Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials

Xudong Zhu, Yuqian Chen, Zheng Liu, Yulei Han, Zhenhua Qiao

PDF(5871 KB)
PDF(5871 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (2) : 23302. DOI: 10.1007/s11467-022-1228-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials

Author information +
History +

Abstract

We numerically study the general valley polarization and anomalous Hall effect in van der Waals (vdW) heterostructures based on monolayer jacutingaite family materials Pt2AX3 (A = Hg, Cd, Zn; X = S, Se, Te). We perform a systematic study on the atomic, electronic, and topological properties of vdW heterostructures composed of monolayer Pt2AX3 and two-dimensional ferromagnetic insulators. We show that four kinds of vdW heterostructures exhibit valley-polarized quantum anomalous Hall phase, i.e., Pt2HgS3/NiBr2, Pt2HgSe3/CoBr2, Pt2HgSe3/NiBr2, and Pt2ZnS3/CoBr2, with a maximum valley splitting of 134.2 meV in Pt2HgSe3/NiBr2 and sizable global band gap of 58.8 meV in Pt2HgS3/NiBr2. Our findings demonstrate an ideal platform to implement applications on topological valleytronics.

Graphical abstract

Keywords

quantum anomalous Hall effect / valley polarization / topological valleytronics / transition metal dichalcogenides / jacutingaite family materials / first-principles calculations / van der Waals heterostructure

Cite this article

Download citation ▾
Xudong Zhu, Yuqian Chen, Zheng Liu, Yulei Han, Zhenhua Qiao. Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials. Front. Phys., 2023, 18(2): 23302 https://doi.org/10.1007/s11467-022-1228-4

References

[1]
A. K. Geim, K. S. Novoselov. The rise of graphene. Nat. Mater., 2007, 6(3): 183
CrossRef ADS Google scholar
[2]
K. Wang, T. Hou, Y. Ren, Z. Qiao. Enhanced robustness of zero-line modes in graphene via magnetic field. Front. Phys., 2019, 14(2): 23501
CrossRef ADS Google scholar
[3]
J. Zeng, R. Xue, T. Hou, Y. Han, Z. Qiao. Formation of topological domain walls and quantum transport properties of zero-line modes in commensurate bilayer graphene systems. Front. Phys., 2022, 17(6): 63503
CrossRef ADS Google scholar
[4]
H. Yang, J. Zeng, S. You, Y. Han, Z. Qiao. Equipartition of current in metallic armchair nanoribbon of graphene-based device. Front. Phys., 2022, 17(6): 63508
CrossRef ADS Google scholar
[5]
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 2012, 7(11): 699
CrossRef ADS Google scholar
[6]
G. Luo, Z. Z. Zhang, H. O. Li, X. X. Song, G. W. Deng, G. Cao, M. Xiao, G. P. Guo. Quantum dot behavior in transition metal dichalcogenides nanostructures. Front. Phys., 2017, 12(4): 128502
CrossRef ADS Google scholar
[7]
M. Cheng, J. Yang, X. Li, H. Li, R. Du, J. Shi, J. He. Improving the device performances of two-dimensional semiconducting transition metal dichalcogenides: Three strategies. Front. Phys., 2022, 17(6): 63601
CrossRef ADS Google scholar
[8]
D. J. Ibberson, L. Bourdet, J. C. Abadillo-Uriel, I. Ahmed, S. Barraud, M. J. Calderón, Y.M. Niquet, M. F. Gonzalez-Zalba. Electric-field tuning of the valley splitting in silicon corner dots. Appl. Phys. Lett., 2018, 113(5): 053104
CrossRef ADS Google scholar
[9]
M. Tahir, A. Manchon, K. Sabeeh, U. Schwingenschlögl. Quantum spin/valley Hall effect and topological insulator phase transitions in silicene. Appl. Phys. Lett., 2013, 102(16): 162412
CrossRef ADS Google scholar
[10]
C. J. Tabert, E. J. Nicol. AC/DC spin and valley Hall effects in silicene and germanene. Phys. Rev. B, 2013, 87(23): 235426
CrossRef ADS Google scholar
[11]
Y. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y. D. Kim, A. M. van der Zande, A. Rigosi, H. M. Hill, S. H. Kim, J. Hone, Z. Li, D. Smirnov, T. F. Heinz. Valley splitting and polarization by the Zeeman effect in monolayer MoSe2. Phys. Rev. Lett., 2014, 113(26): 266804
CrossRef ADS Google scholar
[12]
C. Zhao, T. Norden, P. Zhang, P. Zhao, Y. Cheng, F. Sun, J. P. Parry, P. Taheri, J. Wang, Y. Yang, T. Scrace, K. Kang, S. Yang, G. X. Miao, R. Sabirianov, G. Kioseoglou, W. Huang, A. Petrou, H. Zeng. Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field. Nat. Nanotechnol., 2017, 12(8): 757
CrossRef ADS Google scholar
[13]
S. Y. Li, Y. Su, Y. N. Ren, L. He. Valley polarization and inversion in strained graphene via pseudo-Landau levels, valley splitting of real Landau levels, and confined states. Phys. Rev. Lett., 2020, 124(10): 106802
CrossRef ADS Google scholar
[14]
W. Yao, D. Xiao, Q. Niu. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B, 2008, 77(23): 235406
CrossRef ADS Google scholar
[15]
K. L. Seyler, D. Zhong, B. Huang, X. Linpeng, N. P. Wilson, T. Taniguchi, K. Watanabe, W. Yao, D. Xiao, M. A. McGuire, K. M. C. Fu, X. Xu. Valley manipulation by optically tuning the magnetic proximity effect in WSe2/CrI3 heterostructures. Nano Lett., 2018, 18(6): 3823
CrossRef ADS Google scholar
[16]
M. S. Mrudul, Á. Jiménez-Galán, M. Ivanov, G. Dixit. Light-induced valleytronics in pristine graphene. Optica, 2021, 8(3): 422
CrossRef ADS Google scholar
[17]
J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, X. Xu. Valleytronics in 2D materials. Nat. Rev. Mater., 2016, 1(11): 16055
CrossRef ADS Google scholar
[18]
D. Xiao, G. B. Liu, W. Feng, X. Xu, W. Yao. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett., 2012, 108(19): 196802
CrossRef ADS Google scholar
[19]
K. Behnia. Polarized light boosts valleytronics. Nat. Nanotechnol., 2012, 7(8): 488
CrossRef ADS Google scholar
[20]
S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. Von Molnár, M. L. Roukes, A. Y. Chtchelkanova, D. M. Treger. Spintronics: A spin-based electronics vision for the future. Science, 2001, 294(5546): 1488
CrossRef ADS Google scholar
[21]
A. Rycerz, J. Tworzydło, C. Beenakker. Valley filter and valley valve in graphene. Nat. Phys., 2007, 3(3): 172
CrossRef ADS Google scholar
[22]
D. Pesin, A. H. MacDonald. Spintronics and pseudospintronics in graphene and topological insulators. Nat. Mater., 2012, 11(5): 409
CrossRef ADS Google scholar
[23]
P. San-Jose, E. Prada, E. McCann, H. Schomerus. Pseudospin valve in bilayer graphene: Towards graphene-based pseudospintronics. Phys. Rev. Lett., 2009, 102(24): 247204
CrossRef ADS Google scholar
[24]
Y. S. Ang, S. A. Yang, C. Zhang, Z. Ma, L. K. Ang. Valleytronics in merging Dirac cones: All-electric-controlled valley filter, valve, and universal reversible logic gate. Phys. Rev. B, 2017, 96(24): 245410
CrossRef ADS Google scholar
[25]
J. Li, R.X. Zhang, Z. Yin, J. Zhang, K. Watanabe, T. Taniguchi, C. Liu, J. Zhu. A valley valve and electron beam splitter. Science, 2018, 362(6419): 1149
CrossRef ADS Google scholar
[26]
F. D. M. Haldane. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett., 1988, 61(18): 2015
CrossRef ADS Google scholar
[27]
Y. Ren, Z. Qiao, Q. Niu. Topological phases in two-dimensional materials: A review. Rep. Prog. Phys., 2016, 79(6): 066501
CrossRef ADS Google scholar
[28]
C. Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L. Wang, Z. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Wang, L. Lu, X. C. Ma, Q. K. Xue. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science, 2013, 340(6129): 167
CrossRef ADS Google scholar
[29]
Y. Deng, Y. Yu, M. Z. Shi, Z. Guo, Z. Xu, J. Wang, X. H. Chen, Y. Zhang. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science, 2020, 367(6480): 895
CrossRef ADS Google scholar
[30]
Z. Qiao, S. A. Yang, W. Feng, W. K. Tse, J. Ding, Y. Yao, J. Wang, Q. Niu. Quantum anomalous Hall effect in graphene from Rashba and exchange effects. Phys. Rev. B, 2010, 82(16): 161414
CrossRef ADS Google scholar
[31]
Z. Qiao, W. Ren, H. Chen, L. Bellaiche, Z. Zhang, A. H. MacDonald, Q. Niu. Quantum anomalous Hall effect in graphene proximity coupled to an antiferromagnetic insulator. Phys. Rev. Lett., 2014, 112(11): 116404
CrossRef ADS Google scholar
[32]
R. Yu, W. Zhang, H. J. Zhang, S. C. Zhang, X. Dai, Z. Fang. Quantized anomalous Hall effect in magnetic topological insulators. Science, 2010, 329(5987): 61
CrossRef ADS Google scholar
[33]
J. Zhang, B. Zhao, T. Zhou, Y. Xue, C. Ma, Z. Yang. Strong magnetization and Chern insulators in compressed graphene/CrI3 van der Waals heterostructures. Phys. Rev. B, 2018, 97(8): 085401
CrossRef ADS Google scholar
[34]
J. Kim, X. Hong, C. Jin, S. F. Shi, C. Y. S. Chang, M. H. Chiu, L. J. Li, F. Wang. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science, 2014, 346(6214): 1205
CrossRef ADS Google scholar
[35]
A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, A. Imamoglu. Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nat. Phys., 2015, 11(2): 141
CrossRef ADS Google scholar
[36]
H. Rostami, R. Asgari. Valley Zeeman effect and spin-valley polarized conductance in monolayer MoS2 in a perpendicular magnetic field. Phys. Rev. B, 2015, 91(7): 075433
CrossRef ADS Google scholar
[37]
Y. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y. D. Kim, A. M. van der Zande, A. Rigosi, H. M. Hill, S. H. Kim, J. Hone, Z. Li, D. Smirnov, T. F. Heinz. Valley splitting and polarization by the Zeeman effect in monolayer MoSe2. Phys. Rev. Lett., 2014, 113(26): 266804
CrossRef ADS Google scholar
[38]
Z. Liu, Y. Han, Y. Ren, Q. Niu, Z. Qiao. .Van der Waals heterostructure Pt2HgSe3/CrI3 for topological valleytronics. Phys. Rev. B, 2021, 104(12): L121403
CrossRef ADS Google scholar
[39]
M. Bora, S. K. Behera, P. Samal, P. Deb. Magnetic proximity induced valley-contrasting quantum anomalous Hall effect in a graphene-CrBr3 van der Waals heterostructure. Phys. Rev. B, 2022, 105(23): 235422
CrossRef ADS Google scholar
[40]
H. Zhang, W. Yang, Y. Ning, X. Xu. Abundant valley-polarized states in two-dimensional ferromagnetic van der Waals heterostructures. Phys. Rev. B, 2020, 101(20): 205404
CrossRef ADS Google scholar
[41]
M. Vila, J. H. Garcia, S. Roche. Valley-polarized quantum anomalous Hall phase in bilayer graphene with layer-dependent proximity effects. Phys. Rev. B, 2021, 104(16): L161113
CrossRef ADS Google scholar
[42]
M. U. Rehman, Z. Qiao, J. Wang. Valley-symmetry-broken magnetic topological responses in (Pt/Pd)2HgSe3/CrGeTe3 and Pd2HgSe3/CrI3 through interfacial coupling. Phys. Rev. B, 2022, 105(16): 165417
CrossRef ADS Google scholar
[43]
M. U. Rehman, M. Kiani, J. Wang. Jacutingaite family: An efficient platform for coexistence of spin valley Hall effects. valley spin-valve realization.and layer spin crossover. Phys. Rev. B, 2022, 105(19): 195439
CrossRef ADS Google scholar
[44]
H. Pan, Z. Li, C. C. Liu, G. Zhu, Z. Qiao, Y. Yao. Valley-polarized quantum anomalous Hall effect in silicene. Phys. Rev. Lett., 2014, 112(10): 106802
CrossRef ADS Google scholar
[45]
J. Zhou, Q. Sun, P. Jena. Valley-polarized quantum anomalous Hall effect in ferrimagnetic honeycomb lattices. Phys. Rev. Lett., 2017, 119(4): 046403
CrossRef ADS Google scholar
[46]
Z.LiuY. RenY.HanQ.NiuZ.Qiao, Second-order topological insulator in van der Waals heterostructures of CoBr2/Pt2HgSe3/CoBr2, arXiv: 2202.00221 (2022)
[47]
F. Zhan, Z. Ning, L.Y. Gan, B. Zheng, J. Fan, R. Wang. Floquet valley-polarized quantum anomalous Hall state in nonmagnetic heterobilayers. Phys. Rev. B, 2022, 105(8): L081115
CrossRef ADS Google scholar
[48]
I. Cucchi, A. Marrazzo, E. Cappelli, S. Ricco, F. Y. Bruno, S. Lisi, M. Hoesch, T. K. Kim, C. Cacho, C. Besnard, E. Giannini, N. Marzari, M. Gibertini, F. Baumberger, A. Tamai. Bulk and surface electronic structure of the dual-topology semimetal Pt2HgSe3. Phys. Rev. Lett., 2020, 124(10): 106402
CrossRef ADS Google scholar
[49]
K. Kandrai, P. Vancsó, G. Kukucska, J. Koltai, G. Baranka, Á. Hoffmann, Á. Pekker, K. Kamarás, Z. E. Horváth, A. Vymazalová, L. Tapasztó, P. Nemes-Incze. Signature of large-gap quantum spin Hall state in the layered mineral jacutingaite. Nano Lett., 2020, 20(7): 5207
CrossRef ADS Google scholar
[50]
A. Marrazzo, M. Gibertini, D. Campi, N. Mounet, N. Marzari. Prediction of a large-gap and switchable Kane−Mele quantum spin Hall insulator. Phys. Rev. Lett., 2018, 120(11): 117701
CrossRef ADS Google scholar
[51]
A. Marrazzo, M. Gibertini, D. Campi, N. Mounet, N. Marzari. Relative abundance of Z2 topological order in exfoliable two-dimensional insulators. Nano Lett., 2019, 19(12): 8431
CrossRef ADS Google scholar
[52]
C. L. Kane, E. J. Mele. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett., 2005, 95(14): 146802
CrossRef ADS Google scholar
[53]
F. C. de Lima, R. H. Miwa, A. Fazzio. Jacutingaite-family: A class of topological materials. Phys. Rev. B, 2020, 102(23): 235153
CrossRef ADS Google scholar
[54]
C. Ma, H. Forster, G. Grundmann. Tilkerodeite, Pd2HgSe3, a new platinum-group mineral from Tilkerode, Harz Mountains, Germany. Crystals (Basel), 2020, 10(8): 687
CrossRef ADS Google scholar
[55]
A. Marrazzo, N. Marzari, M. Gibertini. Emergent dual topology in the three-dimensional Kane−Mele Pt2HgSe3. Phys. Rev. Res., 2020, 2(1): 012063
CrossRef ADS Google scholar
[56]
M. A. McGuire. Crystal and magnetic structures in layered, transition metal dihalides and trihalides. Crystals (Basel), 2017, 7(5): 121
CrossRef ADS Google scholar
[57]
V. V. Kulish, W. Huang. Single-layer metal halides MX2 (X = Cl, Br, I): Stability and tunable magnetism from first principles and Monte Carlo simulations. J. Mater. Chem. C, 2017, 5(34): 8734
CrossRef ADS Google scholar
[58]
B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, X. Xu. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546(7657): 270
CrossRef ADS Google scholar
[59]
M. M. Otrokov, I. P. Rusinov, M. Blanco-Rey, M. Hoffmann, A. Yu. Vyazovskaya, S. V. Eremeev, A. Ernst, P. M. Echenique, A. Arnau, E. V. Chulkov. Unique thickness-dependent properties of the van der waals interlayer antiferromagnet MnBi2Te4 films. Phys. Rev. Lett., 2019, 122(10): 107202
CrossRef ADS Google scholar
[60]
S. Tian, J. F. Zhang, C. Li, T. Ying, S. Li, X. Zhang, K. Liu, H. Lei. Ferromagnetic van der Waals crystal VI3. J. Am. Chem. Soc., 2019, 141(13): 5326
CrossRef ADS Google scholar
[61]
H. Y. Lv, W. J. Lu, X. Luo, X. B. Zhu, Y. P. Sun. Strain- and carrier-tunable magnetic properties of a two-dimensional intrinsically ferromagnetic semiconductor: CoBr2 monolayer. Phys. Rev. B, 2019, 99(13): 134416
CrossRef ADS Google scholar
[62]
A. S. Botana, M. R. Norman. Electronic structure and magnetism of transition metal dihalides: Bulk to monolayer. Phys. Rev. Mater., 2019, 3(4): 044001
CrossRef ADS Google scholar
[63]
M. M. Otrokov, I. P. Rusinov, M. Blanco-Rey, M. Hoffmann, A. Yu. Vyazovskaya, S. V. Eremeev, A. Ernst, P. M. Echenique, A. Arnau, E. V. Chulkov. Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 films. Phys. Rev. Lett., 2019, 122(10): 107202
CrossRef ADS Google scholar
[64]
X. Li, Z. Zhang, H. Zhang. High throughput study on magnetic ground states with Hubbard U corrections in transition metal dihalide monolayers. Nanoscale Adv., 2020, 2(1): 495
CrossRef ADS Google scholar
[65]
M. Lu, Q. Yao, C. Xiao, C. Huang, E. Kan. Mechanical, electronic, and magnetic properties of NiX2 (X = Cl, Br, I) layers. ACS Omega, 2019, 4(3): 5714
CrossRef ADS Google scholar
[66]
D. Zhong, K. L. Seyler, X. Linpeng, R. Cheng, N. Sivadas, B. Huang, E. Schmidgall, T. Taniguchi, K. Watanabe, M. A. McGuire, W. Yao, D. Xiao, K. M. C. Fu, X. Xu. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv., 2017, 3(5): e1603113
CrossRef ADS Google scholar
[67]
L. Webster, J. A. Yan. Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3. Phys. Rev. B, 2018, 98(14): 144411
CrossRef ADS Google scholar
[68]
C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, X. Zhang. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546(7657): 265
CrossRef ADS Google scholar
[69]
S. Jiang, J. Shan, K. F. Mak. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater., 2018, 17(5): 406
CrossRef ADS Google scholar
[70]
K. F. Mak, J. Shan, D. C. Ralph. Probing and controlling magnetic states in 2D layered magnetic materials. Nat. Rev. Phys., 2019, 1(11): 646
CrossRef ADS Google scholar
[71]
W. Zhuo, B. Lei, S. Wu, F. Yu, C. Zhu, J. Cui, Z. Sun, D. Ma, M. Shi, H. Wang, W. Wang, T. Wu, J. Ying, S. Wu, Z. Wang, X. Chen. Manipulating ferromagnetism in few‐layered Cr2Ge2Te6. Adv. Mater., 2021, 33(31): 2008586
CrossRef ADS Google scholar
[72]
See Supplemental Materials for more information about calculation details, ferromagnetic substrates, vdW heterostructue configurations, orbital projections, molecular dynamic simulations, more band structures, manipulated band gaps, charge density differences and the planar-averaged electrostatic potentials of other well-matched systems.
[73]
P. E. Blöchl. Projector augmented-wave method. Phys. Rev. B, 1994, 50(24): 17953
CrossRef ADS Google scholar
[74]
G. Kresse, J. Furthmuller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169
CrossRef ADS Google scholar
[75]
G. Kresse, D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59(3): 1758
CrossRef ADS Google scholar
[76]
J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais. and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B, 1992, 46(11): 6671
CrossRef ADS Google scholar
[77]
S. Grimme, J. Antony, S. Ehrlich, H. Krieg. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 2010, 132(15): 154104
CrossRef ADS Google scholar
[78]
H. J. Kulik, M. Cococcioni, D. A. Scherlis, N. Marzari. Density functional theory in transition-metal chemistry: A self-consistent Hubbard U approach. Phys. Rev. Lett., 2006, 97(10): 103001
CrossRef ADS Google scholar
[79]
A. A. Mostofi, J. R. Yates, Y. S. Lee, I. Souza, D. Vanderbilt, N. Marzari. Wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun., 2008, 178(9): 685
CrossRef ADS Google scholar
[80]
G. Pizzi, V. Vitale, R. Arita, S. Blugel, F. Freimuth, G. Geranton, M. Gibertini, D. Gresch, C. Johnson, T. Koretsune, J. Ibañez-Azpiroz, H. Lee, J.M. Lihm, D. Marchand, A. Marrazzo, Y. Mokrousov, J. I. Mustafa, Y. Nohara, Y. Nomura, L. Paulatto, S. Poncé, T. Ponweiser, J. Qiao, F. Thöle, S. S. Tsirkin, M. Wierzbowska, N. Marzari, D. Vanderbilt, I. Souza, A. A. Mostofi, J. R. Yates. Wannier90 as a community code: new features and applications. J. Phys.: Condens. Matter, 2020, 32(16): 165902
CrossRef ADS Google scholar
[81]
Q. S. Wu, S. N. Zhang, H. F. Song, M. Troyer, A. A. Soluyanov. WannierTools: An open-source software package for novel topological materials. Comput. Phys. Commun., 2018, 224: 405
CrossRef ADS Google scholar
[82]
V. Wang, N. Xu, J. C. Liu, G. Tang, W. T. Geng. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun., 2021, 267: 108033
CrossRef ADS Google scholar
[83]
U. Herath, P. Tavadze, X. He, E. Bousquet, S. Singh, F. Munoz, A. H. Romero. PyProcar: A Python library for electronic structure pre/post-processing. Comput. Phys. Commun. 251, 1070, 80(2020):
CrossRef ADS Google scholar
[84]
K. Momma, F. Izumi. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst., 2011, 44(6): 1272
CrossRef ADS Google scholar
[85]
M. H. Chiu, C. Zhang, H. W. Shiu, C. P. Chuu, C. H. Chen, C. Y. S. Chang, C. H. Chen, M. Y. Chou, C. K. Shih, L. J. Li. Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nat. Commun., 2015, 6(1): 7666
CrossRef ADS Google scholar
[86]
V. O. Özçelik, J. G. Azadani, C. Yang, S. J. Koester, T. Low. Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Phys. Rev. B, 2016, 94(3): 035125
CrossRef ADS Google scholar
[87]
C. Xia, J. Du, M. Li, X. Li, X. Zhao, T. Wang, J. Li. Effects of electric field on the electronic structures of broken-gap phosphorene/SnX2 (X = S, Se) van der Waals heterojunctions. Phys. Rev. Appl., 2018, 10(5): 054064
CrossRef ADS Google scholar
[88]
C. Lei, Y. Ma, X. Xu, T. Zhang, B. Huang, Y. Dai. Broken-gap type-III band alignment in WTe2/HfS2 van der Waals heterostructure. J. Phys. Chem. C, 2019, 123(37): 23089
CrossRef ADS Google scholar
[89]
X. R. Hu, J. M. Zheng, Z. Y. Ren. Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation. Front. Phys., 2018, 13(2): 137302
CrossRef ADS Google scholar
[90]
Z. Z. Yan, Z. H. Jiang, J. P. Lu, Z. H. Ni. Interfacial charge transfer in WS2 monolayer/CsPbBr3 microplate heterostructure. Front. Phys., 2018, 13(4): 138115
CrossRef ADS Google scholar
[91]
Y. Y. Wang, F. P. Li, W. Wei, B. B. Huang, Y. Dai. Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides. Front. Phys., 2021, 16(1): 13501
CrossRef ADS Google scholar
[92]
C. Zhao, T. Norden, P. Zhang, P. Zhao, Y. Cheng, F. Sun, J. P. Parry, P. Taheri, J. Wang, Y. Yang, T. Scrace, K. Kang, S. Yang, G. Miao, R. Sabirianov, G. Kioseoglou, W. Huang, A. Petrou, H. Zeng. Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field. Nat. Nanotechnol., 2017, 12(8): 757
CrossRef ADS Google scholar
[93]
T. Norden, C. Zhao, P. Zhang, R. Sabirianov, A. Petrou, H. Zeng. Giant valley splitting in monolayer WS2 by magnetic proximity effect. Nat. Commun., 2019, 10(1): 4163
CrossRef ADS Google scholar
[94]
X. Deng, H. Yang, S. Qi, X. Xu, Z. Qiao. Quantum anomalous Hall effect and giant Rashba spin−orbit splitting in graphene system co-doped with boron and 5d transition-metal atoms. Front. Phys., 2018, 13(5): 137308
CrossRef ADS Google scholar
[95]
Y. Han, S. Sun, S. Qi, X. Xu, Z. Qiao. Interlayer ferromagnetism and high-temperature quantum anomalous Hall effect in p-doped MnBi2Te4 multilayers. Phys. Rev. B, 2021, 103(24): 245403
CrossRef ADS Google scholar
[96]
S. Qi, R. Gao, M. Chang, Y. Han, Z. Qiao. Pursuing the high-temperature quantum anomalous Hall effect in MnBi2Te4/Sb2Te3 heterostructures. Phys. Rev. B, 2020, 101(1): 014423
CrossRef ADS Google scholar
[97]
S. Qi, Z. Qiao, X. Deng, E. D. Cubuk, H. Chen, W. Zhu, E. Kaxiras, S. B. Zhang, X. Xu, Z. Zhang. High-temperature quantum anomalous Hall effect in n−p codoped topological insulators. Phys. Rev. Lett., 2016, 117(5): 056804
CrossRef ADS Google scholar
[98]
Z. Li, Y. Han, Z. Qiao. Chern number tunable quantum anomalous Hall effect in monolayer transitional metal oxides via manipulating magnetization orientation. Phys. Rev. Lett., 2022, 129(3): 036801
CrossRef ADS Google scholar
[99]
Y.HanZ. YanZ.LiX.XuZ.Zhang Q.NiuZ. Qiao, Large Rashba spin−orbit coupling and high-temperature quantum anomalous Hall effect in Re-intercalated graphene/CrI3 heterostructure, arXiv: 2203.16429 (2022)

Electronic supplementary material

Supplementary materials are available in the online version of this article at https://doi.org/10.1007/s11467-022-1228-4 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-022-1228-4 and are accessible for authorized users.

Acknowledgements

We are grateful to Prof. Yang Gao for helpful advice and discussions. This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 11974327 and 12004369), the Fundamental Research Funds for the Central Universities (Nos. WK3510000010 and WK2030020032), and Anhui Initiative in Quantum Information Technologies (Grant No.AHY170000). We also thank for the high-performance supercomputing services provided by AM-HPC and the Supercomputing Center of University of Science and Technology of China.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(5871 KB)

Accesses

Citations

Detail

Sections
Recommended

/