Topological hinge modes in Dirac semimetals

Xu-Tao Zeng, Ziyu Chen, Cong Chen, Bin-Bin Liu, Xian-Lei Sheng, Shengyuan A. Yang

PDF(6122 KB)
PDF(6122 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (1) : 13308. DOI: 10.1007/s11467-022-1221-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Topological hinge modes in Dirac semimetals

Author information +
History +

Abstract

Dirac semimetals (DSMs) are an important class of topological states of matter. Here, focusing on DSMs of band inversion type, we investigate their boundary modes from the effective model perspective. We show that in order to properly capture the boundary modes, k-cubic terms must be included in the effective model, which would drive an evolution of surface degeneracy manifold from a nodal line to a nodal point. Sizable k-cubic terms are also needed for better exposing the topological hinge modes in the spectrum. Using first-principles calculations, we demonstrate that this feature and the topological hinge modes can be clearly exhibited in β-CuI. We extend the discussion to magnetic DSMs and show that the time-reversal symmetry breaking can gap out the surface bands and hence is beneficial for the experimental detection of hinge modes. Furthermore, we show that magnetic DSMs serve as a parent state for realizing multiple other higher-order topological phases, including higher-order Weyl-point/nodal-line semimetals and higher-order topological insulators.

Graphical abstract

Keywords

topological / hinge / Dirac / semimetals

Cite this article

Download citation ▾
Xu-Tao Zeng, Ziyu Chen, Cong Chen, Bin-Bin Liu, Xian-Lei Sheng, Shengyuan A. Yang. Topological hinge modes in Dirac semimetals. Front. Phys., 2023, 18(1): 13308 https://doi.org/10.1007/s11467-022-1221-y

References

[1]
M. Z. Hasan, C. L. Kane. Topological insulators. Rev. Mod. Phys., 2010, 82(4): 3045
CrossRef ADS Google scholar
[2]
X. L. Qi, S. C. Zhang. Topological insulators and superconductors. Rev. Mod. Phys., 2011, 83(4): 1057
CrossRef ADS Google scholar
[3]
S.Q. Shen, Topological Insulators, Vol. 174, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012
[4]
B.A. BernevigT.L. Hughes, Topological Insulators and Topological Superconductors, Princeton University Press, 2013
[5]
A. Bansil, H. Lin, T. Das. Topological band theory. Rev. Mod. Phys., 2016, 88(2): 021004
CrossRef ADS Google scholar
[6]
C. K. Chiu, J. C. Y. Teo, A. P. Schnyder, S. Ryu. Classification of topological quantum matter with symmetries. Rev. Mod. Phys., 2016, 88(3): 035005
CrossRef ADS Google scholar
[7]
S. A. Yang. Dirac and Weyl materials: Fundamental aspects and some spintronics applications. Spin, 2016, 6(2): 1640003
CrossRef ADS Google scholar
[8]
X. Dai. Weyl fermions go into orbit. Nat. Phys., 2016, 12(8): 727
CrossRef ADS Google scholar
[9]
A. A. Burkov. Topological semimetals. Nat. Mater., 2016, 15(11): 1145
CrossRef ADS Google scholar
[10]
N. P. Armitage, E. J. Mele, A. Vishwanath. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys., 2018, 90(1): 015001
CrossRef ADS Google scholar
[11]
J. Qi, H. Liu, H. Jiang, X. C. Xie. Dephasing effects in topological insulators. Front. Phys., 2019, 14(4): 43403
CrossRef ADS Google scholar
[12]
F. D. M. Haldane. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett., 1988, 61(18): 2015
CrossRef ADS Google scholar
[13]
X. Wan, A. M. Turner, A. Vishwanath, S. Y. Savrasov. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B, 2011, 83(20): 205101
CrossRef ADS Google scholar
[14]
S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, A. M. Rappe. Dirac semimetal in three dimensions. Phys. Rev. Lett., 2012, 108(14): 140405
CrossRef ADS Google scholar
[15]
Z. Wang, Y. Sun, X. Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, Z. Fang. Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb). Phys. Rev. B, 2012, 85(19): 195320
CrossRef ADS Google scholar
[16]
Z. Wang, H. Weng, Q. Wu, X. Dai, Z. Fang. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys. Rev. B, 2013, 88(12): 125427
CrossRef ADS Google scholar
[17]
S. Li, Z. M. Yu, Y. Yao, S. A. Yang. Type-II topological metals. Front. Phys., 2020, 15(4): 43201
CrossRef ADS Google scholar
[18]
J. A. Steinberg, S. M. Young, S. Zaheer, C. L. Kane, E. J. Mele, A. M. Rappe. Bulk Dirac points in distorted spinels. Phys. Rev. Lett., 2014, 112(3): 036403
CrossRef ADS Google scholar
[19]
Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, Y. L. Chen. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science, 2014, 343(6173): 864
CrossRef ADS Google scholar
[20]
Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S. K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, Y. L. Chen. A stable three-dimensional topological Dirac semimetal Cd3As2. Nat. Mater., 2014, 13(7): 677
CrossRef ADS Google scholar
[21]
M. Neupane, S. Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T. R. Chang, H. T. Jeng, H. Lin, A. Bansil, F. Chou, M. Z. Hasan. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nat. Commun., 2014, 5(1): 3786
CrossRef ADS Google scholar
[22]
S. Jeon, B. B. Zhou, A. Gyenis, B. E. Feldman, I. Kimchi, A. C. Potter, Q. D. Gibson, R. J. Cava, A. Vishwanath, A. Yazdani. Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2. Nat. Mater., 2014, 13(9): 851
CrossRef ADS Google scholar
[23]
S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Büchner, R. J. Cava. Experimental realization of a three-dimensional Dirac semimetal. Phys. Rev. Lett., 2014, 113(2): 027603
CrossRef ADS Google scholar
[24]
T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, N. P. Ong. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nat. Mater., 2015, 14(3): 280
CrossRef ADS Google scholar
[25]
S. Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T. R. Chang, H. T. Jeng, C. Y. Huang, W. F. Tsai, H. Lin, P. P. Shibayev, F. C. Chou, R. J. Cava, M. Z. Hasan. Observation of Fermi arc surface states in a topological metal. Science, 2015, 347(6219): 294
CrossRef ADS Google scholar
[26]
J. Xiong, S. K. Kushwaha, T. Liang, J. W. Krizan, M. Hirschberger, W. Wang, R. J. Cava, N. P. Ong. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science, 2015, 350(6259): 413
CrossRef ADS Google scholar
[27]
M. Kargarian, M. Randeria, Y. M. Lu. Are the surface Fermi arcs in Dirac semimetals topologically protected. Proc. Natl. Acad. Sci. USA, 2016, 113(31): 8648
CrossRef ADS Google scholar
[28]
F. Zhang, C. L. Kane, E. J. Mele. Surface state magnetization and chiral edge states on topological insulators. Phys. Rev. Lett., 2013, 110(4): 046404
CrossRef ADS Google scholar
[29]
W. A. Benalcazar, B. A. Bernevig, T. L. Hughes. Quantized electric multipole insulators. Science, 2017, 357(6346): 61
CrossRef ADS Google scholar
[30]
J. Langbehn, Y. Peng, L. Trifunovic, F. von Oppen, P. W. Brouwer. Reflection-symmetric second-order topological insulators and superconductors. Phys. Rev. Lett., 2017, 119(24): 246401
CrossRef ADS Google scholar
[31]
Z. Song, Z. Fang, C. Fang. (d−2)-dimensional edge states of rotation symmetry protected topological states. Phys. Rev. Lett., 2017, 119(24): 246402
CrossRef ADS Google scholar
[32]
F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S. P. Parkin, B. A. Bernevig, T. Neupert, B. Andrei Bernevig, T. Neupert. Higher-order topological insulators. Sci. Adv., 2018, 4(6): eaat0346
CrossRef ADS Google scholar
[33]
F. Schindler, Z. Wang, M. G. Vergniory, A. M. Cook, A. Murani, S. Sengupta, A. Y. Kasumov, R. Deblock, S. Jeon, I. Drozdov, H. Bouchiat, S. Guéron, A. Yazdani, B. A. Bernevig, T. Neupert. Higher-order topology in bismuth. Nat. Phys., 2018, 14(9): 918
CrossRef ADS Google scholar
[34]
X. L. Sheng, C. Chen, H. Liu, Z. Chen, Z. M. Yu, Y. X. Zhao, S. A. Yang. Two-dimensional second-order topological insulator in graphdiyne. Phys. Rev. Lett., 2019, 123(25): 256402
CrossRef ADS Google scholar
[35]
H. X. Wang, Z. K. Lin, B. Jiang, G. Y. Guo, J. H. Jiang. Higher-order Weyl semimetals. Phys. Rev. Lett., 2020, 125(14): 146401
CrossRef ADS Google scholar
[36]
S. A. A. Ghorashi, T. Li, T. L. Hughes. Higher-order Weyl semimetals. Phys. Rev. Lett., 2020, 125(26): 266804
CrossRef ADS Google scholar
[37]
H. Qiu, M. Xiao, F. Zhang, C. Qiu. Higher-order Dirac sonic crystals. Phys. Rev. Lett., 2021, 127(14): 146601
CrossRef ADS Google scholar
[38]
C. Chen, X. T. Zeng, Z. Chen, Y. X. Zhao, X. L. Sheng, S. A. Yang. Second-order real nodal-line semimetal in three-dimensional graphdiyne. Phys. Rev. Lett., 2022, 128(2): 026405
CrossRef ADS Google scholar
[39]
H. D. Scammell, J. Ingham, M. Geier, T. Li. Intrinsic first- and higher-order topological superconductivity in a doped topological insulator. Phys. Rev. B, 2022, 105(19): 195149
CrossRef ADS Google scholar
[40]
B. J. Wieder, Z. Wang, J. Cano, X. Dai, L. M. Schoop, B. Bradlyn, B. A. Bernevig. Strong and fragile topological Dirac semimetals with higher-order Fermi arcs. Nat. Commun., 2020, 11(1): 627
CrossRef ADS Google scholar
[41]
Y. Fang, J. Cano. Classification of Dirac points with higher-order Fermi arcs. Phys. Rev. B, 2021, 104(24): 245101
CrossRef ADS Google scholar
[42]
B. A. Bernevig, T. L. Hughes, S. C. Zhang. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science, 2006, 314(5806): 1757
CrossRef ADS Google scholar
[43]
C. Le, X. Wu, S. Qin, Y. Li, R. Thomale, F. C. Zhang, J. Hu. Dirac semimetal in β-CuI without surface Fermi arcs. Proc. Natl. Acad. Sci. USA, 2018, 115(33): 8311
CrossRef ADS Google scholar
[44]
Y. Shan, G. Li, G. Tian, J. Han, C. Wang, S. Liu, H. Du, Y. Yang. Description of the phase transitions of cuprous iodide. J. Alloys Compd., 2009, 477(1−2): 403
CrossRef ADS Google scholar
[45]
P. Tang, Q. Zhou, G. Xu, S. C. Zhang. Dirac fermions in an antiferromagnetic semimetal. Nat. Phys., 2016, 12(12): 1100
CrossRef ADS Google scholar
[46]
G. Hua, S. Nie, Z. Song, R. Yu, G. Xu, K. Yao. Dirac semimetal in type-IV magnetic space groups. Phys. Rev. B, 2018, 98: 201116(R)
CrossRef ADS Google scholar
[47]
K. Wang, J. X. Dai, L. B. Shao, S. A. Yang, Y. X. Zhao. Boundary Criticality of PT-invariant topology and second-order nodal-line semimetals. Phys. Rev. Lett., 2020, 125(12): 126403
CrossRef ADS Google scholar
[48]
S.NieJ. ChenC.YueC.LeD.Yuan W.ZhangH. Weng, Tunable Dirac semimetals with higher-order Fermi arcs in Kagome lattices Pd3Pb2X2 (X = S, Se), arXiv: 2203.03162 (2022)
[49]
G. Kresse, J. Hafner. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B, 1994, 49(20): 14251
CrossRef ADS Google scholar
[50]
G. Kresse, J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169
CrossRef ADS Google scholar
[51]
P. E. Blöchl. Projector augmented-wave method. Phys. Rev. B, 1994, 50(24): 17953
CrossRef ADS Google scholar
[52]
J. P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
CrossRef ADS Google scholar
[53]
H. J. Monkhorst, J. D. Pack. Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13(12): 5188
CrossRef ADS Google scholar
[54]
N. Marzari, D. Vanderbilt. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B, 1997, 56(20): 12847
CrossRef ADS Google scholar
[55]
I. Souza, N. Marzari, D. Vanderbilt. Maximally localized Wannier functions for entangled energy bands. Phys. Rev. B, 2001, 65(3): 035109
CrossRef ADS Google scholar
[56]
M. P. L. Sancho, J. M. L. Sancho, J. Rubio. Quick iterative scheme for the calculation of transfer matrices: application to Mo(100). J. Phys. F Met. Phys., 1984, 14(5): 1205
CrossRef ADS Google scholar
[57]
M. P. L. Sancho, J. M. L. Sancho, J. M. L. Sancho, J. Rubio. Highly convergent schemes for the calculation of bulk and surface Green functions. J. Phys. F Met. Phys., 1985, 15(4): 851
CrossRef ADS Google scholar
[58]
Q. Wu, S. Zhang, H. F. Song, M. Troyer, A. A. Soluyanov. WannierTools: An open-source software package for novel topological materials. Comput. Phys. Commun., 2018, 224: 405
CrossRef ADS Google scholar

Note added

Recently, a preprint appeared [48], which reported higher-order Dirac semimetal state in the materials Pd 3Pb2X2 (X = S, Se).

Acknowledgements

We thank Zhijun Wang and D. L. Deng for helpful discussions. We acknowledge computational support from HPC of Beihang University. This work is supported by the NSFC (Grants No. 12174018, No. 12074024, No. 11774018), the National Key R&D Program of China (No. 2022YFA1402600), the Fundamental Research Funds for the Central Universities and the Singapore Ministry of Education AcRF Tier 2 (MOE-T2EP50220-0011).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(6122 KB)

Accesses

Citations

Detail

Sections
Recommended

/