Lee–Yang zeros in the Rydberg atoms
Chengshu Li, Fan Yang
Lee–Yang zeros in the Rydberg atoms
Lee–Yang (LY) zeros play a fundamental role in the formulation of statistical physics in terms of (grand) partition functions, and assume theoretical significance for the phenomenon of phase transitions. In this paper, motivated by recent progress in cold Rydberg atom experiments, we explore the LY zeros in classical Rydberg blockade models. We find that the distribution of zeros of partition functions for these models in one dimension (1d) can be obtained analytically. We prove that all the LY zeros are real and negative for such models with arbitrary blockade radii. Therefore, no phase transitions happen in 1d classical Rydberg chains. We investigate how the zeros redistribute as one interpolates between different blockade radii. We also discuss possible experimental measurements of these zeros.
Lee–Yang zeros / Rydberg atom / statistical mechanics
[1] |
C. N. Yang, T. D. Lee. Statistical theory of equations of state and phase transitions (I): Theory of condensation. Phys. Rev., 1952, 87(3): 404
CrossRef
ADS
Google scholar
|
[2] |
T. D. Lee, C. N. Yang. Statistical theory of equations of state and phase transitions (II): Lattice gas and Ising model. Phys. Rev., 1952, 87(3): 410
CrossRef
ADS
Google scholar
|
[3] |
T. Asano. Generalization of the Lee–Yang theorem. Prog. Theor. Phys., 1968, 40(6): 1328
CrossRef
ADS
Google scholar
|
[4] |
M. Suzuki. Theorems on the Ising model with general spin and phase transition. J. Math. Phys., 1968, 9(12): 2064
CrossRef
ADS
Google scholar
|
[5] |
M. Suzuki. Theorems on extended Ising model with applications to dilute ferromagnetism. Prog. Theor. Phys., 1968, 40(6): 1246
CrossRef
ADS
Google scholar
|
[6] |
R. B. Griffiths. Rigorous results for Ising ferromagnets of arbitrary spin. J. Math. Phys., 1969, 10(9): 1559
CrossRef
ADS
Google scholar
|
[7] |
T. Asano. Theorems on the partition functions of the Heisenberg ferromagnets. J. Phys. Soc. Jpn., 1970, 29(2): 350
CrossRef
ADS
Google scholar
|
[8] |
D. Ruelle. Extension of the Lee–Yang circle theorem. Phys. Rev. Lett., 1971, 26(6): 303
CrossRef
ADS
Google scholar
|
[9] |
M. Suzuki, M. E. Fisher. Zeros of the partition function for the Heisenberg, ferroelectric, and general Ising models. J. Math. Phys., 1971, 12(2): 235
CrossRef
ADS
Google scholar
|
[10] |
D. A. Kurtze, M. E. Fisher. The Yang–Lee edge singularity in spherical models. J. Stat. Phys., 1978, 19(3): 205
CrossRef
ADS
Google scholar
|
[11] |
E. H. Lieb, D. Ruelle. A property of zeros of the partition function for Ising spin systems. J. Math. Phys., 1972, 13: 781
CrossRef
ADS
Google scholar
|
[12] |
O. J. Heilmann, E. H. Lieb. Theory of monomerdimer systems. Commun. Math. Phys., 1972, 25: 190
CrossRef
ADS
Google scholar
|
[13] |
R. L. Dobrushin, J. Kolafa, S. B. Shlosman. Phase diagram of the two-dimensional Ising antiferromagnet (computer-assisted proof). Commun. Math. Phys., 1985, 102(1): 89
CrossRef
ADS
Google scholar
|
[14] |
B. Beauzamy. On complex Lee and Yang polynomials. Commun. Math. Phys., 1996, 182(1): 177
CrossRef
ADS
