A giant atom with modulated transition frequency
Lei Du, Yan Zhang, Yong Li
A giant atom with modulated transition frequency
Giant atoms are known for the frequency-dependent spontaneous emission and associated interference effects. In this paper, we study the spontaneous emission dynamics of a two-level giant atom with dynamically modulated transition frequency. It is shown that the retarded feedback effect of the giant-atom system is greatly modified by a dynamical phase arising from the frequency modulation and the retardation effect itself. Interestingly, such a modification can in turn suppress the retarded feedback such that the giant atom behaves like a small one. By introducing an additional phase difference between the two atom-waveguide coupling paths, we also demonstrate the possibility of realizing chiral and tunable temporal profiles of the output fields. The results in this paper have potential applications in quantum information processing and quantum network engineering.
giant atoms / frequency modulation / spontaneous emission dynamics / non-Markovian retardation effect
[1] |
G.S. Agarwal, Quantum Statistical Theories of Spontaneous Emission and Their Relation to Other Approaches, Springer, Berlin, 1974
|
[2] |
H.J. Carmichael, An Open Systems Approach to Quantum Optics, Springer-Verlag, Berlin, 1993
|
[3] |
C.W. GardinerP.Zoller, Quantum Noise, 2nd Ed., Springer, Berlin, 2000
|
[4] |
J. T. Shen, S. Fan. Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits. Phys. Rev. Lett., 2005, 95(21): 213001
CrossRef
ADS
Google scholar
|
[5] |
L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, F. Nori. Controllable scattering of a single photon inside a one-dimensional resonator waveguide. Phys. Rev. Lett., 2008, 101(10): 100501
CrossRef
ADS
Google scholar
|
[6] |
L. Zhou, L. P. Yang, Y. Li, C. P. Sun. Quantum routing of single photons with a cyclic three-level system. Phys. Rev. Lett., 2013, 111(10): 103604
CrossRef
ADS
Google scholar
|
[7] |
H. Zheng, D. J. Gauthier, H. U. Baranger. Waveguide-QED-based photonic quantum computation. Phys. Rev. Lett., 2013, 111(9): 090502
CrossRef
ADS
Google scholar
|
[8] |
C. Gonzalez-Ballestero, E. Moreno, F. J. Garcia-Vidal, A. Gonzalez-Tudela. Nonreciprocal few-photon routing schemes based on chiral waveguide-emitter couplings. Phys. Rev. A, 2016, 94(6): 063817
CrossRef
ADS
Google scholar
|
[9] |
M. Mirhosseini, E. Kim, X. Zhang, A. Sipahigil, P. B. Dieterle, A. J. Keller, A. Asenjo-Garcia, D. E. Chang, O. Painter. Cavity quantum electrodynamics with atom-like mirrors. Nature, 2019, 569(7758): 692
CrossRef
ADS
Google scholar
|
[10] |
B. W. Adams, C. Buth, S. Cavaletto, J. Evers, Z. Harman, C. H. Keitel, A. Palffy, A. Picon, R. Röhlsberger, Y. Rostovtsev, K. Tamasaku. X-ray quantum optics. J. Mod. Opt., 2013, 60(1): 2
CrossRef
ADS
Google scholar
|
[11] |
S. Cavaletto, Z. Harman, C. Ott, C. Buth, T. Pfeifer, C. H. Keitel. Broadband high-resolution X-ray frequency combs. Nat. Photon., 2014, 8: 520
CrossRef
ADS
Google scholar
|
[12] |
X. Z. Qin, J. H. Huang, H. H. Zhong, C. Lee. Clock frequency estimation under spontaneous emission. Front. Phys., 2018, 13(1): 130302
CrossRef
ADS
Google scholar
|
[13] |
I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, P. Lodahl. Deterministic photon-emitter coupling in chiral photonic circuits. Nat. Nanotechnol., 2015, 10(9): 775
CrossRef
ADS
Google scholar
|
[14] |
P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, P. Zoller. Chiral quantum optics. Nature, 2017, 541(7638): 473
CrossRef
ADS
Google scholar
|
[15] |
D. Kleppner. Inhibited spontaneous emission. Phys. Rev. Lett., 1981, 47(4): 233
CrossRef
ADS
Google scholar
|
[16] |
W. Jhe, A. Anderson, E. A. Hinds, D. Meschede, L. Moi, S. Haroche. Suppression of spontaneous decay at optical frequencies: Test of vacuum-field anisotropy in confined space. Phys. Rev. Lett., 1987, 58(14): 1497
CrossRef
ADS
Google scholar
|
[17] |
D. J. Heinzen, J. J. Childs, J. E. Thomas, M. S. Feld. Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator. Phys. Rev. Lett., 1987, 58(13): 1320
CrossRef
ADS
Google scholar
|
[18] |
E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 1987, 58(20): 2059
CrossRef
ADS
Google scholar
|
[19] |
P. Lambropoulos, G. M. Nikolopoulos, T. R. Nielsen, S. Bay. Fundamental quantum optics in structured reservoirs. Rep. Prog. Phys., 2000, 63(4): 455
CrossRef
ADS
Google scholar
|
[20] |
P. Lodahl, A. Floris van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, W. L. Vos. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature, 2004, 430(7000): 654
CrossRef
ADS
Google scholar
|
[21] |
S. Noda, M. Fujita, T. Asano. Spontaneous emission control by photonic crystals and nanocavities. Nat. Photonics, 2007, 1(8): 449
CrossRef
ADS
Google scholar
|
[22] |
A. G. Kofman, G. Kurizki. Universal dynamical control of quantum mechanical decay: Modulation of the coupling to the continuum. Phys. Rev. Lett., 2001, 87(27): 270405
CrossRef
ADS
Google scholar
|
[23] |
U. Dorner, P. Zoller. Laser-driven atoms in half cavities. Phys. Rev. A, 2002, 66(2): 023816
CrossRef
ADS
Google scholar
|
[24] |
M. Kiffner, M. Macovei, J. Evers, C. H. Keitel. Vacuum-induced processes in multilevel atoms. Prog. Opt., 2010, 55: 85
CrossRef
ADS
Google scholar
|
[25] |
L. Viola, S. Lloyd. Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A, 1998, 58(4): 2733
CrossRef
ADS
Google scholar
|
[26] |
A. G. Kofman, G. Kurizki. Acceleration of quantum decay processes by frequent observations. Nature, 2000, 405(6786): 546
CrossRef
ADS
Google scholar
|
[27] |
D. Dhar, L. K. Grover, S. M. Roy. Preserving quantum states using inverting pulses: A super-Zeno effect. Phys. Rev. Lett., 2006, 96(10): 100405
CrossRef
ADS
Google scholar
|
[28] |
J. Evers, C. H. Keitel. Spontaneous-emission suppression on arbitrary atomic transitions. Phys. Rev. Lett., 2002, 89(16): 163601
CrossRef
ADS
Google scholar
|
[29] |
U. Akram, J. Evers, C. H. Keitel. Multiphoton quantum interference on a dipole-forbidden transition. J. Phys. At. Mol. Opt. Phys., 2005, 38(4): L69
CrossRef
ADS
Google scholar
|
[30] |
A. F. Kockum, P. Delsing, G. Johansson. Designing frequency-dependent relaxation rates and Lamb shifts for a giant artificial atom. Phys. Rev. A, 2014, 90(1): 013837
CrossRef
ADS
Google scholar
|
[31] |
A.F. Kockum, Quantum Optics with Giant Atoms the First Five Years, in: Mathematics for Industry, Springer, Singapore, 2021, pp 125−146
|
[32] |
H. Dong, Z. R. Gong, H. Ian, L. Zhou, C. P. Sun. Intrinsic cavity QED and emergent quasinormal modes for a single photon. Phys. Rev. A, 2009, 79(6): 063847
CrossRef
ADS
Google scholar
|
[33] |
M. Bradford, J. T. Shen. Spontaneous emission in cavity QED with a terminated waveguide. Phys. Rev. A, 2013, 87(6): 063830
CrossRef
ADS
Google scholar
|
[34] |
T. Tufarelli, F. Ciccarello, M. S. Kim. Dynamics of spontaneous emission in a single-end photonic waveguide. Phys. Rev. A, 2013, 87(1): 013820
CrossRef
ADS
Google scholar
|
[35] |
T. Tufarelli, M. S. Kim, F. Ciccarello. Non-Markovianity of a quantum emitter in front of a mirror. Phys. Rev. A, 2014, 90(1): 012113
CrossRef
ADS
Google scholar
|
[36] |
G. Calajó, Y. L. L. Fang, H. U. Baranger, F. Ciccarello. Exciting a bound state in the continuum through multiphoton scattering plus delayed quantum feedback. Phys. Rev. Lett., 2019, 122(7): 073601
CrossRef
ADS
Google scholar
|
[37] |
A. F. Kockum, G. Johansson, F. Nori. Decoherence-free interaction between giant atoms in waveguide quantum electrodynamics. Phys. Rev. Lett., 2018, 120(14): 140404
CrossRef
ADS
Google scholar
|
[38] |
B. Kannan, M. J. Ruckriegel, D. L. Campbell, A. Frisk Kockum, J. Braumüller, D. K. Kim, M. Kjaergaard, P. Krantz, A. Melville, B. M. Niedzielski, A. Vepsäläinen, R. Winik, J. L. Yoder, F. Nori, T. P. Orlando, S. Gustavsson, W. D. Oliver. Waveguide quantum electrodynamics with superconducting artificial giant atoms. Nature, 2020, 583(7818): 775
CrossRef
ADS
Google scholar
|
[39] |
A. Carollo, D. Cilluffo, F. Ciccarello. Mechanism of decoherence-free coupling between giant atoms. Phys. Rev. Res., 2020, 2(4): 043184
CrossRef
ADS
Google scholar
|
[40] |
L. Guo, A. F. Kockum, F. Marquardt, G. Johansson. Oscillating bound states for a giant atom. Phys. Rev. Res., 2020, 2(4): 043014
CrossRef
ADS
Google scholar
|
[41] |
S. Guo, Y. Wang, T. Purdy, J. Taylor. Beyond spontaneous emission: Giant atom bounded in the continuum. Phys. Rev. A, 2020, 102(3): 033706
CrossRef
ADS
Google scholar
|
[42] |
X. Wang, T. Liu, A. F. Kockum, H. R. Li, F. Nori. Tunable chiral bound states with giant atoms. Phys. Rev. Lett., 2021, 126(4): 043602
CrossRef
ADS
Google scholar
|
[43] |
W. Zhao, Z. Wang. Single-photon scattering and bound states in an atom-waveguide system with two or multiple coupling points. Phys. Rev. A, 2020, 101(5): 053855
CrossRef
ADS
Google scholar
|
[44] |
C. Vega, M. Bello, D. Porras, A. González-Tudela. Qubit-photon bound states in topological waveguides with long-range hoppings. Phys. Rev. A, 2021, 104(5): 053522
CrossRef
ADS
Google scholar
|
[45] |
A. Soro, A. F. Kockum. Chiral quantum optics with giant atoms. Phys. Rev. A, 2022, 105(2): 023712
CrossRef
ADS
Google scholar
|
[46] |
X. Wang, H. R. Li. Chiral quantum network with giant atoms. Quantum Sci. Technol., 2022, 7(3): 035007
CrossRef
ADS
Google scholar
|
[47] |
L. Du, Y. Zhang, J. H. Wu, A. F. Kockum, Y. Li. Giant atoms in synthetic frequency dimensions. Phys. Rev. Lett., 2022, 128(22): 223602
CrossRef
ADS
Google scholar
|
[48] |
L. Du, Y. Li. Single-photon frequency conversion via a giant Λ-type atom. Phys. Rev. A, 2021, 104(2): 023712
CrossRef
ADS
Google scholar
|
[49] |
L. Du, Y. T. Chen, Y. Li. Nonreciprocal frequency conversion with chiral Λ-type atoms. Phys. Rev. Res., 2021, 3(4): 043226
CrossRef
ADS
Google scholar
|
[50] |
Q. Y. Cai, W. Z. Jia. Coherent single-photon scattering spectra for a giant-atom waveguide-QED system beyond the dipole approximation. Phys. Rev. A, 2021, 104(3): 033710
CrossRef
ADS
Google scholar
|
[51] |
S. L. Feng, W. Z. Jia. Manipulating single-photon transport in a waveguide-QED structure containing two giant atoms. Phys. Rev. A, 2021, 104(6): 063712
CrossRef
ADS
Google scholar
|
[52] |
W. Zhao, Y. Zhang, Z. Wang. Phase-modulated Autler−Townes splitting in a giant-atom system within waveguide QED. Front. Phys., 2022, 17(4): 42506
CrossRef
ADS
Google scholar
|
[53] |
X. L. Yin, Y. H. Liu, J. F. Huang, J. Q. Liao. Single photon scattering in a giant-molecule waveguide-QED system. Phys. Rev. A, 2022, 106(1): 013715
CrossRef
ADS
Google scholar
|
[54] |
Y. T. Chen, L. Du, L. Guo, Z. Wang, Y. Zhang, Y. Li, J. H. Wu. Nonreciprocal and chiral single-photon scattering for giant atoms. Commun. Phys., 2022, 5(1): 215
CrossRef
ADS
Google scholar
|
[55] |
H. Xiao, L. Wang, Z.-H. Li, X. Chen, L. Yuan. Bound state in a giant atom-modulated resonators system. npj Quantum Infom., 2022, 8: 80
CrossRef
ADS
Google scholar
|
[56] |
W. D. Oliver, Y. Yu, J. C. Lee, K. K. Berggren, L. S. Levitov, T. P. Orlando. Mach−Zehnder interferometry in a strongly driven superconducting qubit. Science, 2005, 310(5754): 1653
CrossRef
ADS
Google scholar
|
[57] |
C. M. Wilson, T. Duty, F. Persson, M. Sandberg, G. Johansson, P. Delsing. Coherence times of dressed states of a superconducting qubit under extreme driving. Phys. Rev. Lett., 2007, 98(25): 257003
CrossRef
ADS
Google scholar
|
[58] |
M. Metcalfe, S. M. Carr, A. Muller, G. S. Solomon, J. Lawall. Resolved sideband emission of InAs/GaAs quantum dots strained by surface acoustic waves. Phys. Rev. Lett., 2010, 105(3): 037401
CrossRef
ADS
Google scholar
|
[59] |
M. Schmidt, S. Kessler, V. Peano, O. Painter, F. Marquardt. Optomechanical creation of magnetic fields for photons on a lattice. Optica, 2015, 2(7): 635
CrossRef
ADS
Google scholar
|
[60] |
P. Roushan, C. Neill, A. Megrant, Y. Chen, R. Babbush, R. Barends, B. Campbell, Z. Chen, B. Chiaro, A. Dunsworth, A. Fowler, E. Jeffrey, J. Kelly, E. Lucero, J. Mutus, P. J. J. O’Malley, M. Neeley, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. White, E. Kapit, H. Neven, J. Martinis. Chiral ground-state currents of interacting photons in a synthetic magnetic field. Nat. Phys., 2017, 13(2): 146
CrossRef
ADS
Google scholar
|
[61] |
K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, O. Painter. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys., 2017, 13(5): 465
CrossRef
ADS
Google scholar
|
[62] |
L. Jin, P. Wang, Z. Song. One-way light transport controlled by synthetic magnetic fluxes and PT-symmetric resonators. New J. Phys., 2017, 19(1): 015010
CrossRef
ADS
Google scholar
|
[63] |
L. Jin, Z. Song. Incident direction independent wave propagation and unidirectional lasing. Phys. Rev. Lett., 2018, 121(7): 073901
CrossRef
ADS
Google scholar
|
[64] |
T. Ramos, B. Vermersch, P. Hauke, H. Pichler, P. Zoller. Non-Markovian dynamics in chiral quantum networks with spins and photons. Phys. Rev. A, 2016, 93(6): 062104
CrossRef
ADS
Google scholar
|
[65] |
J. T. Shen, S. Fan. Theory of single-photon transport in a single-mode waveguide (I): Coupling to a cavity containing a two-level atom. Phys. Rev. A, 2009, 79(2): 023837
CrossRef
ADS
Google scholar
|
[66] |
S. Longhi. Photonic simulation of giant atom decay. Opt. Lett., 2020, 45(11): 3017
CrossRef
ADS
Google scholar
|
[67] |
L. Guo, A. Grimsmo, A. F. Kockum, M. Pletyukhov, G. Johansson. Giant acoustic atom: A single quantum system with a deterministic time delay. Phys. Rev. A, 2017, 95(5): 053821
CrossRef
ADS
Google scholar
|
[68] |
R. H. Dicke. Coherence in spontaneous radiation processes. Phys. Rev., 1954, 93(1): 99
CrossRef
ADS
Google scholar
|
[69] |
K. Lalumière, B. C. Sanders, A. F. van Loo, A. Fedorov, A. Wallraff, A. Blais. Input−output theory for waveguide QED with an ensemble of inhomogeneous atoms. Phys. Rev. A, 2013, 88(4): 043806
CrossRef
ADS
Google scholar
|
[70] |
M. Macovei, C. H. Keitel. Quantum dynamics of a two-level emitter with a modulated transition frequency. Phys. Rev. A, 2014, 90(4): 043838
CrossRef
ADS
Google scholar
|
[71] |
L. Du, Y. T. Chen, Y. Zhang, Y. Li. Giant atoms with time-dependent couplings. Phys. Rev. Res., 2022, 4(2): 023198
CrossRef
ADS
Google scholar
|
[72] |
M. Janowicz. Non-Markovian decay of an atom coupled to a reservoir: Modification by frequency modulation. Phys. Rev. A, 2000, 61(2): 025802
CrossRef
ADS
Google scholar
|
[73] |
G. Andersson, B. Suri, L. Guo, T. Aref, P. Delsing. Non-exponential decay of a giant artificial atom. Nat. Phys., 2019, 15(11): 1123
CrossRef
ADS
Google scholar
|
[74] |
S. Lorenzo, F. Plastina, M. Paternostro. Geometrical characterization of non-Markovianity. Phys. Rev. A, 2013, 88: 020102(R)
CrossRef
ADS
Google scholar
|
[75] |
K. Koshino, H. Terai, K. Inomata, T. Yamamoto, W. Qiu, Z. Wang, Y. Nakamura. Observation of the three-state dressed states in circuit quantum electrodynamics. Phys. Rev. Lett., 2013, 110(26): 263601
CrossRef
ADS
Google scholar
|
[76] |
Y. Liu, A. A. Houck. Quantum electrodynamics near a photonic bandgap. Nat. Phys., 2017, 13(1): 48
CrossRef
ADS
Google scholar
|
[77] |
M. Mirhosseini, E. Kim, V. S. Ferreira, M. Kalaee, A. Sipahigil, A. J. Keller, O. Painter. Superconducting metamaterials for waveguide quantum electrodynamics. Nat. Commun., 2018, 9(1): 3706
CrossRef
ADS
Google scholar
|
[78] |
M. Bello, G. Platero, J. I. Cirac, A. González-Tudela. Unconventional quantum optics in topological waveguide QED. Sci. Adv., 2019, 5(7): eaaw0297
CrossRef
ADS
Google scholar
|
[79] |
E. Sánchez-Burillo, C. Wan, D. Zueco, A. González-Tudela. Chiral quantum optics in photonic sawtooth lattices. Phys. Rev. Res., 2020, 2(2): 023003
CrossRef
ADS
Google scholar
|
[80] |
P.-O. Guimond, B. Vermersch, M. L. Juan, A. Sharafiev, G. Kirchmair, P. Zoller. A unidirectional onchip photonic interface for superconducting circuits. npj Quantum Infom., 2020, 6: 32
CrossRef
ADS
Google scholar
|
[81] |
L. Du, M. R. Cai, J. H. Wu, Z. Wang, Y. Li. Single-photon nonreciprocal excitation transfer with non-Markovian retarded effects. Phys. Rev. A, 2021, 103(5): 053701
CrossRef
ADS
Google scholar
|
[82] |
Q.Y. QiuY. WuX.Y. Lü, Collective radiance of giant atoms in non-Markovian regime, arXiv: 2205.10982 (2022)
|
[83] |
A.SoroC. S. MuñozA.F. Kockum, Interaction between giant atoms in a one-dimensional structured environment, arXiv: 2208.04102 (2022)
|
[84] |
Z. Jin, S. L. Su, A. D. Zhu, H. F. Wang, S. Zhang. Engineering multipartite steady entanglement of distant atoms via dissipation. Front. Phys., 2018, 13(5): 134209
CrossRef
ADS
Google scholar
|
[85] |
A.A. Clerk, Introduction to quantum non-reciprocal interactions: From non-Hermitian Hamiltonians to quantum master equations and quantum feedforward schemes, arXiv: 2201.00894 (2022)
|
[86] |
M. P. Silveri, J. A. Tuorila, E. V. Thuneberg, G. S. Paraoanu. Quantum systems under frequency modulation. Rep. Prog. Phys., 2017, 80(5): 056002
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |