Optimal charge inhomogeneity for the d+id-wave superconductivity in the intercalated graphite CaC6

Shuhui Yang, Tao Ying

PDF(3960 KB)
PDF(3960 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (3) : 33305. DOI: 10.1007/s11467-022-1236-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Optimal charge inhomogeneity for the d+id-wave superconductivity in the intercalated graphite CaC6

Author information +
History +

Abstract

The coexistence of superconductivity and charge inhomogeneity was observed in many cuprate superconductors. The relationship between those two is still controversial. Similarly, in the graphene sheets of the intercalated graphitic superconductor CaC6, the charge inhomogeneity was also observed. We simulate such a system by constructing the Hubbard model on the honeycomb lattice with charge inhomogeneity imposed by force. Utilizing the finite-temperature determinant quantum Monte Carlo algorithm, we examine the relationship between the superconducting pairing and the charge inhomogeneity. An optimal charge inhomogeneity for the d+id-wave pairing is found. While for other artificial charge inhomogeneities, the d+id-wave pairing is monotonically suppressed. The possible π-phase shift induced by charge inhomogeneity is also examined.

Graphical abstract

Keywords

intercalated graphitic superconductor / charge inhomogeneity / Hubbard model / d+id-wave pairing

Cite this article

Download citation ▾
Shuhui Yang, Tao Ying. Optimal charge inhomogeneity for the d+id-wave superconductivity in the intercalated graphite CaC6. Front. Phys., 2023, 18(3): 33305 https://doi.org/10.1007/s11467-022-1236-4

References

[1]
E. Dagotto . Complexity in strongly correlated electronic systems. Science, 2005, 309(5732): 257
CrossRef ADS Google scholar
[2]
J. Tranquada , B. Sternlieb , J. Axe , Y. Nakamura , S. Uchida . Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature, 1995, 375(6532): 561
CrossRef ADS Google scholar
[3]
J. M. Tranquada , J. D. Axe , N. Ichikawa , A. R. Moodenbaugh , Y. Nakamura , S. Uchida . Coexistence of, and competition between, superconductivity and charge-stripe order in La1.6−xNd0.4SrxCuO4. Phys. Rev. Lett., 1997, 78(2): 338
CrossRef ADS Google scholar
[4]
T. Wu , H. Mayaffre , S. Krämer , M. Horvatić , C. Berthier , W. Hardy , R. Liang , D. Bonn , M. H. Julien . Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy. Nature, 2011, 477(7363): 191
CrossRef ADS Google scholar
[5]
G. Ghiringhelli , M. Le Tacon , M. Minola , S. Blanco Canosa , C. Mazzoli , N. Brookes , G. De Luca , A. Frano , D. Hawthorn , F. He , T. Loew , M. M. Sala , D. C. Peets , M. Salluzzo , E. Schierle , R. Sutarto , G. A. Sawatzky , E. Weschke , B. Keimer , L. Braicovich . Long-range incommensurate charge fluctuations in (Y, Nd) Ba2Cu3O6+x. Science, 2012, 337(6096): 821
CrossRef ADS Google scholar
[6]
A. J. Achkar , R. Sutarto , X. Mao , F. He , A. Frano , S. Blanco-Canosa , M. Le Tacon , G. Ghiringhelli , L. Braicovich , M. Minola , M. Moretti Sala , C. Mazzoli , R. Liang , D. A. Bonn , W. N. Hardy , B. Keimer , G. A. Sawatzky , D. G. Hawthorn . Distinct charge orders in the planes and chains of ortho-III-ordered YBa2Cu3O6+δ superconductors identified by resonant elastic X-ray scattering. Phys. Rev. Lett., 2012, 109(16): 167001
CrossRef ADS Google scholar
[7]
J. Chang , E. Blackburn , A. Holmes , N. B. Christensen , J. Larsen , J. Mesot , R. Liang , D. Bonn , W. Hardy , A. Watenphul , M. Zimmermann , E. M. Forgan , S. M. Hayden . Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67. Nat. Phys., 2012, 8(12): 871
CrossRef ADS Google scholar
[8]
Q. Li , M. Hucker , G. D. Gu , A. M. Tsvelik , J. M. Tranquada . Two-dimensional superconducting fluctuations in stripe-ordered La1.875Ba0.125CuO4. Phys. Rev. Lett., 2007, 99(6): 067001
CrossRef ADS Google scholar
[9]
E. Berg , E. Fradkin , E. A. Kim , S. A. Kivelson , V. Oganesyan , J. M. Tranquada , S. C. Zhang . Dynamical layer decoupling in a stripe-ordered high-Tc superconductor. Phys. Rev. Lett., 2007, 99(12): 127003
CrossRef ADS Google scholar
[10]
T. Valla , A. Fedorov , J. Lee , J. Davis , G. Gu . The ground state of the pseudogap in cuprate superconductors. Science, 2006, 314(5807): 1914
CrossRef ADS Google scholar
[11]
J. M. Tranquada , G. D. Gu , M. Hücker , Q. Jie , H. J. Kang , R. Klingeler , Q. Li , N. Tristan , J. S. Wen , G. Y. Xu , Z. J. Xu , J. Zhou , M. V. Zimmermann . Evidence for unusual superconducting correlations coexisting with stripe order in La1.875Ba0.125CuO4. Phys. Rev. B, 2008, 78(17): 174529
CrossRef ADS Google scholar
[12]
E.ArrigoniS.A. Kivelson, Optimal inhomogeneity for superconductivity, Phys. Rev. B 68, 180503(R) (2003)
[13]
I.MartinD.PodolskyS.A. Kivelson, Enhancement of superconductivity by local inhomogeneities, Phys. Rev. B 72, 060502(R) (2005)
[14]
K. Aryanpour , E. R. Dagotto , M. Mayr , T. Paiva , W. E. Pickett , R. T. Scalettar . Effect of inhomogeneity on s-wave superconductivity in the attractive Hubbard model. Phys. Rev. B, 2006, 73(10): 104518
CrossRef ADS Google scholar
[15]
E. Berg , E. Fradkin , S. A. Kivelson . Theory of the striped superconductor. Phys. Rev. B, 2009, 79(6): 064515
CrossRef ADS Google scholar
[16]
T. A. Maier , G. Alvarez , M. Summers , T. C. Schulthess . Dynamic cluster quantum Monte Carlo simulations of a two-dimensional Hubbard model with stripelike charge-density-wave modulations: Interplay between inhomogeneities and the superconducting state. Phys. Rev. Lett., 2010, 104(24): 247001
CrossRef ADS Google scholar
[17]
R. Mondaini , T. Ying , T. Paiva , R. T. Scalettar . Determinant quantum Monte Carlo study of the enhancement of d-wave pairing by charge inhomogeneity. Phys. Rev. B, 2012, 86(18): 184506
CrossRef ADS Google scholar
[18]
B. X. Zheng , C. M. Chung , P. Corboz , G. Ehlers , M. P. Qin , R. M. Noack , H. Shi , S. R. White , S. Zhang , G. K. L. Chan . Stripe order in the underdoped region of the two-dimensional Hubbard model. Science, 2017, 358(6367): 1155
CrossRef ADS Google scholar
[19]
B. Ponsioen , S. S. Chung , P. Corboz . Period 4 stripe in the extended two-dimensional Hubbard model. Phys. Rev. B, 2019, 100(19): 195141
CrossRef ADS Google scholar
[20]
E. Fradkin , S. A. Kivelson . High-temperature superconductivity: Ineluctable complexity. Nat. Phys., 2012, 8(12): 864
CrossRef ADS Google scholar
[21]
K. C. Rahnejat , C. A. Howard , N. E. Shuttleworth , S. R. Schofield , K. Iwaya , C. F. Hirjibehedin , C. Renner , G. Aeppli , M. Ellerby . Charge density waves in the graphene sheets of the superconductor CaC6. Nat. Commun., 2011, 2(1): 558
CrossRef ADS Google scholar
[22]
Y. Jiang , X. Lai , K. Watanabe , T. Taniguchi , K. Haule , J. Mao , E. Andrei . Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature, 2019, 573(7772): 91
CrossRef ADS Google scholar
[23]
T.MaZ.HuangF.HuH.Q. Lin, Pairing in graphene: A quantum Monte Carlo study, Phys. Rev. B 84, 121410(R) (2011)
[24]
T. Ying , S. Wessel . Pairing and chiral spin density wave instabilities on the honeycomb lattice: A comparative quantum Monte Carlo study. Phys. Rev. B, 2018, 97(7): 075127
CrossRef ADS Google scholar
[25]
M. Calandra , F. Mauri . Theoretical explanation of superconductivity in C6Ca. Phys. Rev. Lett., 2005, 95(23): 237002
CrossRef ADS Google scholar
[26]
T. Valla , J. Camacho , Z. H. Pan , A. V. Fedorov , A. C. Walters , C. A. Howard , M. Ellerby . Anisotropic electron−phonon coupling and dynamical nesting on the graphene sheets in superconducting CaC6 using angleresolved photoemission spectroscopy. Phys. Rev. Lett., 2009, 102(10): 107007
CrossRef ADS Google scholar
[27]
T. O. Wehling , E. Sasioglu , C. Friedrich , A. I. Lichtenstein , M. I. Katsnelson , S. Blugel . Strength of effective Coulomb interactions in graphene and graphite. Phys. Rev. Lett., 2011, 106(23): 236805
CrossRef ADS Google scholar
[28]
M. Schüler , M. Rosner , T. O. Wehling , A. I. Lichtenstein , M. I. Katsnelson . Optimal Hubbard models for materials with nonlocal Coulomb interactions: Graphene, silicene, and benzene. Phys. Rev. Lett., 2013, 111(3): 036601
CrossRef ADS Google scholar
[29]
R. Blankenbecler , D. J. Scalapino , R. L. Sugar . Monte Carlo calculations of coupled Boson-fermion systems (I). Phys. Rev. D, 1981, 24(8): 2278
CrossRef ADS Google scholar
[30]
S. R. White , D. J. Scalapino , R. L. Sugar , E. Y. Loh , J. E. Gubernatis , R. T. Scalettar . Numerical study of the two-dimensional Hubbard model. Phys. Rev. B, 1989, 40(1): 506
CrossRef ADS Google scholar
[31]
J. E. Hirsch . Two-dimensional Hubbard model: Numerical simulation study. Phys. Rev. B, 1985, 31(7): 4403
CrossRef ADS Google scholar
[32]
S. R. White , D. J. Scalapino , R. L. Sugar , N. E. Bickers , R. T. Scalettar . Attractive and repulsive pairing interaction vertices for the two-dimensional Hubbard model. Phys. Rev. B, 1989, 39(1): 839
CrossRef ADS Google scholar
[33]
E. Y. Loh , J. E. Gubernatis , R. T. Scalettar , S. R. White , D. J. Scalapino , R. L. Sugar . Sign problem in the numerical simulation of many-electron systems. Phys. Rev. B, 1990, 41(13): 9301
CrossRef ADS Google scholar
[34]
M. Troyer , U. J. Wiese . Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations. Phys. Rev. Lett., 2005, 94(17): 170201
CrossRef ADS Google scholar
[35]
E. W. Huang , C. B. Mendl , S. Liu , S. Johnston , H. C. Jiang , B. Moritz , T. P. Devereaux . Numerical evidence of fluctuating stripes in the normal state of high-Tc cuprate superconductors. Science, 2017, 358(6367): 1161
CrossRef ADS Google scholar
[36]
H. C. Jiang , S. A. Kivelson . Stripe order enhanced superconductivity in the Hubbard model. Proc. Natl. Acad. Sci. USA, 2022, 119(1): e2109406119
CrossRef ADS Google scholar
[37]
M. Qin , T. Schafer , S. Andergassen , P. Corboz , E. Gull . The Hubbard model: A computational perspective. Annu. Rev. Condens. Matter Phys., 2022, 13(1): 275
CrossRef ADS Google scholar

Acknowledgements

We would like to thank R. Mondaini for stimulating discussions. This work was sponsored by the Natural Science Foundation of Chongqing, China (Grant No. cstc2021jcyj-msxmX1009) and the Joint Guiding Project of Natural Science Foundation of Heilongjiang Province (Grant No. LH2019A011).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(3960 KB)

Accesses

Citations

Detail

Sections
Recommended

/