Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials
Xudong Zhu, Yuqian Chen, Zheng Liu, Yulei Han, Zhenhua Qiao
Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials
We numerically study the general valley polarization and anomalous Hall effect in van der Waals (vdW) heterostructures based on monolayer jacutingaite family materials Pt2AX3 (A = Hg, Cd, Zn; X = S, Se, Te). We perform a systematic study on the atomic, electronic, and topological properties of vdW heterostructures composed of monolayer Pt2AX3 and two-dimensional ferromagnetic insulators. We show that four kinds of vdW heterostructures exhibit valley-polarized quantum anomalous Hall phase, i.e., Pt2HgS3/NiBr2, Pt2HgSe3/CoBr2, Pt2HgSe3/NiBr2, and Pt2ZnS3/CoBr2, with a maximum valley splitting of 134.2 meV in Pt2HgSe3/NiBr2 and sizable global band gap of 58.8 meV in Pt2HgS3/NiBr2. Our findings demonstrate an ideal platform to implement applications on topological valleytronics.
quantum anomalous Hall effect / valley polarization / topological valleytronics / transition metal dichalcogenides / jacutingaite family materials / first-principles calculations / van der Waals heterostructure
[1] |
A. K. Geim, K. S. Novoselov. The rise of graphene. Nat. Mater., 2007, 6(3): 183
CrossRef
ADS
Google scholar
|
[2] |
K. Wang, T. Hou, Y. Ren, Z. Qiao. Enhanced robustness of zero-line modes in graphene via magnetic field. Front. Phys., 2019, 14(2): 23501
CrossRef
ADS
Google scholar
|
[3] |
J. Zeng, R. Xue, T. Hou, Y. Han, Z. Qiao. Formation of topological domain walls and quantum transport properties of zero-line modes in commensurate bilayer graphene systems. Front. Phys., 2022, 17(6): 63503
CrossRef
ADS
Google scholar
|
[4] |
H. Yang, J. Zeng, S. You, Y. Han, Z. Qiao. Equipartition of current in metallic armchair nanoribbon of graphene-based device. Front. Phys., 2022, 17(6): 63508
CrossRef
ADS
Google scholar
|
[5] |
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 2012, 7(11): 699
CrossRef
ADS
Google scholar
|
[6] |
G. Luo, Z. Z. Zhang, H. O. Li, X. X. Song, G. W. Deng, G. Cao, M. Xiao, G. P. Guo. Quantum dot behavior in transition metal dichalcogenides nanostructures. Front. Phys., 2017, 12(4): 128502
CrossRef
ADS
Google scholar
|
[7] |
M. Cheng, J. Yang, X. Li, H. Li, R. Du, J. Shi, J. He. Improving the device performances of two-dimensional semiconducting transition metal dichalcogenides: Three strategies. Front. Phys., 2022, 17(6): 63601
CrossRef
ADS
Google scholar
|
[8] |
D. J. Ibberson, L. Bourdet, J. C. Abadillo-Uriel, I. Ahmed, S. Barraud, M. J. Calderón, Y.M. Niquet, M. F. Gonzalez-Zalba. Electric-field tuning of the valley splitting in silicon corner dots. Appl. Phys. Lett., 2018, 113(5): 053104
CrossRef
ADS
Google scholar
|
[9] |
M. Tahir, A. Manchon, K. Sabeeh, U. Schwingenschlögl. Quantum spin/valley Hall effect and topological insulator phase transitions in silicene. Appl. Phys. Lett., 2013, 102(16): 162412
CrossRef
ADS
Google scholar
|
[10] |
C. J. Tabert, E. J. Nicol. AC/DC spin and valley Hall effects in silicene and germanene. Phys. Rev. B, 2013, 87(23): 235426
CrossRef
ADS
Google scholar
|
[11] |
Y. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y. D. Kim, A. M. van der Zande, A. Rigosi, H. M. Hill, S. H. Kim, J. Hone, Z. Li, D. Smirnov, T. F. Heinz. Valley splitting and polarization by the Zeeman effect in monolayer MoSe2. Phys. Rev. Lett., 2014, 113(26): 266804
CrossRef
ADS
Google scholar
|
[12] |
C. Zhao, T. Norden, P. Zhang, P. Zhao, Y. Cheng, F. Sun, J. P. Parry, P. Taheri, J. Wang, Y. Yang, T. Scrace, K. Kang, S. Yang, G. X. Miao, R. Sabirianov, G. Kioseoglou, W. Huang, A. Petrou, H. Zeng. Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field. Nat. Nanotechnol., 2017, 12(8): 757
CrossRef
ADS
Google scholar
|
[13] |
S. Y. Li, Y. Su, Y. N. Ren, L. He. Valley polarization and inversion in strained graphene via pseudo-Landau levels, valley splitting of real Landau levels, and confined states. Phys. Rev. Lett., 2020, 124(10): 106802
CrossRef
ADS
Google scholar
|
[14] |
W. Yao, D. Xiao, Q. Niu. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B, 2008, 77(23): 235406
CrossRef
ADS
Google scholar
|
[15] |
K. L. Seyler, D. Zhong, B. Huang, X. Linpeng, N. P. Wilson, T. Taniguchi, K. Watanabe, W. Yao, D. Xiao, M. A. McGuire, K. M. C. Fu, X. Xu. Valley manipulation by optically tuning the magnetic proximity effect in WSe2/CrI3 heterostructures. Nano Lett., 2018, 18(6): 3823
CrossRef
ADS
Google scholar
|
[16] |
M. S. Mrudul, Á. Jiménez-Galán, M. Ivanov, G. Dixit. Light-induced valleytronics in pristine graphene. Optica, 2021, 8(3): 422
CrossRef
ADS
Google scholar
|
[17] |
J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, X. Xu. Valleytronics in 2D materials. Nat. Rev. Mater., 2016, 1(11): 16055
CrossRef
ADS
Google scholar
|
[18] |
D. Xiao, G. B. Liu, W. Feng, X. Xu, W. Yao. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett., 2012, 108(19): 196802
CrossRef
ADS
Google scholar
|
[19] |
K. Behnia. Polarized light boosts valleytronics. Nat. Nanotechnol., 2012, 7(8): 488
CrossRef
ADS
Google scholar
|
[20] |
S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. Von Molnár, M. L. Roukes, A. Y. Chtchelkanova, D. M. Treger. Spintronics: A spin-based electronics vision for the future. Science, 2001, 294(5546): 1488
CrossRef
ADS
Google scholar
|
[21] |
A. Rycerz, J. Tworzydło, C. Beenakker. Valley filter and valley valve in graphene. Nat. Phys., 2007, 3(3): 172
CrossRef
ADS
Google scholar
|
[22] |
D. Pesin, A. H. MacDonald. Spintronics and pseudospintronics in graphene and topological insulators. Nat. Mater., 2012, 11(5): 409
CrossRef
ADS
Google scholar
|
[23] |
P. San-Jose, E. Prada, E. McCann, H. Schomerus. Pseudospin valve in bilayer graphene: Towards graphene-based pseudospintronics. Phys. Rev. Lett., 2009, 102(24): 247204
CrossRef
ADS
Google scholar
|
[24] |
Y. S. Ang, S. A. Yang, C. Zhang, Z. Ma, L. K. Ang. Valleytronics in merging Dirac cones: All-electric-controlled valley filter, valve, and universal reversible logic gate. Phys. Rev. B, 2017, 96(24): 245410
CrossRef
ADS
Google scholar
|
[25] |
J. Li, R.X. Zhang, Z. Yin, J. Zhang, K. Watanabe, T. Taniguchi, C. Liu, J. Zhu. A valley valve and electron beam splitter. Science, 2018, 362(6419): 1149
CrossRef
ADS
Google scholar
|
[26] |
F. D. M. Haldane. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett., 1988, 61(18): 2015
CrossRef
ADS
Google scholar
|
[27] |
Y. Ren, Z. Qiao, Q. Niu. Topological phases in two-dimensional materials: A review. Rep. Prog. Phys., 2016, 79(6): 066501
CrossRef
ADS
Google scholar
|
[28] |
C. Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L. Wang, Z. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Wang, L. Lu, X. C. Ma, Q. K. Xue. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science, 2013, 340(6129): 167
CrossRef
ADS
Google scholar
|
[29] |
Y. Deng, Y. Yu, M. Z. Shi, Z. Guo, Z. Xu, J. Wang, X. H. Chen, Y. Zhang. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science, 2020, 367(6480): 895
CrossRef
ADS
Google scholar
|
[30] |
Z. Qiao, S. A. Yang, W. Feng, W. K. Tse, J. Ding, Y. Yao, J. Wang, Q. Niu. Quantum anomalous Hall effect in graphene from Rashba and exchange effects. Phys. Rev. B, 2010, 82(16): 161414
CrossRef
ADS
Google scholar
|
[31] |
Z. Qiao, W. Ren, H. Chen, L. Bellaiche, Z. Zhang, A. H. MacDonald, Q. Niu. Quantum anomalous Hall effect in graphene proximity coupled to an antiferromagnetic insulator. Phys. Rev. Lett., 2014, 112(11): 116404
CrossRef
ADS
Google scholar
|
[32] |
R. Yu, W. Zhang, H. J. Zhang, S. C. Zhang, X. Dai, Z. Fang. Quantized anomalous Hall effect in magnetic topological insulators. Science, 2010, 329(5987): 61
CrossRef
ADS
Google scholar
|
[33] |
J. Zhang, B. Zhao, T. Zhou, Y. Xue, C. Ma, Z. Yang. Strong magnetization and Chern insulators in compressed graphene/CrI3 van der Waals heterostructures. Phys. Rev. B, 2018, 97(8): 085401
CrossRef
ADS
Google scholar
|
[34] |
J. Kim, X. Hong, C. Jin, S. F. Shi, C. Y. S. Chang, M. H. Chiu, L. J. Li, F. Wang. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science, 2014, 346(6214): 1205
CrossRef
ADS
Google scholar
|
[35] |
A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, A. Imamoglu. Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nat. Phys., 2015, 11(2): 141
CrossRef
ADS
Google scholar
|
[36] |
H. Rostami, R. Asgari. Valley Zeeman effect and spin-valley polarized conductance in monolayer MoS2 in a perpendicular magnetic field. Phys. Rev. B, 2015, 91(7): 075433
CrossRef
ADS
Google scholar
|
[37] |
Y. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y. D. Kim, A. M. van der Zande, A. Rigosi, H. M. Hill, S. H. Kim, J. Hone, Z. Li, D. Smirnov, T. F. Heinz. Valley splitting and polarization by the Zeeman effect in monolayer MoSe2. Phys. Rev. Lett., 2014, 113(26): 266804
CrossRef
ADS
Google scholar
|
[38] |
Z. Liu, Y. Han, Y. Ren, Q. Niu, Z. Qiao. .Van der Waals heterostructure Pt2HgSe3/CrI3 for topological valleytronics. Phys. Rev. B, 2021, 104(12): L121403
CrossRef
ADS
Google scholar
|
[39] |
M. Bora, S. K. Behera, P. Samal, P. Deb. Magnetic proximity induced valley-contrasting quantum anomalous Hall effect in a graphene-CrBr3 van der Waals heterostructure. Phys. Rev. B, 2022, 105(23): 235422
CrossRef
ADS
Google scholar
|
[40] |
H. Zhang, W. Yang, Y. Ning, X. Xu. Abundant valley-polarized states in two-dimensional ferromagnetic van der Waals heterostructures. Phys. Rev. B, 2020, 101(20): 205404
CrossRef
ADS
Google scholar
|
[41] |
M. Vila, J. H. Garcia, S. Roche. Valley-polarized quantum anomalous Hall phase in bilayer graphene with layer-dependent proximity effects. Phys. Rev. B, 2021, 104(16): L161113
CrossRef
ADS
Google scholar
|
[42] |
M. U. Rehman, Z. Qiao, J. Wang. Valley-symmetry-broken magnetic topological responses in (Pt/Pd)2HgSe3/CrGeTe3 and Pd2HgSe3/CrI3 through interfacial coupling. Phys. Rev. B, 2022, 105(16): 165417
CrossRef
ADS
Google scholar
|
[43] |
M. U. Rehman, M. Kiani, J. Wang. Jacutingaite family: An efficient platform for coexistence of spin valley Hall effects. valley spin-valve realization.and layer spin crossover. Phys. Rev. B, 2022, 105(19): 195439
CrossRef
ADS
Google scholar
|
[44] |
H. Pan, Z. Li, C. C. Liu, G. Zhu, Z. Qiao, Y. Yao. Valley-polarized quantum anomalous Hall effect in silicene. Phys. Rev. Lett., 2014, 112(10): 106802
CrossRef
ADS
Google scholar
|
[45] |
J. Zhou, Q. Sun, P. Jena. Valley-polarized quantum anomalous Hall effect in ferrimagnetic honeycomb lattices. Phys. Rev. Lett., 2017, 119(4): 046403
CrossRef
ADS
Google scholar
|
[46] |
Z.LiuY. RenY.HanQ.NiuZ.Qiao, Second-order topological insulator in van der Waals heterostructures of CoBr2/Pt2HgSe3/CoBr2, arXiv: 2202.00221 (2022)
|
[47] |
F. Zhan, Z. Ning, L.Y. Gan, B. Zheng, J. Fan, R. Wang. Floquet valley-polarized quantum anomalous Hall state in nonmagnetic heterobilayers. Phys. Rev. B, 2022, 105(8): L081115
CrossRef
ADS
Google scholar
|
[48] |
I. Cucchi, A. Marrazzo, E. Cappelli, S. Ricco, F. Y. Bruno, S. Lisi, M. Hoesch, T. K. Kim, C. Cacho, C. Besnard, E. Giannini, N. Marzari, M. Gibertini, F. Baumberger, A. Tamai. Bulk and surface electronic structure of the dual-topology semimetal Pt2HgSe3. Phys. Rev. Lett., 2020, 124(10): 106402
CrossRef
ADS
Google scholar
|
[49] |
K. Kandrai, P. Vancsó, G. Kukucska, J. Koltai, G. Baranka, Á. Hoffmann, Á. Pekker, K. Kamarás, Z. E. Horváth, A. Vymazalová, L. Tapasztó, P. Nemes-Incze. Signature of large-gap quantum spin Hall state in the layered mineral jacutingaite. Nano Lett., 2020, 20(7): 5207
CrossRef
ADS
Google scholar
|
[50] |
A. Marrazzo, M. Gibertini, D. Campi, N. Mounet, N. Marzari. Prediction of a large-gap and switchable Kane−Mele quantum spin Hall insulator. Phys. Rev. Lett., 2018, 120(11): 117701
CrossRef
ADS
Google scholar
|
[51] |
A. Marrazzo, M. Gibertini, D. Campi, N. Mounet, N. Marzari. Relative abundance of Z2 topological order in exfoliable two-dimensional insulators. Nano Lett., 2019, 19(12): 8431
CrossRef
ADS
Google scholar
|
[52] |
C. L. Kane, E. J. Mele. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett., 2005, 95(14): 146802
CrossRef
ADS
Google scholar
|
[53] |
F. C. de Lima, R. H. Miwa, A. Fazzio. Jacutingaite-family: A class of topological materials. Phys. Rev. B, 2020, 102(23): 235153
CrossRef
ADS
Google scholar
|
[54] |
C. Ma, H. Forster, G. Grundmann. Tilkerodeite, Pd2HgSe3, a new platinum-group mineral from Tilkerode, Harz Mountains, Germany. Crystals (Basel), 2020, 10(8): 687
CrossRef
ADS
Google scholar
|
[55] |
A. Marrazzo, N. Marzari, M. Gibertini. Emergent dual topology in the three-dimensional Kane−Mele Pt2HgSe3. Phys. Rev. Res., 2020, 2(1): 012063
CrossRef
ADS
Google scholar
|
[56] |
M. A. McGuire. Crystal and magnetic structures in layered, transition metal dihalides and trihalides. Crystals (Basel), 2017, 7(5): 121
CrossRef
ADS
Google scholar
|
[57] |
V. V. Kulish, W. Huang. Single-layer metal halides MX2 (X = Cl, Br, I): Stability and tunable magnetism from first principles and Monte Carlo simulations. J. Mater. Chem. C, 2017, 5(34): 8734
CrossRef
ADS
Google scholar
|
[58] |
B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, X. Xu. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546(7657): 270
CrossRef
ADS
Google scholar
|
[59] |
M. M. Otrokov, I. P. Rusinov, M. Blanco-Rey, M. Hoffmann, A. Yu. Vyazovskaya, S. V. Eremeev, A. Ernst, P. M. Echenique, A. Arnau, E. V. Chulkov. Unique thickness-dependent properties of the van der waals interlayer antiferromagnet MnBi2Te4 films. Phys. Rev. Lett., 2019, 122(10): 107202
CrossRef
ADS
Google scholar
|
[60] |
S. Tian, J. F. Zhang, C. Li, T. Ying, S. Li, X. Zhang, K. Liu, H. Lei. Ferromagnetic van der Waals crystal VI3. J. Am. Chem. Soc., 2019, 141(13): 5326
CrossRef
ADS
Google scholar
|
[61] |
H. Y. Lv, W. J. Lu, X. Luo, X. B. Zhu, Y. P. Sun. Strain- and carrier-tunable magnetic properties of a two-dimensional intrinsically ferromagnetic semiconductor: CoBr2 monolayer. Phys. Rev. B, 2019, 99(13): 134416
CrossRef
ADS
Google scholar
|
[62] |
A. S. Botana, M. R. Norman. Electronic structure and magnetism of transition metal dihalides: Bulk to monolayer. Phys. Rev. Mater., 2019, 3(4): 044001
CrossRef
ADS
Google scholar
|
[63] |
M. M. Otrokov, I. P. Rusinov, M. Blanco-Rey, M. Hoffmann, A. Yu. Vyazovskaya, S. V. Eremeev, A. Ernst, P. M. Echenique, A. Arnau, E. V. Chulkov. Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 films. Phys. Rev. Lett., 2019, 122(10): 107202
CrossRef
ADS
Google scholar
|
[64] |
X. Li, Z. Zhang, H. Zhang. High throughput study on magnetic ground states with Hubbard U corrections in transition metal dihalide monolayers. Nanoscale Adv., 2020, 2(1): 495
CrossRef
ADS
Google scholar
|
[65] |
M. Lu, Q. Yao, C. Xiao, C. Huang, E. Kan. Mechanical, electronic, and magnetic properties of NiX2 (X = Cl, Br, I) layers. ACS Omega, 2019, 4(3): 5714
CrossRef
ADS
Google scholar
|
[66] |
D. Zhong, K. L. Seyler, X. Linpeng, R. Cheng, N. Sivadas, B. Huang, E. Schmidgall, T. Taniguchi, K. Watanabe, M. A. McGuire, W. Yao, D. Xiao, K. M. C. Fu, X. Xu. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv., 2017, 3(5): e1603113
CrossRef
ADS
Google scholar
|
[67] |
L. Webster, J. A. Yan. Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3. Phys. Rev. B, 2018, 98(14): 144411
CrossRef
ADS
Google scholar
|
[68] |
C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, X. Zhang. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546(7657): 265
CrossRef
ADS
Google scholar
|
[69] |
S. Jiang, J. Shan, K. F. Mak. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater., 2018, 17(5): 406
CrossRef
ADS
Google scholar
|
[70] |
K. F. Mak, J. Shan, D. C. Ralph. Probing and controlling magnetic states in 2D layered magnetic materials. Nat. Rev. Phys., 2019, 1(11): 646
CrossRef
ADS
Google scholar
|
[71] |
W. Zhuo, B. Lei, S. Wu, F. Yu, C. Zhu, J. Cui, Z. Sun, D. Ma, M. Shi, H. Wang, W. Wang, T. Wu, J. Ying, S. Wu, Z. Wang, X. Chen. Manipulating ferromagnetism in few‐layered Cr2Ge2Te6. Adv. Mater., 2021, 33(31): 2008586
CrossRef
ADS
Google scholar
|
[72] |
See Supplemental Materials for more information about calculation details, ferromagnetic substrates, vdW heterostructue configurations, orbital projections, molecular dynamic simulations, more band structures, manipulated band gaps, charge density differences and the planar-averaged electrostatic potentials of other well-matched systems.
|
[73] |
P. E. Blöchl. Projector augmented-wave method. Phys. Rev. B, 1994, 50(24): 17953
CrossRef
ADS
Google scholar
|
[74] |
G. Kresse, J. Furthmuller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169
CrossRef
ADS
Google scholar
|
[75] |
G. Kresse, D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59(3): 1758
CrossRef
ADS
Google scholar
|
[76] |
J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais. and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B, 1992, 46(11): 6671
CrossRef
ADS
Google scholar
|
[77] |
S. Grimme, J. Antony, S. Ehrlich, H. Krieg. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 2010, 132(15): 154104
CrossRef
ADS
Google scholar
|
[78] |
H. J. Kulik, M. Cococcioni, D. A. Scherlis, N. Marzari. Density functional theory in transition-metal chemistry: A self-consistent Hubbard U approach. Phys. Rev. Lett., 2006, 97(10): 103001
CrossRef
ADS
Google scholar
|
[79] |
A. A. Mostofi, J. R. Yates, Y. S. Lee, I. Souza, D. Vanderbilt, N. Marzari. Wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun., 2008, 178(9): 685
CrossRef
ADS
Google scholar
|
[80] |
G. Pizzi, V. Vitale, R. Arita, S. Blugel, F. Freimuth, G. Geranton, M. Gibertini, D. Gresch, C. Johnson, T. Koretsune, J. Ibañez-Azpiroz, H. Lee, J.M. Lihm, D. Marchand, A. Marrazzo, Y. Mokrousov, J. I. Mustafa, Y. Nohara, Y. Nomura, L. Paulatto, S. Poncé, T. Ponweiser, J. Qiao, F. Thöle, S. S. Tsirkin, M. Wierzbowska, N. Marzari, D. Vanderbilt, I. Souza, A. A. Mostofi, J. R. Yates. Wannier90 as a community code: new features and applications. J. Phys.: Condens. Matter, 2020, 32(16): 165902
CrossRef
ADS
Google scholar
|
[81] |
Q. S. Wu, S. N. Zhang, H. F. Song, M. Troyer, A. A. Soluyanov. WannierTools: An open-source software package for novel topological materials. Comput. Phys. Commun., 2018, 224: 405
CrossRef
ADS
Google scholar
|
[82] |
V. Wang, N. Xu, J. C. Liu, G. Tang, W. T. Geng. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun., 2021, 267: 108033
CrossRef
ADS
Google scholar
|
[83] |
U. Herath, P. Tavadze, X. He, E. Bousquet, S. Singh, F. Munoz, A. H. Romero. PyProcar: A Python library for electronic structure pre/post-processing. Comput. Phys. Commun. 251, 1070, 80(2020):
CrossRef
ADS
Google scholar
|
[84] |
K. Momma, F. Izumi. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst., 2011, 44(6): 1272
CrossRef
ADS
Google scholar
|
[85] |
M. H. Chiu, C. Zhang, H. W. Shiu, C. P. Chuu, C. H. Chen, C. Y. S. Chang, C. H. Chen, M. Y. Chou, C. K. Shih, L. J. Li. Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nat. Commun., 2015, 6(1): 7666
CrossRef
ADS
Google scholar
|
[86] |
V. O. Özçelik, J. G. Azadani, C. Yang, S. J. Koester, T. Low. Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Phys. Rev. B, 2016, 94(3): 035125
CrossRef
ADS
Google scholar
|
[87] |
C. Xia, J. Du, M. Li, X. Li, X. Zhao, T. Wang, J. Li. Effects of electric field on the electronic structures of broken-gap phosphorene/SnX2 (X = S, Se) van der Waals heterojunctions. Phys. Rev. Appl., 2018, 10(5): 054064
CrossRef
ADS
Google scholar
|
[88] |
C. Lei, Y. Ma, X. Xu, T. Zhang, B. Huang, Y. Dai. Broken-gap type-III band alignment in WTe2/HfS2 van der Waals heterostructure. J. Phys. Chem. C, 2019, 123(37): 23089
CrossRef
ADS
Google scholar
|
[89] |
X. R. Hu, J. M. Zheng, Z. Y. Ren. Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation. Front. Phys., 2018, 13(2): 137302
CrossRef
ADS
Google scholar
|
[90] |
Z. Z. Yan, Z. H. Jiang, J. P. Lu, Z. H. Ni. Interfacial charge transfer in WS2 monolayer/CsPbBr3 microplate heterostructure. Front. Phys., 2018, 13(4): 138115
CrossRef
ADS
Google scholar
|
[91] |
Y. Y. Wang, F. P. Li, W. Wei, B. B. Huang, Y. Dai. Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides. Front. Phys., 2021, 16(1): 13501
CrossRef
ADS
Google scholar
|
[92] |
C. Zhao, T. Norden, P. Zhang, P. Zhao, Y. Cheng, F. Sun, J. P. Parry, P. Taheri, J. Wang, Y. Yang, T. Scrace, K. Kang, S. Yang, G. Miao, R. Sabirianov, G. Kioseoglou, W. Huang, A. Petrou, H. Zeng. Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field. Nat. Nanotechnol., 2017, 12(8): 757
CrossRef
ADS
Google scholar
|
[93] |
T. Norden, C. Zhao, P. Zhang, R. Sabirianov, A. Petrou, H. Zeng. Giant valley splitting in monolayer WS2 by magnetic proximity effect. Nat. Commun., 2019, 10(1): 4163
CrossRef
ADS
Google scholar
|
[94] |
X. Deng, H. Yang, S. Qi, X. Xu, Z. Qiao. Quantum anomalous Hall effect and giant Rashba spin−orbit splitting in graphene system co-doped with boron and 5d transition-metal atoms. Front. Phys., 2018, 13(5): 137308
CrossRef
ADS
Google scholar
|
[95] |
Y. Han, S. Sun, S. Qi, X. Xu, Z. Qiao. Interlayer ferromagnetism and high-temperature quantum anomalous Hall effect in p-doped MnBi2Te4 multilayers. Phys. Rev. B, 2021, 103(24): 245403
CrossRef
ADS
Google scholar
|
[96] |
S. Qi, R. Gao, M. Chang, Y. Han, Z. Qiao. Pursuing the high-temperature quantum anomalous Hall effect in MnBi2Te4/Sb2Te3 heterostructures. Phys. Rev. B, 2020, 101(1): 014423
CrossRef
ADS
Google scholar
|
[97] |
S. Qi, Z. Qiao, X. Deng, E. D. Cubuk, H. Chen, W. Zhu, E. Kaxiras, S. B. Zhang, X. Xu, Z. Zhang. High-temperature quantum anomalous Hall effect in n−p codoped topological insulators. Phys. Rev. Lett., 2016, 117(5): 056804
CrossRef
ADS
Google scholar
|
[98] |
Z. Li, Y. Han, Z. Qiao. Chern number tunable quantum anomalous Hall effect in monolayer transitional metal oxides via manipulating magnetization orientation. Phys. Rev. Lett., 2022, 129(3): 036801
CrossRef
ADS
Google scholar
|
[99] |
Y.HanZ. YanZ.LiX.XuZ.Zhang Q.NiuZ. Qiao, Large Rashba spin−orbit coupling and high-temperature quantum anomalous Hall effect in Re-intercalated graphene/CrI3 heterostructure, arXiv: 2203.16429 (2022)
|
/
〈 | 〉 |