Charging and self-discharging process of a quantum battery in composite environments

Kai Xu, Han-Jie Zhu, Hao Zhu, Guo-Feng Zhang, Wu-Ming Liu

PDF(3867 KB)
PDF(3867 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (3) : 31301. DOI: 10.1007/s11467-022-1230-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Charging and self-discharging process of a quantum battery in composite environments

Author information +
History +

Abstract

How to improve charging processes and suppress self-discharging processes has always been one of the key issues to achieve quantum batteries with high performance. Although a quantum battery is inevitably influenced by composite environments, this situation is still little understood, particularly regarding the influence of the memory effect of the composite environments and the coupling between composite environments. In this work, we investigate the effects of the composite environments, composed of two identical parts each containing a single cavity mode decaying to a reservoir, on the charging and self-discharging processes of a quantum battery. We show that increasing the two-mode coupling can effectively enhance the charging performance (i.e., the stored energy, the charging power, ergotropy) and restrain the self-discharging process (i.e., suppressing the process of dissipating the energy). However, different from the effect of two-mode coupling, we reveal that the memory effect of the reservoir in this composite environment is unfavorable to the charging process of the quantum battery, which is in sharp contrast to previous studies where the memory effect can significantly improve the charging performance of a quantum battery. Our results may benefit to the realization of quantum batteries with high performance under the actual complex environmental noise.

Graphical abstract

Keywords

quantum battery / quantum device

Cite this article

Download citation ▾
Kai Xu, Han-Jie Zhu, Hao Zhu, Guo-Feng Zhang, Wu-Ming Liu. Charging and self-discharging process of a quantum battery in composite environments. Front. Phys., 2023, 18(3): 31301 https://doi.org/10.1007/s11467-022-1230-x

References

[1]
M.NielsenI. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, England, 2000
[2]
F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin. . Quantum supremacy using a programmable superconducting processor. Nature, 2019, 574(7779): 505
CrossRef ADS Google scholar
[3]
S. Vinjanampathy, J. Anders. Quantum thermodynamics. Contemp. Phys., 2016, 57(4): 545
CrossRef ADS Google scholar
[4]
R. Uzdin, A. Levy, R. Kosloff. Equivalence of quantum heat machines, and quantum-thermodynamic signatures. Phys. Rev. X, 2015, 5(3): 031044
CrossRef ADS Google scholar
[5]
M. Campisi, R. Fazio. Dissipation, correlation and lags in heat engines. J. Phys. A Math. Theor., 2016, 49(34): 345002
CrossRef ADS Google scholar
[6]
B. Karimi, J. P. Pekola. Otto refrigerator based on a superconducting qubit: Classical and quantum performance. Phys. Rev. B, 2016, 94(18): 184503
CrossRef ADS Google scholar
[7]
G. Marchegiani, P. Virtanen, F. Giazotto, M. Campisi. Self-oscillating Josephson quantum heat engine. Phys. Rev. Appl., 2016, 6(5): 054014
CrossRef ADS Google scholar
[8]
M. N. Bera, A. Riera, M. Lewenstein, A. Winter. Generalized laws of thermodynamics in the presence of correlations. Nat. Commun., 2017, 8(1): 2180
CrossRef ADS Google scholar
[9]
M. Perarnau-Llobet, H. Wilming, A. Riera, R. Gallego, J. Eisert. Strong coupling corrections in quantum thermodynamics. Phys. Rev. Lett., 2018, 120(12): 120602
CrossRef ADS Google scholar
[10]
B. Karimi, J. P. Pekola, M. Campisi, R. Fazio. Coupled qubits as a quantum heat switch. Quantum Sci. Technol., 2017, 2(4): 044007
CrossRef ADS Google scholar
[11]
R. Alicki, M. Fannes. Entanglement boost for extractable work from ensembles of quantum batteries. Phys. Rev. E, 2013, 87(4): 042123
CrossRef ADS Google scholar
[12]
F.CampaioliF. A. PollockS.Vinjanampathy, in: Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions, edited by F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso, Springer International, Cham, 2018, pp 207–225
[13]
S. Bhattacharjee, A. Dutta. Quantum thermal machines and batteries. Eur. Phys. J. B, 2021, 94(12): 239
CrossRef ADS Google scholar
[14]
W. Niedenzu, V. Mukherjee, A. Ghosh, A. G. Kofman, G. Kurizki. Quantum engine efficiency bound beyond the second law of thermodynamics. Nat. Commun., 2018, 9(1): 165
CrossRef ADS Google scholar
[15]
D. Rossini, G. M. Andolina, D. Rosa, M. Carrega, M. Polini. Quantum advantage in the charging process of Sachdev−Ye−Kitaev batteries. Phys. Rev. Lett., 2020, 125(23): 236402
CrossRef ADS Google scholar
[16]
C.K. HuJ. QiuP.J. P. SouzaJ.YuanY.Zhou L.ZhangJ. ChuX.PanL.HuJ.Li Y.XuY.Zhong S.LiuF. YanD.TanR.BachelardC.J. Villas-BoasA.C. SantosD.Yu, Optimal charging of a superconducting quantum battery, arXiv: 2108.04298 (2021)
[17]
J. P. Pekola. Towards quantum thermodynamics in electronic circuits. Nat. Phys., 2015, 11(2): 118
CrossRef ADS Google scholar
[18]
A. C. Santos, A. Saguia, M. S. Sarandy. Stable and charge-switchable quantum batteries. Phys. Rev. E, 2020, 101(6): 062114
CrossRef ADS Google scholar
[19]
G. L. Giorgi, S. Campbell. Correlation approach to work extraction from finite quantum systems. J. Phys. At. Mol. Opt. Phys., 2015, 48(3): 035501
CrossRef ADS Google scholar
[20]
L. Fusco, M. Paternostro, G. De Chiara. Work extraction and energy storage in the Dicke model. Phys. Rev. E, 2016, 94(5): 052122
CrossRef ADS Google scholar
[21]
G. Francica, J. Goold, F. Plastina, M. Paternostro. Daemonic ergotropy: Enhanced work extraction from quantum correlations. npj Quantum Inf., 2017, 3: 12
CrossRef ADS Google scholar
[22]
J. Monsel, M. Fellous-Asiani, B. Huard, A. Auffeves. The energetic cost of work extraction. Phys. Rev. Lett., 2020, 124(13): 130601
CrossRef ADS Google scholar
[23]
F. Q. Dou, Y. J. Wang, J. A. Sun. Closed-loop three-level charged quantum battery. Europhys. Lett., 2020, 131(4): 43001
CrossRef ADS Google scholar
[24]
K. V. Hovhannisyan, M. Perarnau-Llobet, M. Huber, A. Acin. Entanglement generation is not necessary for optimal work extraction. Phys. Rev. Lett., 2013, 111(24): 240401
CrossRef ADS Google scholar
[25]
G. M. Andolina, M. Keck, A. Mari, M. Campisi, V. Gio-vannetti, M. Polini. Extractable work, the role of correlations, and asymptotic freedom in quantum batteries. Phys. Rev. Lett., 2019, 122(4): 047702
CrossRef ADS Google scholar
[26]
F. H. Kamin, F. T. Tabesh, S. Salimi, A. C. Santos. Entanglement, coherence, and charging process of quantum batteries. Phys. Rev. E, 2020, 102(5): 052109
CrossRef ADS Google scholar
[27]
J. X. Liu, H. L. Shi, Y. H. Shi, X. H. Wang, W. L. Yang. Entanglement and work extraction in the central-spin quantum battery. Phys. Rev. B, 2021, 104(24): 245418
CrossRef ADS Google scholar
[28]
J. Y. Gyhm, D. Safranek, D. Rosa. Quantum charging advantage cannot be extensive without global operations. Phys. Rev. Lett., 2022, 128(14): 140501
CrossRef ADS Google scholar
[29]
D. Ferraro, M. Campisi, G. M. Andolina, V. Pellegrini, M. Polini. High-power collective charging of a solid-state quantum battery. Phys. Rev. Lett., 2018, 120(11): 117702
CrossRef ADS Google scholar
[30]
F. Campaioli, F. A. Pollock, F. C. Binder, L. Celeri, J. Goold, S. Vinjanampathy, K. Modi. Enhancing the charging power of quantum batteries. Phys. Rev. Lett., 2017, 118(15): 150601
CrossRef ADS Google scholar
[31]
F. C. Binder, S. Vinjanampathy, K. Modi, J. Goold. Quantacell: Powerful charging of quantum batteries. New J. Phys., 2015, 17(7): 075015
CrossRef ADS Google scholar
[32]
L. P. García-Pintos, A. Hamma, A. del Campo. Fluctuations in extractable work bound the charging power of quantum batteries. Phys. Rev. Lett., 2020, 125(4): 040601
CrossRef ADS Google scholar
[33]
D. Rossini, G. M. Andolina, M. Polini. Many-body localized quantum batteries. Phys. Rev. B, 2019, 100(11): 115142
CrossRef ADS Google scholar
[34]
N. Friis, M. Huber. Precision and work fluctuations in Gaussian battery charging. Quantum, 2018, 2: 61
CrossRef ADS Google scholar
[35]
E. McKay, N. A. Rodriguez-Briones, E. Martin-Martinez. Fluctuations of work cost in optimal generation of correlations. Phys. Rev. E, 2018, 98(3): 032132
CrossRef ADS Google scholar
[36]
M. Perarnau-Llobet, R. Uzdin. Collective operations can extremely reduce work fluctuations. New J. Phys., 2019, 21(8): 083023
CrossRef ADS Google scholar
[37]
A. Crescente, M. Carrega, M. Sassetti, D. Ferraro. Charging and energy fluctuations of a driven quantum battery. New J. Phys., 2020, 22(6): 063057
CrossRef ADS Google scholar
[38]
T. P. Le, J. Levinsen, K. Modi, M. M. Parish, F. A. Pollock. Spin-chain model of a many-body quantum battery. Phys. Rev. A, 2018, 97(2): 022106
CrossRef ADS Google scholar
[39]
K. Sen, U. Sen. Local passivity and entanglement in shared quantum batteries. Phys. Rev. A, 2021, 104(3): L030402
CrossRef ADS Google scholar
[40]
L. Peng, W. B. He, S. Chesi, H. Q. Lin, X. W. Guan. Lower and upper bounds of quantum battery power in multiple central spin systems. Phys. Rev. A, 2021, 103(5): 052220
CrossRef ADS Google scholar
[41]
S. Julià-Farré, T. Salamon, A. Riera, M. N. Bera, M. Lewenstein. Bounds on the capacity and power of quantum batteries. Phys. Rev. Res., 2020, 2(2): 023113
CrossRef ADS Google scholar
[42]
F. Pirmoradian, K. Molmer. Aging of a quantum battery. Phys. Rev. A, 2019, 100(4): 043833
CrossRef ADS Google scholar
[43]
M. T. Mitchison, J. Goold, J. Prior. Charging a quantum battery with linear feedback control. Quantum, 2021, 5: 500
CrossRef ADS Google scholar
[44]
A. Crescente, M. Carrega, M. Sassetti, D. Ferraro. Ultrafast charging in a two-photon Dicke quantum battery. Phys. Rev. B, 2020, 102(24): 245407
CrossRef ADS Google scholar
[45]
Y. Y. Zhang, T. R. Yang, L. B. Fu, X. G. Wang. Powerful harmonic charging in a quantum battery. Phys. Rev. E, 2019, 99(5): 052106
CrossRef ADS Google scholar
[46]
F. Q. Dou, Y. J. Wang, J. A. Sun. Highly efficient charging and discharging of three-level quantum batteries through shortcuts to adiabaticity. Front. Phys., 2022, 17(3): 31503
CrossRef ADS Google scholar
[47]
F. Q. Dou, H. Zhou, J. A. Sun. Cavity Heisenberg-spin-chain quantum battery. Phys. Rev. A, 2022, 106(3): 032212
CrossRef ADS Google scholar
[48]
F. Q. Dou, Y. Q. Lu, Y. J. Wang, J. A. Sun. Extended Dicke quantum battery with interatomic interactions and driving field. Phys. Rev. B, 2022, 105(11): 115405
CrossRef ADS Google scholar
[49]
H.P. BreuerF. Petruccione, Theory of Open Quantum Systems, Oxford University Press, New York, 2002
[50]
H. P. Breuer, E. M. Laine, J. Piilo. Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett., 2009, 103(21): 210401
CrossRef ADS Google scholar
[51]
R. L. Franco, B. Bellomo, S. Maniscalco, G. Compagno. Dynamics of quantum correlations in two-qubit systems within non-Markovian environments. Int. J. Mod. Phys. B, 2013, 27(01n03): 1345053
CrossRef ADS Google scholar
[52]
I. de Vega, D. Alonso. Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys., 2017, 89(1): 015001
CrossRef ADS Google scholar
[53]
H. P. Breuer, E. M. Laine, J. Piilo, B. Vacchini. Non-Markovian dynamics in open quantum systems. Rev. Mod. Phys., 2016, 88(2): 021002
CrossRef ADS Google scholar
[54]
Y. Yao, X. Q. Shao. Optimal charging of open spin-chain quantum batteries via homodyne-based feedback control. Phys. Rev. E, 2022, 106(1): 014138
CrossRef ADS Google scholar
[55]
S. Ghosh, T. Chanda, S. Mal, A. Sen(De). Fast charging of a quantum battery assisted by noise. Phys. Rev. A, 2021, 104(3): 032207
CrossRef ADS Google scholar
[56]
K. Xu, H. G. Li, Z. G. Li, H. J. Zhu, G. F. Zhang, W. M. Liu. Charging performance of quantum batteries in a double-layer environment. Phys. Rev. A, 2022, 106(1): 012425
CrossRef ADS Google scholar
[57]
B. Çakmak. Ergotropy from coherences in an open quantum system. Phys. Rev. E, 2020, 102(4): 042111
CrossRef ADS Google scholar
[58]
F. Pirmoradian, K. Molmer. Aging of a quantum battery. Phys. Rev. A, 2019, 100(4): 043833
CrossRef ADS Google scholar
[59]
F. Barra. Dissipative charging of a quantum battery. Phys. Rev. Lett., 2019, 122(21): 210601
CrossRef ADS Google scholar
[60]
J. Carrasco, J. R. Maze, C. Hermann-Avigliano, F. Barra. Collective enhancement in dissipative quantum batteries. Phys. Rev. E, 2022, 105(6): 064119
CrossRef ADS Google scholar
[61]
S. Ghosh, A. Sen(De). Dimensional enhancements in a quantum battery with imperfections. Phys. Rev. A, 2022, 105(2): 022628
CrossRef ADS Google scholar
[62]
W. J. Lu, J. Chen, L. M. Kuang, X. G. Wang. Optimal state for a Tavis−Cummings quantum battery via the Bethe ansatz method. Phys. Rev. A, 2021, 104(4): 043706
CrossRef ADS Google scholar
[63]
F. Mayo, A. J. Roncaglia. Collective effects and quantum coherence in dissipative charging of quantum batteries. Phys. Rev. A, 2022, 105(6): 062203
CrossRef ADS Google scholar
[64]
J. Q. Quach, W. J. Munro. Using dark states to charge and stabilize open quantum batteries. Phys. Rev. Appl., 2020, 14(2): 024092
CrossRef ADS Google scholar
[65]
W. Chang, T. R. Yang, H. Dong, L. B. Fu, X. G. Wang, Y. Y. Zhang. Optimal building block of multipartite quantum battery in the driven-dissipative charging. New J. Phys., 2021, 23(10): 103026
CrossRef ADS Google scholar
[66]
A. Delmonte, A. Crescente, M. Carrega, D. Ferraro, M. Sassetti. Characterization of a two-photon quantum battery: Initial conditions, stability and work extraction. Entropy (Basel), 2021, 23(5): 612
CrossRef ADS Google scholar
[67]
X.ZhangM. Blaauboer, Enhanced energy transfer in a Dicke quantum battery, arXiv: 1812.10139 (2018)
[68]
F. Zhao, F. Q. Dou, Q. Zhao. Charging performance of the Su−Schrieffer−Heeger quantum battery. Phys. Rev. Res., 2022, 4(1): 013172
CrossRef ADS Google scholar
[69]
D. Farina, G. M. Andolina, A. Mari, M. Polini, V. Giovannetti. Charger-mediated energy transfer for quantum batteries: An open-system approach. Phys. Rev. B, 2019, 99(3): 035421
CrossRef ADS Google scholar
[70]
F. T. Tabesh, F. H. Kamin, S. Salimi. Environment-mediated charging process of quantum batteries. Phys. Rev. A, 2020, 102(5): 052223
CrossRef ADS Google scholar
[71]
Y. Yao, X. Q. Shao. Stable charging of a Rydberg quantum battery in an open system. Phys. Rev. E, 2021, 104(4): 044116
CrossRef ADS Google scholar
[72]
F. Zhao, F. Q. Dou, Q. Zhao. Quantum battery of interacting spins with environmental noise. Phys. Rev. A, 2021, 103(3): 033715
CrossRef ADS Google scholar
[73]
K. Xu, H. J. Zhu, G. F. Zhang, W. M. Liu. Enhancing the performance of an open quantum battery via environment engineering. Phys. Rev. E, 2021, 104(6): 064143
CrossRef ADS Google scholar
[74]
F. H. Kamin, F. T. Tabesh, S. Salimi, F. Kheirandish, A. C. Santos. Non-Markovian effects on charging and self-discharging process of quantum batteries. New J. Phys., 2020, 22(8): 083007
CrossRef ADS Google scholar
[75]
A. C. Santos. Quantum advantage of two-level batteries in the self-discharging process. Phys. Rev. E, 2021, 103(4): 042118
CrossRef ADS Google scholar
[76]
M. B. Arjmandi, H. Mohammadi, A. C. Santos. Enhancing self-discharging process with disordered quantum batteries. Phys. Rev. E, 2022, 105(5): 054115
CrossRef ADS Google scholar
[77]
S. Gherardini, F. Campaioli, F. Caruso, F. C. Binder. Stabilizing open quantum batteries by sequential measurements. Phys. Rev. Res., 2020, 2(1): 013095
CrossRef ADS Google scholar
[78]
A. C. Santos, B. Cakmak, S. Campbell, N. T. Zinner. Stable adiabatic quantum batteries. Phys. Rev. E, 2019, 100(3): 032107
CrossRef ADS Google scholar
[79]
S.Y. BaiJ. H. An, Floquet engineering to reactivate a dissipative quantum battery, Phys. Rev. A 102, 060201(R) (2020)
[80]
Y. Romach, C. Muller, T. Unden, L. J. Rogers, T. Isoda, K. M. Itoh, M. Markham, A. Stacey, J. Meijer, S. Pez-zagna, B. Naydenov, L. P. McGuinness, N. Bar-Gill, F. Jelezko. Spectroscopy of surface-induced noise using shallow spins in diamond. Phys. Rev. Lett., 2015, 114(1): 017601
CrossRef ADS Google scholar
[81]
K. Y. Xia, J. Twamley. All-optical switching and router via the direct quantum control of coupling between cavity modes. Phys. Rev. X, 2013, 3(3): 031013
CrossRef ADS Google scholar
[82]
B. H. Liu, L. Li, Y. F. Huang, C. F. Li, G. C. Guo, E. M. Laine, H. P. Breuer, J. Piilo. Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. Nat. Phys., 2011, 7(12): 931
CrossRef ADS Google scholar
[83]
A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, R. J. Schoelkopf. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A, 2004, 69(6): 062320
CrossRef ADS Google scholar
[84]
A. Chiuri, C. Greganti, L. Mazzola, M. Paternostro, P. Mataloni. Linear optics simulation of quantum non-Markovian dynamics. Sci. Rep., 2012, 2(1): 968
CrossRef ADS Google scholar
[85]
A. E. Allahverdyan, R. Balian, T. M. Nieuwenhuizen. Maximal work extraction from finite quantum systems. Europhys. Lett., 2004, 67(4): 565
CrossRef ADS Google scholar
[86]
A. Lenard. Thermodynamical proof of the Gibbs formula for elementary quantum systems. J. Stat. Phys., 1978, 19(6): 575
CrossRef ADS Google scholar
[87]
W. Pusz, S. L. Woronowicz. Passive states and KMS states for general quantum systems. Commun. Math. Phys., 1978, 58(3): 273
CrossRef ADS Google scholar
[88]
N. Lörch, C. Bruder, N. Brunner, P. P. Hofer. Optimal work extraction from quantum states by photo-assisted Cooper pair tunneling. Quantum Sci. Technol., 2018, 3(3): 035014
CrossRef ADS Google scholar
[89]
S.SeahS. NimmrichterV.Scarani, Work production of quantum rotor engines, New J. Phys. 20(4), 043045 (2018)
[90]
W. Niedenzu, V. Mukherjee, A. Ghosh, A. G. Kofman, G. Kurizki. Quantum engine efficiency bound beyond the second law of thermodynamics. Nat. Commun., 2018, 9(1): 165
CrossRef ADS Google scholar
[91]
B. M. Garraway. Decay of an atom coupled strongly to a reservoir. Phys. Rev. A, 1997, 55(6): 4636
CrossRef ADS Google scholar
[92]
B. M. Garraway. Nonperturbative decay of an atomic system in a cavity. Phys. Rev. A, 1997, 55(3): 2290
CrossRef ADS Google scholar
[93]
B. J. Dalton, S. M. Barnett, B. M. Garraway. Theory of pseudomodes in quantum optical processes. Phys. Rev. A, 2001, 64(5): 053813
CrossRef ADS Google scholar
[94]
G. Pleasance, B. M. Garraway, F. Petruccione. Generalized theory of pseudomodes for exact descriptions of non-Markovian quantum processes. Phys. Rev. Res., 2020, 2(4): 043058
CrossRef ADS Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China under grant Nos. 12204348, 12074027, 11434015, 61227902, 61835013, 11611530676, and KZ201610005011, the National Key R&D Program of China under grant No. 2016YFA0301500, and SPRPCAS under grant Nos. XDB01020300 and XDB21030300.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(3867 KB)

Accesses

Citations

Detail

Sections
Recommended

/