Google scholar
|
[15] |
S. Y. Kim. Yang–Lee zeros of the antiferromagnetic Ising model. Phys. Rev. Lett., 2004, 93(13): 130604
CrossRef
ADS
Google scholar
|
[16] |
C. O. Hwang, S. Y. Kim. Yang–Lee zeros of triangular Ising antiferromagnets. Physica A, 2010, 389(24): 5650
CrossRef
ADS
Google scholar
|
[17] |
J. L. Lebowitz, D. Ruelle, E. R. Speer. Location of the Lee–Yang zeros and absence of phase transitions in some Ising spin systems. J. Math. Phys., 2012, 53(9): 095211
CrossRef
ADS
Google scholar
|
[18] |
J. L. Lebowitz, J. A. Scaramazza. A note on Lee–Yang zeros in the negative half-plane. J. Phys. : Condens. Matter, 2016, 28(41): 414004
CrossRef
ADS
Google scholar
|
[19] |
M. Heyl, A. Polkovnikov, S. Kehrein. Dynamical quantum phase transitions in the transverse-field Ising model. Phys. Rev. Lett., 2013, 110(13): 135704
CrossRef
ADS
Google scholar
|
[20] |
K. Brandner, V. F. Maisi, J. P. Pekola, J. P. Garrahan, C. Flindt. Experimental determination of dynamical Lee–Yang zeros. Phys. Rev. Lett., 2017, 118(18): 180601
CrossRef
ADS
Google scholar
|
[21] |
A. Deger, C. Flindt. Determination of universal critical exponents using Lee–Yang theory. Phys. Rev. Res., 2019, 1(2): 023004
CrossRef
ADS
Google scholar
|
[22] |
A. Deger, F. Brange, C. Flindt. Lee–Yang theory, high cumulants, and large-deviation statistics of the magnetization in the Ising model. Phys. Rev. B, 2020, 102(17): 174418
CrossRef
ADS
Google scholar
|
[23] |
T. Kist, J. L. Lado, C. Flindt. Lee–Yang theory of criticality in interacting quantum many-body systems. Phys. Rev. Res., 2021, 3(3): 033206
CrossRef
ADS
Google scholar
|
[24] |
D. C. Kurtz. A sufficient condition for all the roots of a polynomial to be real. Am. Math. Mon., 1992, 99(3): 259
CrossRef
ADS
Google scholar
|
[25] |
J. Borcea, P. Brändén. The Lee–Yang and Polya–Schur programs (I): Linear operators preserving stability. Invent. Math., 2009, 177(3): 541
CrossRef
ADS
Google scholar
|
[26] |
J. Borcea, P. Brändén. The Lee–Yang and Polya–Schur programs (II): Theory of stable polynomials and applications. Commun. Pure Appl. Math., 2009, 62(12): 1595
CrossRef
ADS
Google scholar
|
[27] |
D. Ruelle. Characterization of Lee–Yang polynomials. Ann. Math., 2010, 171(1): 589
CrossRef
ADS
Google scholar
|
[28] |
B. B. Wei, R. B. Liu. Lee–Yang zeros and critical times in decoherence of a probe spin coupled to a bath. Phys. Rev. Lett., 2012, 109(18): 185701
CrossRef
ADS
Google scholar
|
[29] |
X. Peng, H. Zhou, B. B. Wei, J. Cui, J. Du, R. B. Liu. Experimental observation of Lee–Yang zeros. Phys. Rev. Lett., 2015, 114(1): 010601
CrossRef
ADS
Google scholar
|
[30] |
H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletić, M. D. Lukin. Probing many body dynamics on a 51-atom quantum simulator. Nature, 2017, 551(7682): 579
CrossRef
ADS
Google scholar
|
[31] |
A. Keesling, A. Omran, H. Levine, H. Bernien, H. Pichler, S. Choi, R. Samajdar, S. Schwartz, P. Silvi, S. Sachdev, P. Zoller, M. Endres, M. Greiner, V. Vuletić, M. D. Lukin. Quantum Kibble–Zurek mechanism and critical dynamics on a programmable Rydberg simulator. Nature, 2019, 568(7751): 207
CrossRef
ADS
Google scholar
|
[32] |
K. J. Satzinger, Y. J. Liu, A. Smith, C. Knapp, M. Newman.
CrossRef
ADS
Google scholar
|
[33] |
S. Ebadi, T. T. Wang, H. Levine, A. Keesling, G. Semeghini, A. Omran, D. Bluvstein, R. Samajdar, H. Pichler, W. W. Ho, S. Choi, S. Sachdev, M. Greiner, V. Vuletić, M. D. Lukin. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature, 2021, 595(7866): 227
CrossRef
ADS
Google scholar
|
[34] |
R. Samajdar, W. W. Ho, H. Pichler, M. D. Lukin, S. Sachdev. Complex density wave orders and quantum phase transitions in a model of square-lattice Rydberg atom arrays. Phys. Rev. Lett., 2020, 124(10): 103601
CrossRef
ADS
Google scholar
|
[35] |
M. Kalinowski, R. Samajdar, R. G. Melko, M. D. Lukin, S. Sachdev, S. Choi. Bulk and boundary quantum phase transitions in a square Rydberg atom array. Phys. Rev. B, 2022, 105(17): 174417
CrossRef
ADS
Google scholar
|
[36] |
R. Verresen, M. D. Lukin, A. Vishwanath. Prediction of toric code topological order from Rydberg blockade. Phys. Rev. X, 2021, 11(3): 031005
CrossRef
ADS
Google scholar
|
[37] |
G. Semeghini, H. Levine, A. Keesling, S. Ebadi, T. T. Wang, D. Bluvstein, R. Verresen, H. Pichler, M. Kalinowski, R. Samajdar, A. Omran, S. Sachdev, A. Vishwanath, M. Greiner, V. Vuletić, M. D. Lukin. Probing topological spin liquids on a programmable quantum simulator. Science, 2021, 374(6572): 1242
CrossRef
ADS
Google scholar
|
[38] |
R. Samajdar, W. W. Ho, H. Pichler, M. D. Lukin, S. Sachdev. Quantum phases of Rydberg atoms on a kagome lattice. Proc. Natl. Acad. Sci. USA, 2021, 118(4): e2015785118
CrossRef
ADS
Google scholar
|
[39] |
Y.ChengC. LiH.Zhai, Variational approach to quantum spin liquid in a Rydberg atom simulator, arXiv: 2112.13688 (2021)
|
[40] |
G. Giudici, M. D. Lukin, H. Pichler. Dynamical preparation of quantum spin liquids in Rydberg atom arrays. Phys. Rev. Lett., 2022, 129(9): 090401
CrossRef
ADS
Google scholar
|
[41] |
P. Fendley, K. Sengupta, S. Sachdev. Competing density-wave orders in a one-dimensional hard-boson model. Phys. Rev. B, 2004, 69(7): 075106
CrossRef
ADS
Google scholar
|
[42] |
R. Samajdar, S. Choi, H. Pichler, M. D. Lukin, S. Sachdev. Numerical study of the chiral Z3 quantum phase transition in one spatial dimension. Phys. Rev. A, 2018, 98(2): 023614
CrossRef
ADS
Google scholar
|
[43] |
G. Giudici, A. Angelone, G. Magnifico, Z. Zeng, G. Giudice, T. Mendes-Santos, M. Dalmonte. Diagnosing Potts criticality and two-stage melting in one dimensional hard-core Boson models. Phys. Rev. B, 2019, 99(9): 094434
CrossRef
ADS
Google scholar
|
[44] |
N. Chepiga, F. Mila. Floating phase versus chiral transition in a 1D hard-Boson model. Phys. Rev. Lett., 2019, 122(1): 017205
CrossRef
ADS
Google scholar
|
[45] |
M.RaderA. M. Läuchli, Floating phases in one-dimensional Rydberg Ising chains, arXiv: 1908.02068 (2019)
|
[46] |
I.A. MaceiraN.ChepigaF.Mila, Conformal and chiral phase transitions in Rydberg chains, arXiv: 2203.01163 (2022)
|
[47] |
C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, Z. Papić. Weak ergodicity breaking from quantum many-body scars. Nat. Phys., 2018, 14(7): 745
CrossRef
ADS
Google scholar
|
[48] |
M. Serbyn, D. A. Abanin, Z. Papić. Quantum many body scars and weak breaking of ergodicity. Nat. Phys., 2021, 17(6): 675
CrossRef
ADS
Google scholar
|
[49] |
F. C. Alcaraz, R. A. Pimenta. Free fermionic and parafermionic quantum spin chains with multispin interactions. Phys. Rev. B, 2020, 102: 121101(R)
CrossRef
ADS
Google scholar
|
[50] |
F. C. Alcaraz, R. A. Pimenta. Integrable quantum spin chains with free fermionic and parafermionic spectrum. Phys. Rev. B, 2020, 102(23): 235170
CrossRef
ADS
Google scholar
|
[51] |
P. Fendley. Free fermions in disguise. J. Phys. A Math. Theor., 2019, 52(33): 335002
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |