Electronic properties and tunability in graphene/3D-InP mixed-dimensional van der Waals heterostructure
Qingyun Zhou, Yusheng Hou, Tianshu Lai
Electronic properties and tunability in graphene/3D-InP mixed-dimensional van der Waals heterostructure
InP solar cell is promising for space application due to its strong space radiation resistance and high power conversion efficient (PCE). Graphene/InP heterostructure solar cell is expected to have a higher PCE because strong near-infrared light can also be absorbed and converted additionally by graphene in this heterostructure. However, a low PCE was reported experimentally for Graphene/InP heterostructures. In this paper, electronic properties of graphene/InP heterostructures are calculated using density functional theory to understand the origin of the low PCE and propose possible improving ways. Our calculation results reveal that graphene contact with InP form a p-type Schottky heterostructure with a low Schottky barrier height (SBH). It is the low SBH that leads to the low PCE of graphene/InP heterostructure solar cells. A new heterostructure, graphene/insulating layer/InP solar cells, is proposed to raise SBH and PCE. Moreover, we also find that the opened bandgap of graphene and SBH in graphene/InP heterostructures can be tuned by exerting an electric field, which is useful for photodetector of graphene/InP heterostructures.
graphene / InP(111) / heterostructure / density functional theory
[1] |
A. K. Geim . Graphene: Status and prospects. Science, 2009, 324(5934): 1530
CrossRef
ADS
Google scholar
|
[2] |
K. Chen , M. N. Yogeesh , Y. Huang , S. Q. Zhang , F. He , X. H. Meng , S. Y. Fang , N. Sheehan , T. H. Tao , S. R. Bank , J. F. Lin , D. Akinwande , P. Sutter , T. S. Lai , Y. G. Wang . Non-destructive measurement of photoexcited carrier transport in graphene with ultrafast grating imaging technique. Carbon, 2016, 107: 233
CrossRef
ADS
Google scholar
|
[3] |
S. Bae , H. Kim , Y. Lee , X. Xu , J. S. Park , Y. Zheng , J. Balakrishnan , T. Lei , H. Ri Kim , Y. I. Song , Y. J. Kim , K. S. Kim , B. Özyilmaz , J. H. Ahn , B. H. Hong , S. Iijima . Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol., 2010, 5(8): 574
CrossRef
ADS
Google scholar
|
[4] |
A. A. Balandin , S. Ghosh , W. Z. Bao , I. Calizo , D. Teweldebrhan , F. Miao , C. N. Lau . Superior thermal conductivity of single-layer graphene. Nano Lett., 2008, 8(3): 902
CrossRef
ADS
Google scholar
|
[5] |
A. K. Geim , K. S. Novoselov . The rise of graphene. Nat. Mater., 2007, 6(3): 183
CrossRef
ADS
Google scholar
|
[6] |
G. Gui , J. Li , J. Zhong . Band structure engineering of graphene by strain: First-principles calculations. Phys. Rev. B, 2008, 78(7): 075435
CrossRef
ADS
Google scholar
|
[7] |
J. B. Oostinga , H. B. Heersche , X. L. Liu , A. F. Morpurgo , L. M. K. Vandersypen . Gate-induced insulating state in bilayer graphene devices. Nat. Mater., 2008, 7(2): 151
CrossRef
ADS
Google scholar
|
[8] |
D. B. Zhang , Y. Hu , H. X. Zhong , S. J. Yuan , C. Liu . Effects of out-of-plane strains and electric fields on the electronic structures of graphene/MTe (M = Al, B) heterostructures. Nanoscale, 2019, 11(29): 13800
CrossRef
ADS
Google scholar
|
[9] |
S. Singh , C. Espejo , A. H. Romero . Structural, electronic, vibrational, and elastic properties of graphene/MoS2 bilayer heterostructures. Phys. Rev. B, 2018, 98(15): 155309
CrossRef
ADS
Google scholar
|
[10] |
K. Zollner , M. Gmitra , J. Fabian . Heterostructures of graphene and hBN: Electronic, spin−orbit, and spin relaxation properties from first principles. Phys. Rev. B, 2019, 99(12): 125151
CrossRef
ADS
Google scholar
|
[11] |
M. Gmitra , D. Kochan , P. Högl , J. Fabian . Trivial and inverted Dirac bands and the emergence of quantum spin Hall states in graphene on transition-metal dichalcogenides. Phys. Rev. B, 2016, 93(15): 155104
CrossRef
ADS
Google scholar
|
[12] |
X.-R. Hu , J.-M. Zheng , Z.-Y. Ren . Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation. Front. Phys., 2018, 13: 137302
CrossRef
ADS
Google scholar
|
[13] |
L. Zhang , L. Fan , Z. Li , E. Shi , X. M. Li , H. B. Li , C. Y. Ji , Y. Jia , J. Q. Wei , K. L. Wang , H. W. Zhu , D. H. Wu , A. Y. Cao . Graphene-CdSe nanobelt solar cells with tunable configurations. Nano Res., 2011, 4(9): 891
CrossRef
ADS
Google scholar
|
[14] |
W. J. Jie , F. G. Zheng , J. H. Hao . Graphene/gallium arsenide-based Schottky junction solar cells. Appl. Phys. Lett., 2013, 103(23): 233111
CrossRef
ADS
Google scholar
|
[15] |
C. Y. Lan , C. Li , S. Wang , T. Y. He , Z. F. Zhou , D. P. Wei , H. Y. Guo , H. Yang , Y. Liu . Highly responsive and broadband photodetectors based on WS2−graphene van der Waals epitaxial heterostructures. J. Mater. Chem. C, 2017, 5(6): 1494
CrossRef
ADS
Google scholar
|
[16] |
D. Pierucci , H. Henck , J. Avila , A. Balan , C. H. Naylor , G. Patriarche , Y. J. Dappe , M. G. Silly , F. Sirotti , A. T. C. Johnson , M. C. Asensio , A. Ouerghi . Band alignment and minigaps in monolayer MoS2−graphene van der Waals heterostructures. Nano Lett., 2016, 16(7): 4054
CrossRef
ADS
Google scholar
|
[17] |
J. A. Miwa , M. Dendzik , S. S. Gronborg , M. Bianchi , J. V. Lauritsen , P. Hofmann , S. Ulstrup . Van der Waals epitaxy of two-dimensional MoS2-graphene heterostructures in ultrahigh vacuum. ACS Nano, 2015, 9(6): 6502
CrossRef
ADS
Google scholar
|
[18] |
H. Büch , A. Rossi , S. Forti , D. Convertino , V. Tozzini , C. Coletti . Superlubricity of epitaxial monolayer WS2 on graphene. Nano Res., 2018, 11(11): 5946
CrossRef
ADS
Google scholar
|
[19] |
M. L. Sun , J. P. Chou , Q. Q. Ren , Y. M. Zhao , J. Yu , W. C. Tang . Tunable Schottky barrier in van der Waals heterostructures of graphene and g-GaN. Appl. Phys. Lett., 2017, 110(17): 173105
CrossRef
ADS
Google scholar
|
[20] |
S. Tongay , M. Lemaitre , T. Schumann , K. Berke , B. R. Appleton , B. Gila , A. F. Hebard . Graphene/GaN Schottky diodes: Stability at elevated temperatures. Appl. Phys. Lett., 2011, 99(10): 102102
CrossRef
ADS
Google scholar
|
[21] |
D. P. Andrade , R. H. Miwa , G. P. Srivastava . Graphene and graphene nanoribbons on InAs(110) and Au/InAs(110) surfaces: An ab initio study. Phys. Rev. B, 2011, 84(16): 165322
CrossRef
ADS
Google scholar
|
[22] |
Y. J. Hong , J. W. Yang , W. H. Lee , R. S. Ruoff , K. S. Kim , T. Fukui . Van der Waals epitaxial double heterostructure: InAs/single-layer graphene/InAs. Adv. Mater., 2013, 25(47): 6847
CrossRef
ADS
Google scholar
|
[23] |
I. Vurgaftman , J. R. Meyer , L. R. Ram-Mohan . Band parameters for III−V compound semiconductors and their alloys. J. Appl. Phys., 2001, 89(11): 5815
CrossRef
ADS
Google scholar
|
[24] |
J. J. Loferski . Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic solar energy conversion. J. Appl. Phys., 1956, 27(7): 777
CrossRef
ADS
Google scholar
|
[25] |
X. M. Li , H. W. Zhu , K. L. Wang , A. Y. Cao , J. Q. Wei , C. Y. Li , Y. Jia , Z. Li , X. Li , D. H. Wu . Graphene-on-silicon Schottky junction solar cells. Adv. Mater., 2010, 22(25): 2743
CrossRef
ADS
Google scholar
|
[26] |
X. Miao , S. Tongay , M. K. Petterson , K. Berke , A. G. Rinzler , B. R. Appleton , A. F. Hebard . High efficiency graphene solar cells by chemical doping. Nano Lett., 2012, 12(6): 2745
CrossRef
ADS
Google scholar
|
[27] |
X.Q. LiW.C. ChenS.J. ZhangZ.Q. WuP.WangZ.J. XuH.S. ChenW.Y. YinH.K. ZhongS.S. Lin, 18.5% efficient graphene/GaAs van der Waals heterostructure solar cell, Nano Energy 16, 310 (2015)
|
[28] |
A. Yamamoto , M. Yamaguchi , C. Uemura . High conversion efficiency and high radiation resistance InP homojunction solar cells. Appl. Phys. Lett., 1984, 44(6): 611
CrossRef
ADS
Google scholar
|
[29] |
P. Wang , X. Q. Li , Z. J. Xu , Z. Q. Wu , S. J. Zhang , W. L. Xu , H. K. Zhong , H. S. Chen , E. P. Li , J. K. Luo , Q. K. Yu , S. S. Lin . Tunable graphene/indium phosphide heterostructure solar cells. Nano Energy, 2015, 13: 509
CrossRef
ADS
Google scholar
|
[30] |
X. F. Lu , L. X. Li , X. Guo , J. Q. Ren , H. T. Xue , F. L. Tang . Effects of vertical strain and electric field on the electronic properties and interface contact of graphene/InP vdW heterostructure. Comput. Mater. Sci., 2021, 198: 110677
CrossRef
ADS
Google scholar
|
[31] |
T. Zhang , J. Chen . Graphene/InP Schottky junction near-infrared photodetectors. Appl. Phys. A, 2020, 126(11): 832
CrossRef
ADS
Google scholar
|
[32] |
P. E. Blöchl . Projector augmented-wave method. Phys. Rev. B, 1994, 50(24): 17953
CrossRef
ADS
Google scholar
|
[33] |
G. Kresse , J. Furthmuller . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169
CrossRef
ADS
Google scholar
|
[34] |
J. P. Perdew , K. Burke , M. Ernzerhof . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
CrossRef
ADS
Google scholar
|
[35] |
S. Grimme . Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem., 2006, 27(15): 1787
CrossRef
ADS
Google scholar
|
[36] |
F. Ortmann , F. Bechstedt , W. G. Schmidt . Semiempirical van der Waals correction to the density functional description of solids and molecular structures. Phys. Rev. B, 2006, 73(20): 205101
CrossRef
ADS
Google scholar
|
[37] |
S. Kalvoda , B. Paulus , P. Fulde , H. Stoll . Influence of electron correlations on ground-state properties of III-V semiconductors. Phys. Rev. B, 1997, 55(7): 4027
CrossRef
ADS
Google scholar
|
[38] |
V. L. Bekenev , S. M. Zubkova . Electronic structure of the CdTe(111) A-(2 × 2) surface. Phys. Solid State, 2015, 57(9): 1878
CrossRef
ADS
Google scholar
|
[39] |
K.Shiraishi, A new slab model approach for electronic structure calculation of polar semiconductors surface, J. Phys. Soc. Jpn. 59(10), 3455 (1990)
|
[40] |
P. W. Tasker . The stability of ionic crystal surfaces. J. Phys. C, 1979, 12(22): 4977
CrossRef
ADS
Google scholar
|
[41] |
Y. Horio , J. Yuhara , Y. Takakuwa . Structural analysis of an InP(111) A surface using reflection high-energy electron diffraction rocking curves. Jpn. J. Appl. Phys., 2019, 58: SIIA14
CrossRef
ADS
Google scholar
|
[42] |
T.AkiyamaT.KondoH.TatematsuK.NakamuraT.Ito, Ab initio approach to reconstructions of the InP(111)A surface: Role of hydrogen atoms passivating surface dangling bonds, Phys. Rev. B 78(20), 205318 (2008)
|
[43] |
M. D. Pashley . Electron counting model and its application to island structures on molecular-beam epitaxy grown GaAs(001) and ZnSe(001). Phys. Rev. B, 1989, 40(15): 10481
CrossRef
ADS
Google scholar
|
[44] |
M. Farjam , H. Rafii-Tabar . Energy gap opening in submonolayer lithium on graphene: Local density functional and tight-binding calculations. Phys. Rev. B, 2009, 79: 045417
CrossRef
ADS
Google scholar
|
[45] |
H. T. T. Nguyen , M. M. Obeid , A. Bafekry , M. Idrees , T. V. Vu , H. V. Phuc , N. N. Hieu , L. Hoa , B. Amin , C. V. Nguyen , Interfacial characteristics . Schottky contact, and optical performance of a graphene/Ga2SSe van der Waals heterostructure: Strain engineering and electric field tunability. Phys. Rev. B, 2020, 102(7): 075414
CrossRef
ADS
Google scholar
|
[46] |
J. Bardeen . Surface states and rectification at a metal semi-conductor contact. Phys. Rev., 1947, 71(10): 717
CrossRef
ADS
Google scholar
|
[47] |
Q. Liu , J. J. Li , D. Wu , X. Q. Deng , Z. H. Zhang , Z. Q. Fan , K. Q. Chen . Gate-controlled reversible rectifying behavior investigated in a two-dimensional MoS2 diode. Phys. Rev. B, 2021, 104(4): 045412
CrossRef
ADS
Google scholar
|
[48] |
F. E. Ci̇mi̇lli̇ Çatir . Properties of a facile growth of spray pyrolysis-based rGO films and device performance for Au/rGO/n-InP Schottky diodes. J. Mater. Sci-Mater. Electron., 2021, 32: 611
CrossRef
ADS
Google scholar
|
[49] |
M. A. Rehman , I. Akhtar , W. Choi , K. Akbar , A. Farooq , S. Hussain , M. A. Shehzad , S. H. Chun , J. Jung , Y. Seo . Influence of an Al2O3 interlayer in a directly grown graphene-silicon Schottky junction solar cell. Carbon, 2018, 132: 157
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |