Electronic properties and tunability in graphene/3D-InP mixed-dimensional van der Waals heterostructure

Qingyun Zhou, Yusheng Hou, Tianshu Lai

PDF(5925 KB)
PDF(5925 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (2) : 23301. DOI: 10.1007/s11467-022-1224-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Electronic properties and tunability in graphene/3D-InP mixed-dimensional van der Waals heterostructure

Author information +
History +

Abstract

InP solar cell is promising for space application due to its strong space radiation resistance and high power conversion efficient (PCE). Graphene/InP heterostructure solar cell is expected to have a higher PCE because strong near-infrared light can also be absorbed and converted additionally by graphene in this heterostructure. However, a low PCE was reported experimentally for Graphene/InP heterostructures. In this paper, electronic properties of graphene/InP heterostructures are calculated using density functional theory to understand the origin of the low PCE and propose possible improving ways. Our calculation results reveal that graphene contact with InP form a p-type Schottky heterostructure with a low Schottky barrier height (SBH). It is the low SBH that leads to the low PCE of graphene/InP heterostructure solar cells. A new heterostructure, graphene/insulating layer/InP solar cells, is proposed to raise SBH and PCE. Moreover, we also find that the opened bandgap of graphene and SBH in graphene/InP heterostructures can be tuned by exerting an electric field, which is useful for photodetector of graphene/InP heterostructures.

Graphical abstract

Keywords

graphene / InP(111) / heterostructure / density functional theory

Cite this article

Download citation ▾
Qingyun Zhou, Yusheng Hou, Tianshu Lai. Electronic properties and tunability in graphene/3D-InP mixed-dimensional van der Waals heterostructure. Front. Phys., 2023, 18(2): 23301 https://doi.org/10.1007/s11467-022-1224-8

References

[1]
A. K. Geim . Graphene: Status and prospects. Science, 2009, 324(5934): 1530
CrossRef ADS Google scholar
[2]
K. Chen , M. N. Yogeesh , Y. Huang , S. Q. Zhang , F. He , X. H. Meng , S. Y. Fang , N. Sheehan , T. H. Tao , S. R. Bank , J. F. Lin , D. Akinwande , P. Sutter , T. S. Lai , Y. G. Wang . Non-destructive measurement of photoexcited carrier transport in graphene with ultrafast grating imaging technique. Carbon, 2016, 107: 233
CrossRef ADS Google scholar
[3]
S. Bae , H. Kim , Y. Lee , X. Xu , J. S. Park , Y. Zheng , J. Balakrishnan , T. Lei , H. Ri Kim , Y. I. Song , Y. J. Kim , K. S. Kim , B. Özyilmaz , J. H. Ahn , B. H. Hong , S. Iijima . Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol., 2010, 5(8): 574
CrossRef ADS Google scholar
[4]
A. A. Balandin , S. Ghosh , W. Z. Bao , I. Calizo , D. Teweldebrhan , F. Miao , C. N. Lau . Superior thermal conductivity of single-layer graphene. Nano Lett., 2008, 8(3): 902
CrossRef ADS Google scholar
[5]
A. K. Geim , K. S. Novoselov . The rise of graphene. Nat. Mater., 2007, 6(3): 183
CrossRef ADS Google scholar
[6]
G. Gui , J. Li , J. Zhong . Band structure engineering of graphene by strain: First-principles calculations. Phys. Rev. B, 2008, 78(7): 075435
CrossRef ADS Google scholar
[7]
J. B. Oostinga , H. B. Heersche , X. L. Liu , A. F. Morpurgo , L. M. K. Vandersypen . Gate-induced insulating state in bilayer graphene devices. Nat. Mater., 2008, 7(2): 151
CrossRef ADS Google scholar
[8]
D. B. Zhang , Y. Hu , H. X. Zhong , S. J. Yuan , C. Liu . Effects of out-of-plane strains and electric fields on the electronic structures of graphene/MTe (M = Al, B) heterostructures. Nanoscale, 2019, 11(29): 13800
CrossRef ADS Google scholar
[9]
S. Singh , C. Espejo , A. H. Romero . Structural, electronic, vibrational, and elastic properties of graphene/MoS2 bilayer heterostructures. Phys. Rev. B, 2018, 98(15): 155309
CrossRef ADS Google scholar
[10]
K. Zollner , M. Gmitra , J. Fabian . Heterostructures of graphene and hBN: Electronic, spin−orbit, and spin relaxation properties from first principles. Phys. Rev. B, 2019, 99(12): 125151
CrossRef ADS Google scholar
[11]
M. Gmitra , D. Kochan , P. Högl , J. Fabian . Trivial and inverted Dirac bands and the emergence of quantum spin Hall states in graphene on transition-metal dichalcogenides. Phys. Rev. B, 2016, 93(15): 155104
CrossRef ADS Google scholar
[12]
X.-R. Hu , J.-M. Zheng , Z.-Y. Ren . Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation. Front. Phys., 2018, 13: 137302
CrossRef ADS Google scholar
[13]
L. Zhang , L. Fan , Z. Li , E. Shi , X. M. Li , H. B. Li , C. Y. Ji , Y. Jia , J. Q. Wei , K. L. Wang , H. W. Zhu , D. H. Wu , A. Y. Cao . Graphene-CdSe nanobelt solar cells with tunable configurations. Nano Res., 2011, 4(9): 891
CrossRef ADS Google scholar
[14]
W. J. Jie , F. G. Zheng , J. H. Hao . Graphene/gallium arsenide-based Schottky junction solar cells. Appl. Phys. Lett., 2013, 103(23): 233111
CrossRef ADS Google scholar
[15]
C. Y. Lan , C. Li , S. Wang , T. Y. He , Z. F. Zhou , D. P. Wei , H. Y. Guo , H. Yang , Y. Liu . Highly responsive and broadband photodetectors based on WS2−graphene van der Waals epitaxial heterostructures. J. Mater. Chem. C, 2017, 5(6): 1494
CrossRef ADS Google scholar
[16]
D. Pierucci , H. Henck , J. Avila , A. Balan , C. H. Naylor , G. Patriarche , Y. J. Dappe , M. G. Silly , F. Sirotti , A. T. C. Johnson , M. C. Asensio , A. Ouerghi . Band alignment and minigaps in monolayer MoS2−graphene van der Waals heterostructures. Nano Lett., 2016, 16(7): 4054
CrossRef ADS Google scholar
[17]
J. A. Miwa , M. Dendzik , S. S. Gronborg , M. Bianchi , J. V. Lauritsen , P. Hofmann , S. Ulstrup . Van der Waals epitaxy of two-dimensional MoS2-graphene heterostructures in ultrahigh vacuum. ACS Nano, 2015, 9(6): 6502
CrossRef ADS Google scholar
[18]
H. Büch , A. Rossi , S. Forti , D. Convertino , V. Tozzini , C. Coletti . Superlubricity of epitaxial monolayer WS2 on graphene. Nano Res., 2018, 11(11): 5946
CrossRef ADS Google scholar
[19]
M. L. Sun , J. P. Chou , Q. Q. Ren , Y. M. Zhao , J. Yu , W. C. Tang . Tunable Schottky barrier in van der Waals heterostructures of graphene and g-GaN. Appl. Phys. Lett., 2017, 110(17): 173105
CrossRef ADS Google scholar
[20]
S. Tongay , M. Lemaitre , T. Schumann , K. Berke , B. R. Appleton , B. Gila , A. F. Hebard . Graphene/GaN Schottky diodes: Stability at elevated temperatures. Appl. Phys. Lett., 2011, 99(10): 102102
CrossRef ADS Google scholar
[21]
D. P. Andrade , R. H. Miwa , G. P. Srivastava . Graphene and graphene nanoribbons on InAs(110) and Au/InAs(110) surfaces: An ab initio study. Phys. Rev. B, 2011, 84(16): 165322
CrossRef ADS Google scholar
[22]
Y. J. Hong , J. W. Yang , W. H. Lee , R. S. Ruoff , K. S. Kim , T. Fukui . Van der Waals epitaxial double heterostructure: InAs/single-layer graphene/InAs. Adv. Mater., 2013, 25(47): 6847
CrossRef ADS Google scholar
[23]
I. Vurgaftman , J. R. Meyer , L. R. Ram-Mohan . Band parameters for III−V compound semiconductors and their alloys. J. Appl. Phys., 2001, 89(11): 5815
CrossRef ADS Google scholar
[24]
J. J. Loferski . Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic solar energy conversion. J. Appl. Phys., 1956, 27(7): 777
CrossRef ADS Google scholar
[25]
X. M. Li , H. W. Zhu , K. L. Wang , A. Y. Cao , J. Q. Wei , C. Y. Li , Y. Jia , Z. Li , X. Li , D. H. Wu . Graphene-on-silicon Schottky junction solar cells. Adv. Mater., 2010, 22(25): 2743
CrossRef ADS Google scholar
[26]
X. Miao , S. Tongay , M. K. Petterson , K. Berke , A. G. Rinzler , B. R. Appleton , A. F. Hebard . High efficiency graphene solar cells by chemical doping. Nano Lett., 2012, 12(6): 2745
CrossRef ADS Google scholar
[27]
X.Q. LiW.C. ChenS.J. ZhangZ.Q. WuP.WangZ.J. XuH.S. ChenW.Y. YinH.K. ZhongS.S. Lin, 18.5% efficient graphene/GaAs van der Waals heterostructure solar cell, Nano Energy 16, 310 (2015)
[28]
A. Yamamoto , M. Yamaguchi , C. Uemura . High conversion efficiency and high radiation resistance InP homojunction solar cells. Appl. Phys. Lett., 1984, 44(6): 611
CrossRef ADS Google scholar
[29]
P. Wang , X. Q. Li , Z. J. Xu , Z. Q. Wu , S. J. Zhang , W. L. Xu , H. K. Zhong , H. S. Chen , E. P. Li , J. K. Luo , Q. K. Yu , S. S. Lin . Tunable graphene/indium phosphide heterostructure solar cells. Nano Energy, 2015, 13: 509
CrossRef ADS Google scholar
[30]
X. F. Lu , L. X. Li , X. Guo , J. Q. Ren , H. T. Xue , F. L. Tang . Effects of vertical strain and electric field on the electronic properties and interface contact of graphene/InP vdW heterostructure. Comput. Mater. Sci., 2021, 198: 110677
CrossRef ADS Google scholar
[31]
T. Zhang , J. Chen . Graphene/InP Schottky junction near-infrared photodetectors. Appl. Phys. A, 2020, 126(11): 832
CrossRef ADS Google scholar
[32]
P. E. Blöchl . Projector augmented-wave method. Phys. Rev. B, 1994, 50(24): 17953
CrossRef ADS Google scholar
[33]
G. Kresse , J. Furthmuller . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169
CrossRef ADS Google scholar
[34]
J. P. Perdew , K. Burke , M. Ernzerhof . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
CrossRef ADS Google scholar
[35]
S. Grimme . Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem., 2006, 27(15): 1787
CrossRef ADS Google scholar
[36]
F. Ortmann , F. Bechstedt , W. G. Schmidt . Semiempirical van der Waals correction to the density functional description of solids and molecular structures. Phys. Rev. B, 2006, 73(20): 205101
CrossRef ADS Google scholar
[37]
S. Kalvoda , B. Paulus , P. Fulde , H. Stoll . Influence of electron correlations on ground-state properties of III-V semiconductors. Phys. Rev. B, 1997, 55(7): 4027
CrossRef ADS Google scholar
[38]
V. L. Bekenev , S. M. Zubkova . Electronic structure of the CdTe(111) A-(2 × 2) surface. Phys. Solid State, 2015, 57(9): 1878
CrossRef ADS Google scholar
[39]
K.Shiraishi, A new slab model approach for electronic structure calculation of polar semiconductors surface, J. Phys. Soc. Jpn. 59(10), 3455 (1990)
[40]
P. W. Tasker . The stability of ionic crystal surfaces. J. Phys. C, 1979, 12(22): 4977
CrossRef ADS Google scholar
[41]
Y. Horio , J. Yuhara , Y. Takakuwa . Structural analysis of an InP(111) A surface using reflection high-energy electron diffraction rocking curves. Jpn. J. Appl. Phys., 2019, 58: SIIA14
CrossRef ADS Google scholar
[42]
T.AkiyamaT.KondoH.TatematsuK.NakamuraT.Ito, Ab initio approach to reconstructions of the InP(111)A surface: Role of hydrogen atoms passivating surface dangling bonds, Phys. Rev. B 78(20), 205318 (2008)
[43]
M. D. Pashley . Electron counting model and its application to island structures on molecular-beam epitaxy grown GaAs(001) and ZnSe(001). Phys. Rev. B, 1989, 40(15): 10481
CrossRef ADS Google scholar
[44]
M. Farjam , H. Rafii-Tabar . Energy gap opening in submonolayer lithium on graphene: Local density functional and tight-binding calculations. Phys. Rev. B, 2009, 79: 045417
CrossRef ADS Google scholar
[45]
H. T. T. Nguyen , M. M. Obeid , A. Bafekry , M. Idrees , T. V. Vu , H. V. Phuc , N. N. Hieu , L. Hoa , B. Amin , C. V. Nguyen , Interfacial characteristics . Schottky contact, and optical performance of a graphene/Ga2SSe van der Waals heterostructure: Strain engineering and electric field tunability. Phys. Rev. B, 2020, 102(7): 075414
CrossRef ADS Google scholar
[46]
J. Bardeen . Surface states and rectification at a metal semi-conductor contact. Phys. Rev., 1947, 71(10): 717
CrossRef ADS Google scholar
[47]
Q. Liu , J. J. Li , D. Wu , X. Q. Deng , Z. H. Zhang , Z. Q. Fan , K. Q. Chen . Gate-controlled reversible rectifying behavior investigated in a two-dimensional MoS2 diode. Phys. Rev. B, 2021, 104(4): 045412
CrossRef ADS Google scholar
[48]
F. E. Ci̇mi̇lli̇ Çatir . Properties of a facile growth of spray pyrolysis-based rGO films and device performance for Au/rGO/n-InP Schottky diodes. J. Mater. Sci-Mater. Electron., 2021, 32: 611
CrossRef ADS Google scholar
[49]
M. A. Rehman , I. Akhtar , W. Choi , K. Akbar , A. Farooq , S. Hussain , M. A. Shehzad , S. H. Chun , J. Jung , Y. Seo . Influence of an Al2O3 interlayer in a directly grown graphene-silicon Schottky junction solar cell. Carbon, 2018, 132: 157
CrossRef ADS Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12074441, 11774438, and 12104518) and Guangdong Basic and Applied Basic Foundation in China (Grant No. 2019A1515011572 and 2022A1515012643).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(5925 KB)

Accesses

Citations

Detail

Sections
Recommended

/