Theoretical investigation on optical properties of Möbius carbon nanobelts in one- and two-photon absorption
Zhiqiang Yang, Yichuan Chen, Jing Li, Chen Lu, Junfang Zhao, Mengtao Sun
Theoretical investigation on optical properties of Möbius carbon nanobelts in one- and two-photon absorption
The first successful synthesis of fully fused and fully conjugated Möbius carbon nanobelts (CNBs) has attracted considerable attention. However, theoretical calculations based on such π-conjugated Möbius CNB are still insufficient. Herein, we theoretically investigated molecular spectroscopy of Möbius CNBs without and with n-butoxy groups via visualization methods. The results show that the presence of n-butoxy groups can significantly affect Möbius CNBs’ optical performance, changing electron-hole coherence and enhancing two-photon absorption cross-sections. Our work provides a deeper understanding of photophysical mechanisms of Möbius CNBs in one- and two-photon absorption and reveals possible applications on optoelectronic devices.
optical properties / Möbius carbon nanobelts / photon / spectroscopy
[1] |
Y. Segawa , T. Watanabe , K. Yamanoue , M. Kuwayama , K. Watanabe , J. Pirillo , Y. Hijikata , K. Itami . Synthesis of a Möbius carbon nanobelt. Nat. Synth., 2022, 1(7): 535
CrossRef
ADS
Google scholar
|
[2] |
B. Yao , X. Liu , T. Guo , H. Sun , W. Wang . Molecular Möbius strips: Twist for a bright future. Org. Chem. Front., 2022, 9(15): 4171
CrossRef
ADS
Google scholar
|
[3] |
A. Bedi , O. Gidron . The consequences of twisting nanocarbons: Lessons from tethered twisted acenes. Acc. Chem. Res., 2019, 52(9): 2482
CrossRef
ADS
Google scholar
|
[4] |
D. Ajami , O. Oeckler , A. Simon , R. Herges . Synthesis of a Möbius aromatic hydrocarbon. Nature, 2003, 426(6968): 819
CrossRef
ADS
Google scholar
|
[5] |
R. Kumar , H. Aggarwal , A. Srivastava . Of twists and curves: Electronics, photophysics, and upcoming applications of non-planar conjugated organic molecules. Chemistry, 2020, 26(47): 10653
CrossRef
ADS
Google scholar
|
[6] |
T. Bauer , P. Banzer , E. Karimi , S. Orlov , A. Rubano , L. Marrucci , E. Santamato , R. W. Boyd , G. Leuchs . Observation of optical polarization of Möbius strips. Science, 2015, 347(6225): 964
CrossRef
ADS
Google scholar
|
[7] |
M. Rickhaus , M. Mayor , M. Juríček . Chirality in curved polyaromatic systems. Chem. Soc. Rev., 2017, 46(6): 1643
CrossRef
ADS
Google scholar
|
[8] |
G. Ouyang , L. Ji , Y. Jiang , F. Würthner , M. Liu . Self-assembled Möbius strips with controlled helicity. Nat. Commun., 2020, 11(1): 5910
CrossRef
ADS
Google scholar
|
[9] |
J. F. Ayme , J. E. Beves , C. J. Campbell , D. A. Leigh . Template synthesis of molecular knots. Chem. Soc. Rev., 2013, 42(4): 1700
CrossRef
ADS
Google scholar
|
[10] |
C.P. CollierG.MattersteigE.W. WongY.LuoK.BeverlyJ.SampaioF.M. RaymoJ.F. StoddartJ.R. Heath, A [2]catenane-based solid state electronically reconfigurable switch, Science 289(5482), 1172 (2000)
|
[11] |
M. Stępień , L. Latos Grażyński , N. Sprutta , P. Chwalisz , L. Szterenberg . Expanded porphyrin with a split personality: A Hückel–Möbius aromaticity switch. Angew. Chem. Int. Ed., 2007, 46(41): 7869
CrossRef
ADS
Google scholar
|
[12] |
J. Sankar , S. Mori , S. Saito , H. Rath , M. Suzuki , Y. Inokuma , H. Shinokubo , K. Suk Kim , Z. S. Yoon , J. Y. Shin , J. M. Lim , Y. Matsuzaki , O. Matsushita , A. Muranaka , N. Kobayashi , D. Kim , A. Osuka . Unambiguous identification of Möbius aromaticity for meso-aryl-substituted [28]hexaphyrins(1.1. 1.1. 1.1). J. Am. Chem. Soc., 2008, 130(41): 13568
CrossRef
ADS
Google scholar
|
[13] |
Z.S. YoonA.OsukaD.Kim, Möbius aromaticity and antiaromaticity in expanded porphyrins, Nat. Chem. 1(2), 113 (2009)
|
[14] |
G. R. Schaller , F. Topić , K. Rissanen , Y. Okamoto , J. Shen , R. Herges . Design and synthesis of the first triply twisted Möbius annulene. Nat. Chem., 2014, 6(7): 608
CrossRef
ADS
Google scholar
|
[15] |
X. Jiang , J. D. Laffoon , D. Chen , S. Pérez Estrada , A. S. Danis , J. Rodríguez López , M. A. Garcia Garibay , J. Zhu , J. S. Moore . Kinetic control in the synthesis of a Möbius tris((ethynyl)[5]helicene) macrocycle using alkyne metathesis. J. Am. Chem. Soc., 2020, 142(14): 6493
CrossRef
ADS
Google scholar
|
[16] |
D. M. Walba , R. M. Richards , R. C. Haltiwanger . Total synthesis of the first molecular Möbius strip. J. Am. Chem. Soc., 1982, 104(11): 3219
CrossRef
ADS
Google scholar
|
[17] |
Q. H. Guo , J. F. Stoddart . The making of aromatic molecular Möbius belts. Chem, 2022, 8(8): 2076
CrossRef
ADS
Google scholar
|
[18] |
T. W. Price , R. Jasti . Carbon nanobelts do the twist. Nat. Synth., 2022, 1: 502
CrossRef
ADS
Google scholar
|
[19] |
Y. Chen , Y. Cheng , M. Sun . Physical mechanisms on plasmon-enhanced organic solar cells. J. Phys. Chem. C, 2021, 125(38): 21301
CrossRef
ADS
Google scholar
|
[20] |
Y. Chen , Y. Cheng , M. Sun . Nonlinear plexcitons: Excitons coupled with plasmons in two-photon absorption. Nanoscale, 2022, 14(19): 7269
CrossRef
ADS
Google scholar
|
[21] |
W. Kohn , L. J. Sham . Self-consistent equations including exchange and correlation effects. Phys. Rev., 1965, 140(4A): A1133
CrossRef
ADS
Google scholar
|
[22] |
A. Becke . Density-functional thermochemistry (iii): The role of exact exchange. J. Chem. Phys., 1993, 98(7): 5648
CrossRef
ADS
Google scholar
|
[23] |
C. Lee , W. Yang , R. G. Parr . Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 1988, 37(2): 785
CrossRef
ADS
Google scholar
|
[24] |
M.FrischG.TrucksH.SchlegelG.ScuseriaM.RobbJ.CheesemanG.ScalmaniV.BaroneG.PeterssonH.Nakatsuji, Gaussian 16, Revision C. 01, Gaussian, Inc. , Wallingford Ct. , 2020
|
[25] |
E. Gross , W. Kohn . Local density-functional theory of frequency-dependent linear response. Phys. Rev. Lett., 1985, 55(26): 2850
CrossRef
ADS
Google scholar
|
[26] |
T.YanaiD.P. TewN.C. Handy, A new hybrid exchange–correlation functional using the Coulomb-attenuating method (Cam-B3lyp), Chem. Phys. Lett. 393(1–3), 51 (2004)
|
[27] |
T. Lu , F. Chen . Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem., 2012, 33(5): 580
CrossRef
ADS
Google scholar
|
[28] |
Z. Liu , T. Lu , Q. Chen . An sp-hybridized all-carboatomic ring, cyclo[18]carbon: Electronic structure, electronic spectrum, and optical nonlinearity. Carbon, 2020, 165: 461
CrossRef
ADS
Google scholar
|
[29] |
M.Göppert‐Mayer, Über elementarakte mit zwei quantensprüngen, Ann. Phys. 401(3), 273 (1931)
|
[30] |
S. Kraner , R. Scholz , F. Plasser , C. Koerner , K. Leo . Exciton size and binding energy limitations in one-dimensional organic materials. J. Chem. Phys., 2015, 143(24): 244905
CrossRef
ADS
Google scholar
|
[31] |
S. Mukamel , S. Tretiak , T. Wagersreiter , V. Chernyak . Electronic coherence and collective optical excitations of conjugated molecules. Science, 1997, 277(5327): 781
CrossRef
ADS
Google scholar
|
[32] |
N. Zhang , J. Wu , T. Yu , J. Lv , H. Liu , X. Xu . Theory, preparation, properties and catalysis application in 2D graphynes-based materials. Front. Phys., 2021, 16(2): 23201
CrossRef
ADS
Google scholar
|
[33] |
Q.KongX.AnL.HuangX.WangW.FengS.QiuQ.WangC.Sun, A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure an hydrogen evolution performance, Front. Phys. 16(5), 53506 (2021)
|
[34] |
R. Yang , J. Fan , M. Sun . Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties. Front. Phys., 2022, 17(4): 43202
CrossRef
ADS
Google scholar
|
[35] |
X. H. Li , Y. X. Guo , Y. Ren , J. J. Peng , J. S. Liu , C. Wang , H. Zhang . Narrow-bandgap materials for optoelectronics applications. Front. Phys., 2022, 17(1): 13304
CrossRef
ADS
Google scholar
|
[36] |
Z. B. Dai , G. Cen , Z. Zhang , X. Lv , K. Liu , Z. Li . Near-field infrared response of graphene on copper substrate. Front. Phys., 2022, 17(4): 43502
CrossRef
ADS
Google scholar
|
[37] |
G. Luo , X. Lv , L. Wen , Z. Li , Z. Dai . Strain induced topological transitions in twisted double bilayer graphene. Front. Phys., 2022, 17(2): 23502
CrossRef
ADS
Google scholar
|
[38] |
S. Y. Li , L. He . Recent progresses of quantum confinement in graphene quantum dots. Front. Phys., 2022, 17(3): 33201
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |