Spiral wave chimeras in populations of oscillators coupled to a slowly varying diffusive environment
Lei Yang, Yuan He, Bing-Wei Li
Spiral wave chimeras in populations of oscillators coupled to a slowly varying diffusive environment
Chimera states are firstly discovered in nonlocally coupled oscillator systems. Such a nonlocal coupling arises typically as oscillators are coupled via an external environment whose characteristic time scale τ is so small (i.e., τ → 0) that it could be eliminated adiabatically. Nevertheless, whether the chimera states still exist in the opposite situation (i.e., τ ≫ 1) is unknown. Here, by coupling large populations of Stuart−Landau oscillators to a diffusive environment, we demonstrate that spiral wave chimeras do exist in this oscillator-environment coupling system even when τ is very large. Various transitions such as from spiral wave chimeras to spiral waves or unstable spiral wave chimeras as functions of the system parameters are explored. A physical picture for explaining the formation of spiral wave chimeras is also provided. The existence of spiral wave chimeras is further confirmed in ensembles of FitzHugh−Nagumo oscillators with the similar oscillator-environment coupling mechanism. Our results provide an affirmative answer to the observation of spiral wave chimeras in populations of oscillators mediated via a slowly changing environment and give important hints to generate chimera patterns in both laboratory and realistic chemical or biological systems.
spiral wave chimeras / reaction-diffusion systems / oscillator−environment coupling / pattern formation
[1] |
Y. Kuramoto, D. Battogtokh. Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlinear Phenom. Complex Syst., 2002, 5: 380
|
[2] |
D. M. Abrams, S. H. Strogatz. Chimera states for coupled oscillators. Phys. Rev. Lett., 2004, 93(17): 174102
CrossRef
ADS
Google scholar
|
[3] |
O. E. Omel’chenko, Y. L. Maistrenko, P. A. Tass. Chimera states: The natural link between coherence and incoherence. Phys. Rev. Lett., 2008, 100(4): 044105
CrossRef
ADS
Google scholar
|
[4] |
G. C. Sethia, A. Sen, F. M. Atay. Clustered chimera states in delay-coupled oscillator systems. Phys. Rev. Lett., 2008, 100(14): 144102
CrossRef
ADS
Google scholar
|
[5] |
D. M. Abrams, R. Mirollo, S. H. Strogatz, D. A. Wiley. Solvable model for chimera states of coupled oscillators. Phys. Rev. Lett., 2008, 101(8): 084103
CrossRef
ADS
Google scholar
|
[6] |
I. Omelchenko, Y. Maistrenko, P. Hövel, E. Schöll. Loss of coherence in dynamical networks: Spatial chaos and chimera states. Phys. Rev. Lett., 2011, 106(23): 234102
CrossRef
ADS
Google scholar
|
[7] |
I. Omelchenko, O. E. Omel’chenko, P. Hövel, E. Schöll. When nonlocal coupling between oscillators becomes stronger: Patched synchrony or multichimera states. Phys. Rev. Lett., 2013, 110(22): 224101
CrossRef
ADS
Google scholar
|
[8] |
A. Zakharova, M. Kapeller, E. Schöll. Chimera death: Symmetry breaking in dynamical networks. Phys. Rev. Lett., 2014, 112(15): 154101
CrossRef
ADS
Google scholar
|
[9] |
G. C. Sethia, A. Sen, G. L. Johnston. Amplitude-mediated chimera states. Phys. Rev. E, 2013, 88(4): 042917
CrossRef
ADS
Google scholar
|
[10] |
R. Mukherjee, A. Sen. Amplitude mediated chimera states with active and inactive oscillators. Chaos, 2018, 28(5): 053109
CrossRef
ADS
Google scholar
|
[11] |
Y. Zhu, Z. G. Zheng, J. Yang. Chimera states on complex networks. Phys. Rev. E, 2014, 89(2): 022914
CrossRef
ADS
Google scholar
|
[12] |
H. Y. Xu, G. L. Wang, L. Huang, Y. C. Lai. Chaos in Dirac electron optics: Emergence of a relativistic quantum chimera. Phys. Rev. Lett., 2018, 120(12): 124101
CrossRef
ADS
Google scholar
|
[13] |
Y. Zhang, Z. G. Nicolaou, J. D. Hart, R. Roy, A. E. Motter. Critical switching in globally attractive chimeras. Phys. Rev. X, 2020, 10(1): 011044
CrossRef
ADS
Google scholar
|
[14] |
Z. G. Zheng, Y. Zhai. Chimera state: From complex networks to spatiotemporal patterns. Sci. Chin. -Phys. Mech. Astron., 2020, 50(1): 010505
CrossRef
ADS
Google scholar
|
[15] |
Y. Zhang, A. E. Motter. Mechanism for strong chimeras. Phys. Rev. Lett., 2021, 126(9): 094101
CrossRef
ADS
Google scholar
|
[16] |
Q. L. Dai, X. X. Liu, K. Yang, H. Y. Cheng, H. H. Li, F. Xie, J. Z. Yang. Entangled chimeras in nonlocally coupled bicomponent phase oscillators: From synchronous to asynchronous chimeras. Front. Phys., 2020, 15(6): 62501
CrossRef
ADS
Google scholar
|
[17] |
W. H. Wang, Q. L. Dai, H. Y. Cheng, H. H. Li, J. Z. Yang. Chimera dynamics in nonlocally coupled moving phase oscillators. Front. Phys., 2019, 14(4): 43605
CrossRef
ADS
Google scholar
|
[18] |
A. M. Hagerstrom, T. E. Murphy, R. Roy, P. Hövel, I. Omelchenko, E. Schöll. Experimental observation of chimeras in coupled-map lattices. Nat. Phys., 2012, 8(9): 658
CrossRef
ADS
Google scholar
|
[19] |
M. R. Tinsley, S. Nkomo, K. Showalter. Chimera and phase-cluster states in populations of coupled chemical oscillators. Nat. Phys., 2012, 8(9): 662
CrossRef
ADS
Google scholar
|
[20] |
S. Nkomo, M. R. Tinsley, K. Showalter. Chimera states in populations of nonlocally coupled chemical oscillators. Phys. Rev. Lett., 2013, 110(24): 244102
CrossRef
ADS
Google scholar
|
[21] |
S. Nkomo, M. R. Tinsley, K. Showalter. Chimera and chimera-like states in populations of nonlocally coupled homogeneous and heterogeneous chemical oscillators. Chaos, 2016, 26(9): 094826
CrossRef
ADS
Google scholar
|
[22] |
E. A. Martens, S. Thutupalli, A. Fourriere, O. Hallatschek. Chimera states in mechanical oscillator networks. Proc. Natl. Acad. Sci. USA, 2013, 110(26): 10563
CrossRef
ADS
Google scholar
|
[23] |
M. Wickramasinghe, I. Z. Kiss. Spatially organized partial synchronization through the chimera mechanism in a network of electrochemical reactions. Phys. Chem. Chem. Phys., 2014, 16(34): 18360
CrossRef
ADS
Google scholar
|
[24] |
L. Schmidt, K. Schönleber, K. Krischer, V. García-Morales. Coexistence of synchrony and incoherence in oscillatory media under nonlinear global coupling. Chaos, 2014, 24(1): 013102
CrossRef
ADS
Google scholar
|
[25] |
J. C. Wiehl, M. Patzauer, K. Krischer. Birhythmicity, intrinsic entrainment, and minimal chimeras in an electrochemical experiment. Chaos, 2021, 31(9): 091102
CrossRef
ADS
Google scholar
|
[26] |
L. V. Gambuzza, A. Buscarino, S. Chessari, L. Fortuna, R. Meucci, M. Frasca. Experimental investigation of chimera states with quiescent and synchronous domains in coupled electronic oscillators. Phys. Rev. E, 2014, 90(3): 032905
CrossRef
ADS
Google scholar
|
[27] |
L. Larger, B. Penkovsky, Y. Maistrenko. Laser chimeras as a paradigm for multistable patterns in complex systems. Nat. Commun., 2015, 6(1): 7752
CrossRef
ADS
Google scholar
|
[28] |
M. J. Panaggio, D. M. Abrams. Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity, 2015, 28(3): R67
CrossRef
ADS
Google scholar
|
[29] |
O. E. Omel’chenko. The mathematics behind chimera states. Nonlinearity, 2018, 31(5): R121
CrossRef
ADS
Google scholar
|
[30] |
F. Parastesh, S. Jafari, H. Azarnoush, Z. Shahriari, Z. Wang, S. Boccaletti, M. Perc. Chimeras. Phys. Rep., 2021, 898: 1
CrossRef
ADS
Google scholar
|
[31] |
N. Semenova, A. Zakharova, V. Anishchenko, E. Schöll. Coherence-resonance chimeras in a network of excitable elements. Phys. Rev. Lett., 2016, 117(1): 014102
CrossRef
ADS
Google scholar
|
[32] |
Q. Dai, M. Zhang, H. Cheng, H. Li, F. Xie, J. Yang. From collective oscillation to chimera state in a nonlocally coupled excitable system. Nonlinear Dyn., 2018, 91(3): 1723
CrossRef
ADS
Google scholar
|
[33] |
B. K. Bera, S. Majhi, D. Ghosh, M. Perc. Chimera states: Effects of different coupling topologies. Europhys. Lett., 2017, 118(1): 10001
CrossRef
ADS
Google scholar
|
[34] |
G. C. Sethia, A. Sen. Chimera states: The existence criteria revisited. Phys. Rev. Lett., 2014, 112(14): 144101
CrossRef
ADS
Google scholar
|
[35] |
A. Yeldesbay, A. Pikovsky, M. Rosenblum. Chimeralike states in an ensemble of globally coupled oscillators. Phys. Rev. Lett., 2014, 112(14): 144103
CrossRef
ADS
Google scholar
|
[36] |
C. R. Laing. Chimeras in networks with purely local coupling. Phys. Rev. E, 2015, 92(5): 050904(R)
CrossRef
ADS
Google scholar
|
[37] |
M. G. Clerc, S. Coulibaly, M. A. Ferré, M. A. Garcìa-Nustes, R. G. Rojas. Chimera-type states induced by local coupling. Phys. Rev. E, 2016, 93(5): 052204
CrossRef
ADS
Google scholar
|
[38] |
B. K. Bera, D. Ghosh, T. Banerjee. Imperfect traveling chimera states induced by local synaptic gradient coupling. Phys. Rev. E, 2016, 94(1): 012215
CrossRef
ADS
Google scholar
|
[39] |
B. K. Bera, D. Ghosh. Chimera states in purely local delay-coupled oscillators. Phys. Rev. E, 2016, 93(5): 052223
CrossRef
ADS
Google scholar
|
[40] |
K. Premalatha, V. K. Chandrasekar, M. Senthilvelan, M. Lakshmanan. Stable amplitude chimera states in a network of locally coupled Stuart−Landau oscillators. Chaos, 2018, 28(3): 033110
CrossRef
ADS
Google scholar
|
[41] |
M. G. Clerc, S. Coulibaly, M. A. Ferré, R. G. Rojas. Chimera states in a Duffing oscillators chain coupled to nearest neighbors. Chaos, 2018, 28(8): 083126
CrossRef
ADS
Google scholar
|
[42] |
S. Kundu, S. Majhi, B. K. Bera, D. Ghosh, M. Lakshmanan. Chimera states in two-dimensional networks of locally coupled oscillators. Phys. Rev. E, 2018, 97(2): 022201
CrossRef
ADS
Google scholar
|
[43] |
S. Kundu, B. K. Bera, D. Ghosh, M. Lakshmanan. Chimera patterns in three-dimensional locally coupled systems. Phys. Rev. E, 2019, 99(2): 022204
CrossRef
ADS
Google scholar
|
[44] |
S. W. Haugland, L. Schmidt, K. Krischer. Self-organized alternating chimera states in oscillatory media. Sci. Rep., 2015, 5(1): 9883
CrossRef
ADS
Google scholar
|
[45] |
J. Xie, E. Knobloch, H. C. Kao. Multicluster and traveling chimera states in nonlocal phasecoupled oscillators. Phys. Rev. E, 2014, 90(2): 022919
CrossRef
ADS
Google scholar
|
[46] |
Y. Kuramoto, S. Shima. Rotating spirals without phase singularity in reaction-diffusion systems. Prog. Theor. Phys. Suppl., 2003, 150: 115
CrossRef
ADS
Google scholar
|
[47] |
S. Shima, Y. Kuramoto. Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators. Phys. Rev. E, 2004, 69(3): 036213
CrossRef
ADS
Google scholar
|
[48] |
E. A. Martens, C. R. Laing, S. H. Strogatz. Solvable model of spiral wave chimeras. Phys. Rev. Lett., 2010, 104(4): 044101
CrossRef
ADS
Google scholar
|
[49] |
N. C. Rattenborg, C. J. Amlaner, S. L. Lima. Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep. Neurosci. Biobehav. Rev., 2000, 24(8): 817
CrossRef
ADS
Google scholar
|
[50] |
M. Tamaki, J. W. Bang, T. Watanabe, Y. Sasaki. Night watch in one brain hemisphere during sleep associated with the first-night effect in humans. Curr. Biol., 2016, 26(9): 1190
CrossRef
ADS
Google scholar
|
[51] |
C. Lainscsek, N. Rungratsameetaweemana, S. S. Cash, T. J. Sejnowski. Cortical chimera states predict epileptic seizures. Chaos, 2019, 29(12): 121106
CrossRef
ADS
Google scholar
|
[52] |
S. Majhi, B. K. Bera, D. Ghosh, M. Perc. Chimera states in neuronal networks: A review. Phys. Life Rev., 2019, 28: 100
CrossRef
ADS
Google scholar
|
[53] |
S. Majhi, M. Perc, D. Ghosh. Chimera states in a multilayer network of coupled and uncoupled neurons. Chaos, 2017, 27(7): 073109
CrossRef
ADS
Google scholar
|
[54] |
S. Huo, C. Tian, M. Zheng, S. Guan, C. S. Zhou, Z. Liu. Spatial multi-scaled chimera states of cerebral cortex network and its inherent structure-dynamics relationship in human brain. Nat. Sci. Rev., 2021, 8(1): nwaa125
CrossRef
ADS
Google scholar
|
[55] |
T. Wu, X. Zhang, Z. Liu. Understanding the mechanisms of brain functions from the angle of synchronization and complex network. Front. Phys., 2022, 17(3): 31504
CrossRef
ADS
Google scholar
|
[56] |
C. R. Laing. The dynamics of chimera states in heterogeneous Kuramoto networks. Physica D, 2009, 238(16): 1569
CrossRef
ADS
Google scholar
|
[57] |
C. Gu, G. St-Yves, J. Davidsen. Spiral wave chimeras in complex oscillatory and chaotic systems. Phys. Rev. Lett., 2013, 111(13): 134101
CrossRef
ADS
Google scholar
|
[58] |
X. Tang, T. Yang, I. R. Epstein, Y. Liu, Y. Zhao, Q. Gao. Novel type of chimera spiral waves arising from decoupling of a diffusible component. J. Chem. Phys., 2014, 141(2): 024110
CrossRef
ADS
Google scholar
|
[59] |
J. Xie, E. Knobloch, H. C. Kao. Twisted chimera states and multicore spiral chimera states on a two-dimensional torus. Phys. Rev. E, 2015, 92(4): 042921
CrossRef
ADS
Google scholar
|
[60] |
B. W. Li, H. Dierckx. Spiral wave chimeras in locally coupled oscillator systems. Phys. Rev. E, 2016, 93: 020202(R)
CrossRef
ADS
Google scholar
|
[61] |
S. Kundu, S. Majhi, P. Muruganandam, D. Ghosh. Diffusion induced spiral wave chimeras in ecological system. Eur. Phys. J. Spec. Top., 2018, 227(7−9): 983
CrossRef
ADS
Google scholar
|
[62] |
S. Guo, Q. Dai, H. Cheng, H. Li, F. Xie, J. Yang. Spiral wave chimera in two-dimensional nonlocally coupled FitzHugh–Nagumo systems. Chaos Solitons Fractals, 2018, 114: 394
CrossRef
ADS
Google scholar
|
[63] |
E. Rybalova, A. Bukh, G. Strelkova, V. Anishchenko. Spiral and target wave chimeras in a 2D lattice of map-based neuron models. Chaos, 2019, 29(10): 101104
CrossRef
ADS
Google scholar
|
[64] |
B. W. Li, Y. He, L. D. Li, L. Yang, X. Wang. Spiral wave chimeras in reaction-diffusion systems: Phenomenon, mechanism and transitions. Commun. Nonlinear Sci. Numer. Simul., 2021, 99: 105830
CrossRef
ADS
Google scholar
|
[65] |
J. F. Totz, M. R. Tinsley, H. Engel, K. Showalter. Transition from spiral wave chimeras to phase cluster states. Sci. Rep., 2020, 10(1): 7821
CrossRef
ADS
Google scholar
|
[66] |
J. F. Totz, J. Rode, M. R. Tinsley, K. Showalter, H. Engel. Spiral wave chimera states in large populations of coupled chemical oscillators. Nat. Phys., 2018, 14(3): 282
CrossRef
ADS
Google scholar
|
[67] |
M. Bataille-Gonzalez, M. G. Clerc, O. E. Omel’chenko. Moving spiral wave chimeras. Phys. Rev. E, 2021, 104(2): L022203
CrossRef
ADS
Google scholar
|
[68] |
B. K. Bera, S. Kundu, P. Muruganandam, D. Ghosh, M. Lakshmanan. Spiral wave chimeralike transient dynamics in three-dimensional grid of diffusive ecological systems. Chaos, 2021, 31(8): 083125
CrossRef
ADS
Google scholar
|
[69] |
Y. Maistrenko, O. Sudakov, O. Osiv, V. Maistrenko. Chimera states in three dimensions. New J. Phys., 2015, 17(7): 073037
CrossRef
ADS
Google scholar
|
[70] |
C. H. Tian, X. Y. Zhang, Z. H. Wang, Z. H. Liu. Diversity of chimera-like patterns from a model of 2D arrays of neurons with nonlocal coupling. Front. Phys., 2017, 12(3): 128904
CrossRef
ADS
Google scholar
|
[71] |
A. Camilli, B. L. Bassler. Bacterial small-molecule signaling pathways. Science, 2006, 311(5764): 1113
CrossRef
ADS
Google scholar
|
[72] |
J. Garcia-Ojalvo, M. B. Elowitz, S. H. Strogatz. Modeling a synthetic multicellular clock: Repressilators coupled by quorum sensing. Proc. Natl. Acad. Sci. USA, 2004, 101(30): 10955
CrossRef
ADS
Google scholar
|
[73] |
S. De Monte, F. d’Ovidio, S. Danø, P. G. Sørensen. Dynamical quorum sensing: Population density encoded in cellular dynamics. Proc. Natl. Acad. Sci. USA, 2007, 104(47): 18377
CrossRef
ADS
Google scholar
|
[74] |
R. Toth, A. F. Taylor, M. R. Tinsley. Collective behavior of a population of chemically coupled oscillators. J. Phys. Chem. B, 2006, 110(20): 10170
CrossRef
ADS
Google scholar
|
[75] |
A. F. Taylor, M. R. Tinsley, F. Wang, Z. Huang, K. Showalter. Dynamical quorum sensing and synchronization in large populations of chemical oscillators. Science, 2009, 323(5914): 614
CrossRef
ADS
Google scholar
|
[76] |
T. Gregor, K. Fujimoto, N. Masaki, S. Sawai. The onset of collective behavior in social Amoebae. Science, 2010, 328(5981): 1021
CrossRef
ADS
Google scholar
|
[77] |
J. Noorbakhsh, D. J. Schwab, A. E. Sgro, T. Gregor, P. Mehta. Modeling oscillations and spiral waves in Dictyostelium populations. Phys. Rev. E, 2015, 91(6): 062711
CrossRef
ADS
Google scholar
|
[78] |
T.DaninoO. Mondragón-PalominoL.Tsimring J.Hasty, A synchronized quorum of genetic clocks, Nature 463(7279), 326 (2010)
|
[79] |
J. Schütze, T. Mair, M. J. B. Hauser, M. Falcke, J. Wolf. Metabolic synchronization by traveling waves in yeast cell layers. Biophys. J., 2011, 100(4): 809
CrossRef
ADS
Google scholar
|
[80] |
J. J. Rubin, J. E. Rubin, G. B. Ermentrout. Analysis of synchronization in a slowly changing environment: How slow coupling becomes fast weak coupling. Phys. Rev. Lett., 2013, 110(20): 204101
CrossRef
ADS
Google scholar
|
[81] |
J. Gou, M. J. Ward. An asymptotic analysis of a 2-D model of dynamically active compartments coupled by bulk diffusion. J. Nonlinear Sci., 2016, 26(4): 979
CrossRef
ADS
Google scholar
|
[82] |
S. A. Iyaniwura, M. J. Ward. Synchrony and oscillatory dynamics for a 2-D PDE-ODE model of diffusion-mediated communication between small signaling compartments. SIAM J. Appl. Dyn. Syst., 2021, 20(1): 438
CrossRef
ADS
Google scholar
|
[83] |
V. K. Chandrasekar, R. Gopal, D. V. Senthilkumar, M. Lakshmanan. Phase-flip chimera induced by environmental nonlocal coupling. Phys. Rev. E, 2016, 94(1): 012208
CrossRef
ADS
Google scholar
|
[84] |
C. U. Choe, M. H. Choe, H. Jang, R. S. Kim. Symmetry breakings in two populations of oscillators coupled via diffusive environments: Chimera and heterosynchrony. Phys. Rev. E, 2020, 101(4): 042213
CrossRef
ADS
Google scholar
|
[85] |
S. Alonso, K. John, M. Bär. Complex wave patterns in an effective reaction–diffusion model for chemical reactions in microemulsions. J. Chem. Phys., 2011, 134(9): 094117
CrossRef
ADS
Google scholar
|
[86] |
E. M. Nicola, M. Or-Guil, W. Wolf, M. Bär. Drifting pattern domains in a reaction-diffusion system with nonlocal coupling. Phys. Rev. E, 2002, 65(5): 055101(R)
CrossRef
ADS
Google scholar
|
[87] |
A. A. Cherkashin, V. K. Vanag, I. R. Epstein. Discontinuously propagating waves in the bathoferroin-catalyzed Belousov–Zhabotinsky reaction incorporated into a microemulsion. J. Chem. Phys., 2008, 128(20): 204508
CrossRef
ADS
Google scholar
|
[88] |
C. P. Schenk, M. Or-Guil, M. Bode, H. G. Purwins. Interacting pulses in three-component reaction-diffusion systems on two-dimensional domains. Phys. Rev. Lett., 1997, 78(19): 3781
CrossRef
ADS
Google scholar
|
[89] |
B. W. Li, X. Z. Cao, C. Fu. Quorum sensing in populations of spatially extended chaotic oscillators coupled indirectly via a heterogeneous environment. J. Nonlinear Sci., 2017, 27(6): 1667
CrossRef
ADS
Google scholar
|
[90] |
X. Z. Cao, Y. He, B. W. Li. Selection of spatiotemporal patterns in arrays of spatially distributed oscillators indirectly coupled via a diffusive environment. Chaos, 2019, 29(4): 043104
CrossRef
ADS
Google scholar
|
[91] |
J. T. Pan, M. C. Cai, B. W. Li, H. Zhang. Chiralities of spiral waves and their transitions. Phys. Rev. E, 2013, 87(6): 062907
CrossRef
ADS
Google scholar
|
[92] |
J.F. Totz, Synchronization and Waves in Active Media, Springer, 2019
|
/
〈 | 〉 |