright future. Org. Chem. Front., 2022, 9(15): 4171
CrossRef ADS Google scholar
[3]
A. Bedi , O. Gidron . The consequences of twisting nanocarbons: Lessons from tethered twisted acenes. Acc. Chem. Res., 2019, 52(9): 2482
CrossRef ADS Google scholar
[4]
D. Ajami , O. Oeckler , A. Simon , R. Herges . Synthesis of a Möbius aromatic hydrocarbon. Nature, 2003, 426(6968): 819
CrossRef ADS Google scholar
[5]
R. Kumar , H. Aggarwal , A. Srivastava . Of twists and curves: Electronics, photophysics, and upcoming applications of non-planar conjugated organic molecules. Chemistry, 2020, 26(47): 10653
CrossRef ADS Google scholar
[6]
T. Bauer , P. Banzer , E. Karimi , S. Orlov , A. Rubano , L. Marrucci , E. Santamato , R. W. Boyd , G. Leuchs . Observation of optical polarization of Möbius strips. Science, 2015, 347(6225): 964
CrossRef ADS Google scholar
[7]
M. Rickhaus , M. Mayor , M. Juríček . Chirality in curved polyaromatic systems. Chem. Soc. Rev., 2017, 46(6): 1643
CrossRef ADS Google scholar
[8]
G. Ouyang , L. Ji , Y. Jiang , F. Würthner , M. Liu . Self-assembled Möbius strips with controlled helicity. Nat. Commun., 2020, 11(1): 5910
CrossRef ADS Google scholar
[9]
J. F. Ayme , J. E. Beves , C. J. Campbell , D. A. Leigh . Template synthesis of molecular knots. Chem. Soc. Rev., 2013, 42(4): 1700
CrossRef ADS Google scholar
[10]
C.P. CollierG.MattersteigE.W. WongY.LuoK.BeverlyJ.SampaioF.M. RaymoJ.F. StoddartJ.R. Heath, A [2]catenane-based solid state electronically reconfigurable switch, Science 289(5482), 1172 (2000)
[11]
M. Stępień , L. Latos Grażyński , N. Sprutta , P. Chwalisz , L. Szterenberg . Expanded porphyrin with a split personality: A Hückel–Möbius aromaticity switch. Angew. Chem. Int. Ed., 2007, 46(41): 7869
CrossRef ADS Google scholar
[12]
J. Sankar , S. Mori , S. Saito , H. Rath , M. Suzuki , Y. Inokuma , H. Shinokubo , K. Suk Kim , Z. S. Yoon , J. Y. Shin , J. M. Lim , Y. Matsuzaki , O. Matsushita , A. Muranaka , N. Kobayashi , D. Kim , A. Osuka . Unambiguous identification of Möbius aromaticity for meso-aryl-substituted [28]hexaphyrins(1.1. 1.1. 1.1). J. Am. Chem. Soc., 2008, 130(41): 13568
CrossRef ADS Google scholar
[13]
Z.S. YoonA.OsukaD.Kim, Möbius aromaticity and antiaromaticity in expanded porphyrins, Nat. Chem. 1(2), 113 (2009)
[14]
G. R. Schaller , F. Topić , K. Rissanen , Y. Okamoto , J. Shen , R. Herges . Design and synthesis of the first triply twisted Möbius annulene. Nat. Chem., 2014, 6(7): 608
CrossRef ADS Google scholar
[15]
X. Jiang , J. D. Laffoon , D. Chen , S. Pérez Estrada , A. S. Danis , J. Rodríguez López , M. A. Garcia Garibay , J. Zhu , J. S. Moore . Kinetic control in the synthesis of a Möbius tris((ethynyl)[5]helicene) macrocycle using alkyne metathesis. J. Am. Chem. Soc., 2020, 142(14): 6493
CrossRef ADS Google scholar
[16]
D. M. Walba , R. M. Richards , R. C. Haltiwanger . Total synthesis of the first molecular Möbius strip. J. Am. Chem. Soc., 1982, 104(11): 3219
CrossRef ADS Google scholar
[17]
Q. H. Guo , J. F. Stoddart . The making of aromatic molecular Möbius belts. Chem, 2022, 8(8): 2076
CrossRef ADS Google scholar
[18]
T. W. Price , R. Jasti . Carbon nanobelts do the twist. Nat. Synth., 2022, 1: 502
CrossRef ADS Google scholar
[19]
Y. Chen , Y. Cheng , M. Sun . Physical mechanisms on plasmon-enhanced organic solar cells. J. Phys. Chem. C, 2021, 125(38): 21301
CrossRef ADS Google scholar
[20]
Y. Chen , Y. Cheng , M. Sun . Nonlinear plexcitons: Excitons coupled with plasmons in two-photon absorption. Nanoscale, 2022, 14(19): 7269
CrossRef ADS Google scholar
[21]
W. Kohn , L. J. Sham . Self-consistent equations including exchange and correlation effects. Phys. Rev., 1965, 140(4A): A1133
CrossRef ADS Google scholar
[22]
A. Becke . Density-functional thermochemistry (iii): The role of exact exchange. J. Chem. Phys., 1993, 98(7): 5648
CrossRef ADS Google scholar
[23]
C. Lee , W. Yang , R. G. Parr . Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 1988, 37(2): 785
CrossRef ADS Google scholar
[24]
M.FrischG.TrucksH.SchlegelG.ScuseriaM.RobbJ.CheesemanG.ScalmaniV.BaroneG.PeterssonH.Nakatsuji, Gaussian 16, Revision C. 01, Gaussian, Inc. , Wallingford Ct. , 2020
[25]
E. Gross , W. Kohn . Local density-functional theory of frequency-dependent linear response. Phys. Rev. Lett., 1985, 55(26): 2850
CrossRef ADS Google scholar
[26]
T.YanaiD.P. TewN.C. Handy, A new hybrid exchange–correlation functional using the Coulomb-attenuating method (Cam-B3lyp), Chem. Phys. Lett. 393(1–3), 51 (2004)
[27]
T. Lu , F. Chen . Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem., 2012, 33(5): 580
CrossRef ADS Google scholar
[28]
Z. Liu , T. Lu , Q. Chen . An sp-hybridized all-carboatomic ring, cyclo[18]carbon: Electronic structure, electronic spectrum, and optical nonlinearity. Carbon, 2020, 165: 461
CrossRef ADS Google scholar
[29]
M.Göppert‐Mayer, Über elementarakte mit zwei quantensprüngen, Ann. Phys. 401(3), 273 (1931)
[30]
S. Kraner , R. Scholz , F. Plasser , C. Koerner , K. Leo . Exciton size and binding energy limitations in one-dimensional organic materials. J. Chem. Phys., 2015, 143(24): 244905
CrossRef ADS Google scholar
[31]
S. Mukamel , S. Tretiak , T. Wagersreiter , V. Chernyak . Electronic coherence and collective optical excitations of conjugated molecules. Science, 1997, 277(5327): 781
CrossRef ADS Google scholar
[32]
N. Zhang , J. Wu , T. Yu , J. Lv , H. Liu , X. Xu . Theory, preparation, properties and catalysis application in 2D graphynes-based materials. Front. Phys., 2021, 16(2): 23201
CrossRef ADS Google scholar
[33]
Q.KongX.AnL.HuangX.WangW.FengS.QiuQ.WangC.Sun, A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure an hydrogen evolution performance, Front. Phys. 16(5), 53506 (2021)
[34]
R. Yang , J. Fan , M. Sun . Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties. Front. Phys., 2022, 17(4): 43202
CrossRef ADS Google scholar
[35]
X. H. Li , Y. X. Guo , Y. Ren , J. J. Peng , J. S. Liu , C. Wang , H. Zhang . Narrow-bandgap materials for optoelectronics applications. Front. Phys., 2022, 17(1): 13304
CrossRef ADS Google scholar
[36]
Z. B. Dai , G. Cen , Z. Zhang , X. Lv , K. Liu , Z. Li . Near-field infrared response of graphene on copper substrate. Front. Phys., 2022, 17(4): 43502
CrossRef ADS Google scholar
[37]
G. Luo , X. Lv , L. Wen , Z. Li , Z. Dai . Strain induced topological transitions in twisted double bilayer graphene. Front. Phys., 2022, 17(2): 23502
CrossRef ADS Google scholar
[38]
S. Y. Li , L. He . Recent progresses of quantum confinement in graphene quantum dots. Front. Phys., 2022, 17(3): 33201
CrossRef ADS Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 91436102, 11874407, and 11374353) and the Fundamental Research Funds for the Central Universities (No. 06500067).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(4644 KB)

Accesses

Citations

Detail

Sections
Recommended

/