Inequality relations for the hierarchy of quantum correlations in two-qubit systems
Xiao-Gang Fan, Fa Zhao, Huan Yang, Fei Ming, Dong Wang, Liu Ye
Inequality relations for the hierarchy of quantum correlations in two-qubit systems
Entanglement, quantum steering and Bell nonlocality can be used to describe the distinct quantum correlations of quantum systems. Because of their different characteristics and application fields, how to divide them quantitatively and accurately becomes particularly important. Based on the sufficient and necessary criterion for quantum steering of an arbitrary two-qubit T-state, we derive the inequality relations between quantum steering and entanglement as well as between quantum steering and Bell nonlocality for the T-state. Additionally, we have verified those relations experimentally.
entanglement / quantum steering / Bell nonlocality / inequality relation
[1] |
A. Einstein, B. Podolsky, N. Rosen. Can quantum-mechanical description of physical reality be considered complete. Phys. Rev., 1935, 47(10): 777
CrossRef
ADS
Google scholar
|
[2] |
E. Schrödinger. Discussion of relations between separated systems. Math. Proc. Camb. Philos. Soc., 1935, 31(4): 555
CrossRef
ADS
Google scholar
|
[3] |
R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki. Quantum entanglement. Rev. Mod. Phys., 2009, 81(2): 865
CrossRef
ADS
Google scholar
|
[4] |
W. K. Wootters. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett., 1998, 80(10): 2245
CrossRef
ADS
Google scholar
|
[5] |
M. Piani. Relative entropy of entanglement and restricted measurements. Phys. Rev. Lett., 2009, 103(16): 160504
CrossRef
ADS
Google scholar
|
[6] |
A. Miranowicz, A. Grudka. Ordering two-qubit states with concurrence and negativity. Phys. Rev. A, 2004, 70(3): 032326
CrossRef
ADS
Google scholar
|
[7] |
A. Ekert, R. Jozsa. Quantum computation and Shor’s factoring algorithm. Rev. Mod. Phys., 1996, 68(3): 733
CrossRef
ADS
Google scholar
|
[8] |
C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett., 1993, 70(13): 1895
CrossRef
ADS
Google scholar
|
[9] |
N. Gisin, G. Ribordy, W. Tittel, H. Zbinden. Quantum cryptography. Rev. Mod. Phys., 2002, 74(1): 145
CrossRef
ADS
Google scholar
|
[10] |
C. H. Bennett, D. P. DiVincenzo, J. Smolin, W. K. Wootters. Mixed-state entanglement and quantum error correction. Phys. Rev. A, 1996, 54(5): 3824
CrossRef
ADS
Google scholar
|
[11] |
H. M. Wiseman, S. J. Jones, A. C. Doherty. Steering, entanglement, nonlocality, and the Einstein−Podolsky−Rosen paradox. Phys. Rev. Lett., 2007, 98(14): 140402
CrossRef
ADS
Google scholar
|
[12] |
R. Uola, A. C. S. Costa, H. C. Nguyen, O. Gühne. Quantum steering. Rev. Mod. Phys., 2020, 92(1): 015001
CrossRef
ADS
Google scholar
|
[13] |
J. S. Bell. On the Einstein−Podolsky−Rosen paradox. Physics, 1964, 1(3): 195
CrossRef
ADS
Google scholar
|
[14] |
N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner. Bell nonlocality. Rev. Mod. Phys., 2014, 86(2): 419
CrossRef
ADS
Google scholar
|
[15] |
W. X. Zhong, G. L. Cheng, X. M. Hu. One-way Einstein−Podolsky−Rosen steering via atomic coherence. Opt. Express, 2017, 25(10): 11584
CrossRef
ADS
Google scholar
|
[16] |
C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, H. M. Wiseman. One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering. Phys. Rev. A, 2012, 85(1): 010301(R)
CrossRef
ADS
Google scholar
|
[17] |
B. Opanchuk, L. Arnaud, M. D. Reid. Detecting faked continuous-variable entanglement using one-sided device independent entanglement witnesses. Phys. Rev. A, 2014, 89(6): 062101
CrossRef
ADS
Google scholar
|
[18] |
N. Walk, S. Hosseini, J. Geng, O. Thearle, J. Y. Haw, S. Armstrong, S. M. Assad, J. Janousek, T. C. Ralph, T. Symul, H. M. Wiseman, P. K. Lam. Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution. Optica, 2016, 3(6): 634
CrossRef
ADS
Google scholar
|
[19] |
C. M. Zhang, M. Li, H. W. Li, Z. Q. Yin, D. Wang, J. Z. Huang, Y. G. Han, M. L. Xu, W. Chen, S. Wang, P. Treeviriyanupab, G. C. Guo, Z. F. Han. Decoy-state measurement-device independent quantum key distribution based on the Clauser−Horne−Shimony−Holt inequality. Phys. Rev. A, 2014, 90(3): 034302
CrossRef
ADS
Google scholar
|
[20] |
Č. Brukner, M. Żukowski, J. W. Pan, A. Zeilinger. Bell’s inequalities and quantum communication complexity. Phys. Rev. Lett., 2004, 92(12): 127901
CrossRef
ADS
Google scholar
|
[21] |
S. Pironio, A. Acín, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, C. Monroe. Random numbers certified by Bell’s theorem. Nature, 2010, 464(7291): 1021
CrossRef
ADS
Google scholar
|
[22] |
M. T. Quintino, T. Vertesi, D. Cavalcanti, R. Augusiak, M. Demianowicz, A. Acín, N. Brunner. Inequivalence of entanglement, steering, and Bell nonlocality for general measurements. Phys. Rev. A, 2015, 92(3): 032107
CrossRef
ADS
Google scholar
|
[23] |
X. G. Fan, H. Yang, F. Ming, D. Wang, L. Ye. Constraint relation between steerability and concurrence for two-qubit states. Ann. Phys., 2021, 533(8): 2100098
CrossRef
ADS
Google scholar
|
[24] |
C. Chen, C. L. Ren, X. J. Ye, J. L. Chen. Mapping criteria between nonlocality and steerability in qudit−qubit systems and between steerability and entanglement in qubit-qudit systems. Phys. Rev. A, 2018, 98(5): 052114
CrossRef
ADS
Google scholar
|
[25] |
D. Das, S. Sasmal, S. Roy. Detecting Einstein−Podolsky−Rosen steering through entanglement detection. Phys. Rev. A, 2019, 99(5): 052109
CrossRef
ADS
Google scholar
|
[26] |
F. Verstraete, M. M. Wolf. Entanglement versus bell violations and their behavior under local filtering operations. Phys. Rev. Lett., 2002, 89(17): 170401
CrossRef
ADS
Google scholar
|
[27] |
K. Bartkiewicz, B. Horst, K. Lemr, A. Miranowicz. Entanglement estimation from Bell inequality violation. Phys. Rev. A, 2013, 88(5): 052105
CrossRef
ADS
Google scholar
|
[28] |
B. Horst, K. Bartkiewicz, A. Miranowicz. Two-qubit mixed states more entangled than pure states: Comparison of the relative entropy of entanglement for a given nonlocality. Phys. Rev. A, 2013, 87(4): 042108
CrossRef
ADS
Google scholar
|
[29] |
K. Bartkiewicz, K. Lemr, A. Černoch, A. Miranowicz. Bell nonlocality and fully entangled fraction measured in an entanglement-swapping device without quantum state tomography. Phys. Rev. A, 2017, 95(3): 030102(R)
CrossRef
ADS
Google scholar
|
[30] |
Z. F. Su, H. S. Tan, X. Y. Li. Entanglement as upper bound for the nonlocality of a general two-qubit system. Phys. Rev. A, 2020, 101(4): 042112
CrossRef
ADS
Google scholar
|
[31] |
M. Li, M. J. Zhao, S. M. Fei, Z. X. Wang. Experimental detection of quantum entanglement. Front. Phys., 2013, 8(4): 357
CrossRef
ADS
Google scholar
|
[32] |
Z. R. Zhong, X. Wang, W. Qin. Towards quantum entanglement of micromirrors via a two-level atom and radiation pressure. Front. Phys., 2018, 13(5): 130319
CrossRef
ADS
Google scholar
|
[33] |
Q. Dong, A. J. Torres-Arenas, G. H. Sun, W. C. Qiang, S. H. Dong. Entanglement measures of a new type pseudo-pure state in accelerated frames. Front. Phys., 2019, 14(2): 21603
CrossRef
ADS
Google scholar
|
[34] |
P. Zhang. Quantum entanglement in the Sachdev−Ye−Kitaev model and its generalizations. Front. Phys., 2022, 17(4): 43201
CrossRef
ADS
Google scholar
|
[35] |
Y. Y. Yang, W. Y. Sun, W. N. Shi, F. Ming, D. Wang, L. Ye. Dynamical characteristic of measurement uncertainty under Heisenberg spin models with Dzyaloshinskii−Moriya interactions. Front. Phys., 2019, 14(3): 31601
CrossRef
ADS
Google scholar
|
[36] |
L. Y. Cheng, F. Ming, F. Zhao, L. Ye, D. Wang. The uncertainty and quantum correlation of measurement in double quantum-dot systems. Front. Phys., 2022, 17(6): 61504
CrossRef
ADS
Google scholar
|
[37] |
Y. Cao, D. Wang, X. G. Fan, F. Ming, Z. Y. Wang, L. Ye. Complementary relation between quantum entanglement and entropic uncertainty. Commum. Theor. Phys., 2021, 73(1): 015101
CrossRef
ADS
Google scholar
|
[38] |
H. C. Nguyen, T. Vu. Necessary and sufficient condition for steerability of two-qubit states by the geometry of steering outcomes. Europhys. Lett., 2016, 115(1): 10003
CrossRef
ADS
Google scholar
|
[39] |
H. C. Nguyen, H. V. Nguyen, O. Gühne. Geometry of Einstein−Podolsky−Rosen correlations. Phys. Rev. Lett., 2019, 122(24): 240401
CrossRef
ADS
Google scholar
|
[40] |
X. G. Fan, W. Y. Sun, Z. Y. Ding, H. Yang, F. Ming, D. Wang, L. Ye. Universal complementarity between coherence and intrinsic concurrence for two-qubit states. New J. Phys., 2019, 21(9): 093053
CrossRef
ADS
Google scholar
|
[41] |
S. Jevtic, M. J. W. Hall, M. R. Anderson, M. Zwierz, H. M. Wiseman. Einstein−Podolsky−Rosen steering and the steering ellipsoid. J. Opt. Soc. Am. B, 2015, 32(4): A40
CrossRef
ADS
Google scholar
|
[42] |
X.G. FanH. YangF.MingX.K. SongD.Wang L.Ye, Necessary and sufficient criterion of steering for two-qubit T states, arXiv: 2103.04280v1 (2021)
|
[43] |
R. Horodecki, P. Horodecki, M. Horodecki. Violating bell inequality by mixed spin-1/2 states: Necessary and sufficient condition. Phys. Lett. A, 1995, 200(5): 340
CrossRef
ADS
Google scholar
|
[44] |
P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, P. H. Eberhard. Ultrabright source of polarization-entangled photons. Phys. Rev. A, 1999, 60(2): R773
CrossRef
ADS
Google scholar
|
[45] |
A. Aiello, G. Puentes, D. Voigt, J. P. Woerdman. Maximally entangled mixed-state generation via local operations. Phys. Rev. A, 2007, 75(6): 062118
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |