Spiral wave chimeras in populations of oscillators coupled to a slowly varying diffusive environment

Lei Yang, Yuan He, Bing-Wei Li

PDF(4446 KB)
PDF(4446 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (1) : 13309. DOI: 10.1007/s11467-022-1223-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Spiral wave chimeras in populations of oscillators coupled to a slowly varying diffusive environment

Author information +
History +

Abstract

Chimera states are firstly discovered in nonlocally coupled oscillator systems. Such a nonlocal coupling arises typically as oscillators are coupled via an external environment whose characteristic time scale τ is so small (i.e., τ → 0) that it could be eliminated adiabatically. Nevertheless, whether the chimera states still exist in the opposite situation (i.e., τ ≫ 1) is unknown. Here, by coupling large populations of Stuart−Landau oscillators to a diffusive environment, we demonstrate that spiral wave chimeras do exist in this oscillator-environment coupling system even when τ is very large. Various transitions such as from spiral wave chimeras to spiral waves or unstable spiral wave chimeras as functions of the system parameters are explored. A physical picture for explaining the formation of spiral wave chimeras is also provided. The existence of spiral wave chimeras is further confirmed in ensembles of FitzHugh−Nagumo oscillators with the similar oscillator-environment coupling mechanism. Our results provide an affirmative answer to the observation of spiral wave chimeras in populations of oscillators mediated via a slowly changing environment and give important hints to generate chimera patterns in both laboratory and realistic chemical or biological systems.

Graphical abstract

Keywords

spiral wave chimeras / reaction-diffusion systems / oscillator−environment coupling / pattern formation

Cite this article

Download citation ▾
Lei Yang, Yuan He, Bing-Wei Li. Spiral wave chimeras in populations of oscillators coupled to a slowly varying diffusive environment. Front. Phys., 2023, 18(1): 13309 https://doi.org/10.1007/s11467-022-1223-9

References

[1]
Y. Kuramoto, D. Battogtokh. Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlinear Phenom. Complex Syst., 2002, 5: 380
[2]
D. M. Abrams, S. H. Strogatz. Chimera states for coupled oscillators. Phys. Rev. Lett., 2004, 93(17): 174102
CrossRef ADS Google scholar
[3]
O. E. Omel’chenko, Y. L. Maistrenko, P. A. Tass. Chimera states: The natural link between coherence and incoherence. Phys. Rev. Lett., 2008, 100(4): 044105
CrossRef ADS Google scholar
[4]
G. C. Sethia, A. Sen, F. M. Atay. Clustered chimera states in delay-coupled oscillator systems. Phys. Rev. Lett., 2008, 100(14): 144102
CrossRef ADS Google scholar
[5]
D. M. Abrams, R. Mirollo, S. H. Strogatz, D. A. Wiley. Solvable model for chimera states of coupled oscillators. Phys. Rev. Lett., 2008, 101(8): 084103
CrossRef ADS Google scholar
[6]
I. Omelchenko, Y. Maistrenko, P. Hövel, E. Schöll. Loss of coherence in dynamical networks: Spatial chaos and chimera states. Phys. Rev. Lett., 2011, 106(23): 234102
CrossRef ADS Google scholar
[7]
I. Omelchenko, O. E. Omel’chenko, P. Hövel, E. Schöll. When nonlocal coupling between oscillators becomes stronger: Patched synchrony or multichimera states. Phys. Rev. Lett., 2013, 110(22): 224101
CrossRef ADS Google scholar
[8]
A. Zakharova, M. Kapeller, E. Schöll. Chimera death: Symmetry breaking in dynamical networks. Phys. Rev. Lett., 2014, 112(15): 154101
CrossRef ADS Google scholar
[9]
G. C. Sethia, A. Sen, G. L. Johnston. Amplitude-mediated chimera states. Phys. Rev. E, 2013, 88(4): 042917
CrossRef ADS Google scholar
[10]
R. Mukherjee, A. Sen. Amplitude mediated chimera states with active and inactive oscillators. Chaos, 2018, 28(5): 053109
CrossRef ADS Google scholar
[11]
Y. Zhu, Z. G. Zheng, J. Yang. Chimera states on complex networks. Phys. Rev. E, 2014, 89(2): 022914
CrossRef ADS Google scholar
[12]
H. Y. Xu, G. L. Wang, L. Huang, Y. C. Lai. Chaos in Dirac electron optics: Emergence of a relativistic quantum chimera. Phys. Rev. Lett., 2018, 120(12): 124101
CrossRef ADS Google scholar
[13]
Y. Zhang, Z. G. Nicolaou, J. D. Hart, R. Roy, A. E. Motter. Critical switching in globally attractive chimeras. Phys. Rev. X, 2020, 10(1): 011044
CrossRef ADS Google scholar
[14]
Z. G. Zheng, Y. Zhai. Chimera state: From complex networks to spatiotemporal patterns. Sci. Chin. -Phys. Mech. Astron., 2020, 50(1): 010505
CrossRef ADS Google scholar
[15]
Y. Zhang, A. E. Motter. Mechanism for strong chimeras. Phys. Rev. Lett., 2021, 126(9): 094101
CrossRef ADS Google scholar
[16]
Q. L. Dai, X. X. Liu, K. Yang, H. Y. Cheng, H. H. Li, F. Xie, J. Z. Yang. Entangled chimeras in nonlocally coupled bicomponent phase oscillators: From synchronous to asynchronous chimeras. Front. Phys., 2020, 15(6): 62501
CrossRef ADS Google scholar
[17]
W. H. Wang, Q. L. Dai, H. Y. Cheng, H. H. Li, J. Z. Yang. Chimera dynamics in nonlocally coupled moving phase oscillators. Front. Phys., 2019, 14(4): 43605
CrossRef ADS Google scholar
[18]
A. M. Hagerstrom, T. E. Murphy, R. Roy, P. Hövel, I. Omelchenko, E. Schöll. Experimental observation of chimeras in coupled-map lattices. Nat. Phys., 2012, 8(9): 658
CrossRef ADS Google scholar
[19]
M. R. Tinsley, S. Nkomo, K. Showalter. Chimera and phase-cluster states in populations of coupled chemical oscillators. Nat. Phys., 2012, 8(9): 662
CrossRef ADS Google scholar
[20]
S. Nkomo, M. R. Tinsley, K. Showalter. Chimera states in populations of nonlocally coupled chemical oscillators. Phys. Rev. Lett., 2013, 110(24): 244102
CrossRef ADS Google scholar
[21]
S. Nkomo, M. R. Tinsley, K. Showalter. Chimera and chimera-like states in populations of nonlocally coupled homogeneous and heterogeneous chemical oscillators. Chaos, 2016, 26(9): 094826
CrossRef ADS Google scholar
[22]
E. A. Martens, S. Thutupalli, A. Fourriere, O. Hallatschek. Chimera states in mechanical oscillator networks. Proc. Natl. Acad. Sci. USA, 2013, 110(26): 10563
CrossRef ADS Google scholar
[23]
M. Wickramasinghe, I. Z. Kiss. Spatially organized partial synchronization through the chimera mechanism in a network of electrochemical reactions. Phys. Chem. Chem. Phys., 2014, 16(34): 18360
CrossRef ADS Google scholar
[24]
L. Schmidt, K. Schönleber, K. Krischer, V. García-Morales. Coexistence of synchrony and incoherence in oscillatory media under nonlinear global coupling. Chaos, 2014, 24(1): 013102
CrossRef ADS Google scholar
[25]
J. C. Wiehl, M. Patzauer, K. Krischer. Birhythmicity, intrinsic entrainment, and minimal chimeras in an electrochemical experiment. Chaos, 2021, 31(9): 091102
CrossRef ADS Google scholar
[26]
L. V. Gambuzza, A. Buscarino, S. Chessari, L. Fortuna, R. Meucci, M. Frasca. Experimental investigation of chimera states with quiescent and synchronous domains in coupled electronic oscillators. Phys. Rev. E, 2014, 90(3): 032905
CrossRef ADS Google scholar
[27]
L. Larger, B. Penkovsky, Y. Maistrenko. Laser chimeras as a paradigm for multistable patterns in complex systems. Nat. Commun., 2015, 6(1): 7752
CrossRef ADS Google scholar
[28]
M. J. Panaggio, D. M. Abrams. Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity, 2015, 28(3): R67
CrossRef ADS Google scholar
[29]
O. E. Omel’chenko. The mathematics behind chimera states. Nonlinearity, 2018, 31(5): R121
CrossRef ADS Google scholar
[30]
F. Parastesh, S. Jafari, H. Azarnoush, Z. Shahriari, Z. Wang, S. Boccaletti, M. Perc. Chimeras. Phys. Rep., 2021, 898: 1
CrossRef ADS Google scholar
[31]
N. Semenova, A. Zakharova, V. Anishchenko, E. Schöll. Coherence-resonance chimeras in a network of excitable elements. Phys. Rev. Lett., 2016, 117(1): 014102
CrossRef ADS Google scholar
[32]
Q. Dai, M. Zhang, H. Cheng, H. Li, F. Xie, J. Yang. From collective oscillation to chimera state in a nonlocally coupled excitable system. Nonlinear Dyn., 2018, 91(3): 1723
CrossRef ADS Google scholar
[33]
B. K. Bera, S. Majhi, D. Ghosh, M. Perc. Chimera states: Effects of different coupling topologies. Europhys. Lett., 2017, 118(1): 10001
CrossRef ADS Google scholar
[34]
G. C. Sethia, A. Sen. Chimera states: The existence criteria revisited. Phys. Rev. Lett., 2014, 112(14): 144101
CrossRef ADS Google scholar
[35]
A. Yeldesbay, A. Pikovsky, M. Rosenblum. Chimeralike states in an ensemble of globally coupled oscillators. Phys. Rev. Lett., 2014, 112(14): 144103
CrossRef ADS Google scholar
[36]
C. R. Laing. Chimeras in networks with purely local coupling. Phys. Rev. E, 2015, 92(5): 050904(R)
CrossRef ADS Google scholar
[37]
M. G. Clerc, S. Coulibaly, M. A. Ferré, M. A. Garcìa-Nustes, R. G. Rojas. Chimera-type states induced by local coupling. Phys. Rev. E, 2016, 93(5): 052204
CrossRef ADS Google scholar
[38]
B. K. Bera, D. Ghosh, T. Banerjee. Imperfect traveling chimera states induced by local synaptic gradient coupling. Phys. Rev. E, 2016, 94(1): 012215
CrossRef ADS Google scholar
[39]
B. K. Bera, D. Ghosh. Chimera states in purely local delay-coupled oscillators. Phys. Rev. E, 2016, 93(5): 052223
CrossRef ADS Google scholar
[40]
K. Premalatha, V. K. Chandrasekar, M. Senthilvelan, M. Lakshmanan. Stable amplitude chimera states in a network of locally coupled Stuart−Landau oscillators. Chaos, 2018, 28(3): 033110
CrossRef ADS Google scholar
[41]
M. G. Clerc, S. Coulibaly, M. A. Ferré, R. G. Rojas. Chimera states in a Duffing oscillators chain coupled to nearest neighbors. Chaos, 2018, 28(8): 083126
CrossRef ADS Google scholar
[42]
S. Kundu, S. Majhi, B. K. Bera, D. Ghosh, M. Lakshmanan. Chimera states in two-dimensional networks of locally coupled oscillators. Phys. Rev. E, 2018, 97(2): 022201
CrossRef ADS Google scholar
[43]
S. Kundu, B. K. Bera, D. Ghosh, M. Lakshmanan. Chimera patterns in three-dimensional locally coupled systems. Phys. Rev. E, 2019, 99(2): 022204
CrossRef ADS Google scholar
[44]
S. W. Haugland, L. Schmidt, K. Krischer. Self-organized alternating chimera states in oscillatory media. Sci. Rep., 2015, 5(1): 9883
CrossRef ADS Google scholar
[45]
J. Xie, E. Knobloch, H. C. Kao. Multicluster and traveling chimera states in nonlocal phasecoupled oscillators. Phys. Rev. E, 2014, 90(2): 022919
CrossRef ADS Google scholar
[46]
Y. Kuramoto, S. Shima. Rotating spirals without phase singularity in reaction-diffusion systems. Prog. Theor. Phys. Suppl., 2003, 150: 115
CrossRef ADS Google scholar
[47]
S. Shima, Y. Kuramoto. Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators. Phys. Rev. E, 2004, 69(3): 036213
CrossRef ADS Google scholar
[48]
E. A. Martens, C. R. Laing, S. H. Strogatz. Solvable model of spiral wave chimeras. Phys. Rev. Lett., 2010, 104(4): 044101
CrossRef ADS Google scholar
[49]
N. C. Rattenborg, C. J. Amlaner, S. L. Lima. Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep. Neurosci. Biobehav. Rev., 2000, 24(8): 817
CrossRef ADS Google scholar
[50]
M. Tamaki, J. W. Bang, T. Watanabe, Y. Sasaki. Night watch in one brain hemisphere during sleep associated with the first-night effect in humans. Curr. Biol., 2016, 26(9): 1190
CrossRef ADS Google scholar
[51]
C. Lainscsek, N. Rungratsameetaweemana, S. S. Cash, T. J. Sejnowski. Cortical chimera states predict epileptic seizures. Chaos, 2019, 29(12): 121106
CrossRef ADS Google scholar
[52]
S. Majhi, B. K. Bera, D. Ghosh, M. Perc. Chimera states in neuronal networks: A review. Phys. Life Rev., 2019, 28: 100
CrossRef ADS Google scholar
[53]
S. Majhi, M. Perc, D. Ghosh. Chimera states in a multilayer network of coupled and uncoupled neurons. Chaos, 2017, 27(7): 073109
CrossRef ADS Google scholar
[54]
S. Huo, C. Tian, M. Zheng, S. Guan, C. S. Zhou, Z. Liu. Spatial multi-scaled chimera states of cerebral cortex network and its inherent structure-dynamics relationship in human brain. Nat. Sci. Rev., 2021, 8(1): nwaa125
CrossRef ADS Google scholar
[55]
T. Wu, X. Zhang, Z. Liu. Understanding the mechanisms of brain functions from the angle of synchronization and complex network. Front. Phys., 2022, 17(3): 31504
CrossRef ADS Google scholar
[56]
C. R. Laing. The dynamics of chimera states in heterogeneous Kuramoto networks. Physica D, 2009, 238(16): 1569
CrossRef ADS Google scholar
[57]
C. Gu, G. St-Yves, J. Davidsen. Spiral wave chimeras in complex oscillatory and chaotic systems. Phys. Rev. Lett., 2013, 111(13): 134101
CrossRef ADS Google scholar
[58]
X. Tang, T. Yang, I. R. Epstein, Y. Liu, Y. Zhao, Q. Gao. Novel type of chimera spiral waves arising from decoupling of a diffusible component. J. Chem. Phys., 2014, 141(2): 024110
CrossRef ADS Google scholar
[59]
J. Xie, E. Knobloch, H. C. Kao. Twisted chimera states and multicore spiral chimera states on a two-dimensional torus. Phys. Rev. E, 2015, 92(4): 042921
CrossRef ADS Google scholar
[60]
B. W. Li, H. Dierckx. Spiral wave chimeras in locally coupled oscillator systems. Phys. Rev. E, 2016, 93: 020202(R)
CrossRef ADS Google scholar
[61]
S. Kundu, S. Majhi, P. Muruganandam, D. Ghosh. Diffusion induced spiral wave chimeras in ecological system. Eur. Phys. J. Spec. Top., 2018, 227(7−9): 983
CrossRef ADS Google scholar
[62]
S. Guo, Q. Dai, H. Cheng, H. Li, F. Xie, J. Yang. Spiral wave chimera in two-dimensional nonlocally coupled FitzHugh–Nagumo systems. Chaos Solitons Fractals, 2018, 114: 394
CrossRef ADS Google scholar
[63]
E. Rybalova, A. Bukh, G. Strelkova, V. Anishchenko. Spiral and target wave chimeras in a 2D lattice of map-based neuron models. Chaos, 2019, 29(10): 101104
CrossRef ADS Google scholar
[64]
B. W. Li, Y. He, L. D. Li, L. Yang, X. Wang. Spiral wave chimeras in reaction-diffusion systems: Phenomenon, mechanism and transitions. Commun. Nonlinear Sci. Numer. Simul., 2021, 99: 105830
CrossRef ADS Google scholar
[65]
J. F. Totz, M. R. Tinsley, H. Engel, K. Showalter. Transition from spiral wave chimeras to phase cluster states. Sci. Rep., 2020, 10(1): 7821
CrossRef ADS Google scholar
[66]
J. F. Totz, J. Rode, M. R. Tinsley, K. Showalter, H. Engel. Spiral wave chimera states in large populations of coupled chemical oscillators. Nat. Phys., 2018, 14(3): 282
CrossRef ADS Google scholar
[67]
M. Bataille-Gonzalez, M. G. Clerc, O. E. Omel’chenko. Moving spiral wave chimeras. Phys. Rev. E, 2021, 104(2): L022203
CrossRef ADS Google scholar
[68]
B. K. Bera, S. Kundu, P. Muruganandam, D. Ghosh, M. Lakshmanan. Spiral wave chimeralike transient dynamics in three-dimensional grid of diffusive ecological systems. Chaos, 2021, 31(8): 083125
CrossRef ADS Google scholar
[69]
Y. Maistrenko, O. Sudakov, O. Osiv, V. Maistrenko. Chimera states in three dimensions. New J. Phys., 2015, 17(7): 073037
CrossRef ADS Google scholar
[70]
C. H. Tian, X. Y. Zhang, Z. H. Wang, Z. H. Liu. Diversity of chimera-like patterns from a model of 2D arrays of neurons with nonlocal coupling. Front. Phys., 2017, 12(3): 128904
CrossRef ADS Google scholar
[71]
A. Camilli, B. L. Bassler. Bacterial small-molecule signaling pathways. Science, 2006, 311(5764): 1113
CrossRef ADS Google scholar
[72]
J. Garcia-Ojalvo, M. B. Elowitz, S. H. Strogatz. Modeling a synthetic multicellular clock: Repressilators coupled by quorum sensing. Proc. Natl. Acad. Sci. USA, 2004, 101(30): 10955
CrossRef ADS Google scholar
[73]
S. De Monte, F. d’Ovidio, S. Danø, P. G. Sørensen. Dynamical quorum sensing: Population density encoded in cellular dynamics. Proc. Natl. Acad. Sci. USA, 2007, 104(47): 18377
CrossRef ADS Google scholar
[74]
R. Toth, A. F. Taylor, M. R. Tinsley. Collective behavior of a population of chemically coupled oscillators. J. Phys. Chem. B, 2006, 110(20): 10170
CrossRef ADS Google scholar
[75]
A. F. Taylor, M. R. Tinsley, F. Wang, Z. Huang, K. Showalter. Dynamical quorum sensing and synchronization in large populations of chemical oscillators. Science, 2009, 323(5914): 614
CrossRef ADS Google scholar
[76]
T. Gregor, K. Fujimoto, N. Masaki, S. Sawai. The onset of collective behavior in social Amoebae. Science, 2010, 328(5981): 1021
CrossRef ADS Google scholar
[77]
J. Noorbakhsh, D. J. Schwab, A. E. Sgro, T. Gregor, P. Mehta. Modeling oscillations and spiral waves in Dictyostelium populations. Phys. Rev. E, 2015, 91(6): 062711
CrossRef ADS Google scholar
[78]
T.DaninoO. Mondragón-PalominoL.Tsimring J.Hasty, A synchronized quorum of genetic clocks, Nature 463(7279), 326 (2010)
[79]
J. Schütze, T. Mair, M. J. B. Hauser, M. Falcke, J. Wolf. Metabolic synchronization by traveling waves in yeast cell layers. Biophys. J., 2011, 100(4): 809
CrossRef ADS Google scholar
[80]
J. J. Rubin, J. E. Rubin, G. B. Ermentrout. Analysis of synchronization in a slowly changing environment: How slow coupling becomes fast weak coupling. Phys. Rev. Lett., 2013, 110(20): 204101
CrossRef ADS Google scholar
[81]
J. Gou, M. J. Ward. An asymptotic analysis of a 2-D model of dynamically active compartments coupled by bulk diffusion. J. Nonlinear Sci., 2016, 26(4): 979
CrossRef ADS Google scholar
[82]
S. A. Iyaniwura, M. J. Ward. Synchrony and oscillatory dynamics for a 2-D PDE-ODE model of diffusion-mediated communication between small signaling compartments. SIAM J. Appl. Dyn. Syst., 2021, 20(1): 438
CrossRef ADS Google scholar
[83]
V. K. Chandrasekar, R. Gopal, D. V. Senthilkumar, M. Lakshmanan. Phase-flip chimera induced by environmental nonlocal coupling. Phys. Rev. E, 2016, 94(1): 012208
CrossRef ADS Google scholar
[84]
C. U. Choe, M. H. Choe, H. Jang, R. S. Kim. Symmetry breakings in two populations of oscillators coupled via diffusive environments: Chimera and heterosynchrony. Phys. Rev. E, 2020, 101(4): 042213
CrossRef ADS Google scholar
[85]
S. Alonso, K. John, M. Bär. Complex wave patterns in an effective reaction–diffusion model for chemical reactions in microemulsions. J. Chem. Phys., 2011, 134(9): 094117
CrossRef ADS Google scholar
[86]
E. M. Nicola, M. Or-Guil, W. Wolf, M. Bär. Drifting pattern domains in a reaction-diffusion system with nonlocal coupling. Phys. Rev. E, 2002, 65(5): 055101(R)
CrossRef ADS Google scholar
[87]
A. A. Cherkashin, V. K. Vanag, I. R. Epstein. Discontinuously propagating waves in the bathoferroin-catalyzed Belousov–Zhabotinsky reaction incorporated into a microemulsion. J. Chem. Phys., 2008, 128(20): 204508
CrossRef ADS Google scholar
[88]
C. P. Schenk, M. Or-Guil, M. Bode, H. G. Purwins. Interacting pulses in three-component reaction-diffusion systems on two-dimensional domains. Phys. Rev. Lett., 1997, 78(19): 3781
CrossRef ADS Google scholar
[89]
B. W. Li, X. Z. Cao, C. Fu. Quorum sensing in populations of spatially extended chaotic oscillators coupled indirectly via a heterogeneous environment. J. Nonlinear Sci., 2017, 27(6): 1667
CrossRef ADS Google scholar
[90]
X. Z. Cao, Y. He, B. W. Li. Selection of spatiotemporal patterns in arrays of spatially distributed oscillators indirectly coupled via a diffusive environment. Chaos, 2019, 29(4): 043104
CrossRef ADS Google scholar
[91]
J. T. Pan, M. C. Cai, B. W. Li, H. Zhang. Chiralities of spiral waves and their transitions. Phys. Rev. E, 2013, 87(6): 062907
CrossRef ADS Google scholar
[92]
J.F. Totz, Synchronization and Waves in Active Media, Springer, 2019

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 11875120 and the Natural Science Foundation of Zhejiang Province under Grant No. LY16A050003.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(4446 KB)

Accesses

Citations

Detail

Sections
Recommended

/