A giant atom with modulated transition frequency

Lei Du, Yan Zhang, Yong Li

PDF(9508 KB)
PDF(9508 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (1) : 12301. DOI: 10.1007/s11467-022-1215-9
RESEARCH ARTICLE
RESEARCH ARTICLE

A giant atom with modulated transition frequency

Author information +
History +

Abstract

Giant atoms are known for the frequency-dependent spontaneous emission and associated interference effects. In this paper, we study the spontaneous emission dynamics of a two-level giant atom with dynamically modulated transition frequency. It is shown that the retarded feedback effect of the giant-atom system is greatly modified by a dynamical phase arising from the frequency modulation and the retardation effect itself. Interestingly, such a modification can in turn suppress the retarded feedback such that the giant atom behaves like a small one. By introducing an additional phase difference between the two atom-waveguide coupling paths, we also demonstrate the possibility of realizing chiral and tunable temporal profiles of the output fields. The results in this paper have potential applications in quantum information processing and quantum network engineering.

Graphical abstract

Keywords

giant atoms / frequency modulation / spontaneous emission dynamics / non-Markovian retardation effect

Cite this article

Download citation ▾
Lei Du, Yan Zhang, Yong Li. A giant atom with modulated transition frequency. Front. Phys., 2023, 18(1): 12301 https://doi.org/10.1007/s11467-022-1215-9

References

[1]
G.S. Agarwal, Quantum Statistical Theories of Spontaneous Emission and Their Relation to Other Approaches, Springer, Berlin, 1974
[2]
H.J. Carmichael, An Open Systems Approach to Quantum Optics, Springer-Verlag, Berlin, 1993
[3]
C.W. GardinerP.Zoller, Quantum Noise, 2nd Ed., Springer, Berlin, 2000
[4]
J. T. Shen, S. Fan. Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits. Phys. Rev. Lett., 2005, 95(21): 213001
CrossRef ADS Google scholar
[5]
L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, F. Nori. Controllable scattering of a single photon inside a one-dimensional resonator waveguide. Phys. Rev. Lett., 2008, 101(10): 100501
CrossRef ADS Google scholar
[6]
L. Zhou, L. P. Yang, Y. Li, C. P. Sun. Quantum routing of single photons with a cyclic three-level system. Phys. Rev. Lett., 2013, 111(10): 103604
CrossRef ADS Google scholar
[7]
H. Zheng, D. J. Gauthier, H. U. Baranger. Waveguide-QED-based photonic quantum computation. Phys. Rev. Lett., 2013, 111(9): 090502
CrossRef ADS Google scholar
[8]
C. Gonzalez-Ballestero, E. Moreno, F. J. Garcia-Vidal, A. Gonzalez-Tudela. Nonreciprocal few-photon routing schemes based on chiral waveguide-emitter couplings. Phys. Rev. A, 2016, 94(6): 063817
CrossRef ADS Google scholar
[9]
M. Mirhosseini, E. Kim, X. Zhang, A. Sipahigil, P. B. Dieterle, A. J. Keller, A. Asenjo-Garcia, D. E. Chang, O. Painter. Cavity quantum electrodynamics with atom-like mirrors. Nature, 2019, 569(7758): 692
CrossRef ADS Google scholar
[10]
B. W. Adams, C. Buth, S. Cavaletto, J. Evers, Z. Harman, C. H. Keitel, A. Palffy, A. Picon, R. Röhlsberger, Y. Rostovtsev, K. Tamasaku. X-ray quantum optics. J. Mod. Opt., 2013, 60(1): 2
CrossRef ADS Google scholar
[11]
S. Cavaletto, Z. Harman, C. Ott, C. Buth, T. Pfeifer, C. H. Keitel. Broadband high-resolution X-ray frequency combs. Nat. Photon., 2014, 8: 520
CrossRef ADS Google scholar
[12]
X. Z. Qin, J. H. Huang, H. H. Zhong, C. Lee. Clock frequency estimation under spontaneous emission. Front. Phys., 2018, 13(1): 130302
CrossRef ADS Google scholar
[13]
I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, P. Lodahl. Deterministic photon-emitter coupling in chiral photonic circuits. Nat. Nanotechnol., 2015, 10(9): 775
CrossRef ADS Google scholar
[14]
P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, P. Zoller. Chiral quantum optics. Nature, 2017, 541(7638): 473
CrossRef ADS Google scholar
[15]
D. Kleppner. Inhibited spontaneous emission. Phys. Rev. Lett., 1981, 47(4): 233
CrossRef ADS Google scholar
[16]
W. Jhe, A. Anderson, E. A. Hinds, D. Meschede, L. Moi, S. Haroche. Suppression of spontaneous decay at optical frequencies: Test of vacuum-field anisotropy in confined space. Phys. Rev. Lett., 1987, 58(14): 1497
CrossRef ADS Google scholar
[17]
D. J. Heinzen, J. J. Childs, J. E. Thomas, M. S. Feld. Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator. Phys. Rev. Lett., 1987, 58(13): 1320
CrossRef ADS Google scholar
[18]
E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 1987, 58(20): 2059
CrossRef ADS Google scholar
[19]
P. Lambropoulos, G. M. Nikolopoulos, T. R. Nielsen, S. Bay. Fundamental quantum optics in structured reservoirs. Rep. Prog. Phys., 2000, 63(4): 455
CrossRef ADS Google scholar
[20]
P. Lodahl, A. Floris van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, W. L. Vos. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature, 2004, 430(7000): 654
CrossRef ADS Google scholar
[21]
S. Noda, M. Fujita, T. Asano. Spontaneous emission control by photonic crystals and nanocavities. Nat. Photonics, 2007, 1(8): 449
CrossRef ADS Google scholar
[22]
A. G. Kofman, G. Kurizki. Universal dynamical control of quantum mechanical decay: Modulation of the coupling to the continuum. Phys. Rev. Lett., 2001, 87(27): 270405
CrossRef ADS Google scholar
[23]
U. Dorner, P. Zoller. Laser-driven atoms in half cavities. Phys. Rev. A, 2002, 66(2): 023816
CrossRef ADS Google scholar
[24]
M. Kiffner, M. Macovei, J. Evers, C. H. Keitel. Vacuum-induced processes in multilevel atoms. Prog. Opt., 2010, 55: 85
CrossRef ADS Google scholar
[25]
L. Viola, S. Lloyd. Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A, 1998, 58(4): 2733
CrossRef ADS Google scholar
[26]
A. G. Kofman, G. Kurizki. Acceleration of quantum decay processes by frequent observations. Nature, 2000, 405(6786): 546
CrossRef ADS Google scholar
[27]
D. Dhar, L. K. Grover, S. M. Roy. Preserving quantum states using inverting pulses: A super-Zeno effect. Phys. Rev. Lett., 2006, 96(10): 100405
CrossRef ADS Google scholar
[28]
J. Evers, C. H. Keitel. Spontaneous-emission suppression on arbitrary atomic transitions. Phys. Rev. Lett., 2002, 89(16): 163601
CrossRef ADS Google scholar
[29]
U. Akram, J. Evers, C. H. Keitel. Multiphoton quantum interference on a dipole-forbidden transition. J. Phys. At. Mol. Opt. Phys., 2005, 38(4): L69
CrossRef ADS Google scholar
[30]
A. F. Kockum, P. Delsing, G. Johansson. Designing frequency-dependent relaxation rates and Lamb shifts for a giant artificial atom. Phys. Rev. A, 2014, 90(1): 013837
CrossRef ADS Google scholar
[31]
A.F. Kockum, Quantum Optics with Giant Atoms the First Five Years, in: Mathematics for Industry, Springer, Singapore, 2021, pp 125−146
[32]
H. Dong, Z. R. Gong, H. Ian, L. Zhou, C. P. Sun. Intrinsic cavity QED and emergent quasinormal modes for a single photon. Phys. Rev. A, 2009, 79(6): 063847
CrossRef ADS Google scholar
[33]
M. Bradford, J. T. Shen. Spontaneous emission in cavity QED with a terminated waveguide. Phys. Rev. A, 2013, 87(6): 063830
CrossRef ADS Google scholar
[34]
T. Tufarelli, F. Ciccarello, M. S. Kim. Dynamics of spontaneous emission in a single-end photonic waveguide. Phys. Rev. A, 2013, 87(1): 013820
CrossRef ADS Google scholar
[35]
T. Tufarelli, M. S. Kim, F. Ciccarello. Non-Markovianity of a quantum emitter in front of a mirror. Phys. Rev. A, 2014, 90(1): 012113
CrossRef ADS Google scholar
[36]
G. Calajó, Y. L. L. Fang, H. U. Baranger, F. Ciccarello. Exciting a bound state in the continuum through multiphoton scattering plus delayed quantum feedback. Phys. Rev. Lett., 2019, 122(7): 073601
CrossRef ADS Google scholar
[37]
A. F. Kockum, G. Johansson, F. Nori. Decoherence-free interaction between giant atoms in waveguide quantum electrodynamics. Phys. Rev. Lett., 2018, 120(14): 140404
CrossRef ADS Google scholar
[38]
B. Kannan, M. J. Ruckriegel, D. L. Campbell, A. Frisk Kockum, J. Braumüller, D. K. Kim, M. Kjaergaard, P. Krantz, A. Melville, B. M. Niedzielski, A. Vepsäläinen, R. Winik, J. L. Yoder, F. Nori, T. P. Orlando, S. Gustavsson, W. D. Oliver. Waveguide quantum electrodynamics with superconducting artificial giant atoms. Nature, 2020, 583(7818): 775
CrossRef ADS Google scholar
[39]
A. Carollo, D. Cilluffo, F. Ciccarello. Mechanism of decoherence-free coupling between giant atoms. Phys. Rev. Res., 2020, 2(4): 043184
CrossRef ADS Google scholar
[40]
L. Guo, A. F. Kockum, F. Marquardt, G. Johansson. Oscillating bound states for a giant atom. Phys. Rev. Res., 2020, 2(4): 043014
CrossRef ADS Google scholar
[41]
S. Guo, Y. Wang, T. Purdy, J. Taylor. Beyond spontaneous emission: Giant atom bounded in the continuum. Phys. Rev. A, 2020, 102(3): 033706
CrossRef ADS Google scholar
[42]
X. Wang, T. Liu, A. F. Kockum, H. R. Li, F. Nori. Tunable chiral bound states with giant atoms. Phys. Rev. Lett., 2021, 126(4): 043602
CrossRef ADS Google scholar
[43]
W. Zhao, Z. Wang. Single-photon scattering and bound states in an atom-waveguide system with two or multiple coupling points. Phys. Rev. A, 2020, 101(5): 053855
CrossRef ADS Google scholar
[44]
C. Vega, M. Bello, D. Porras, A. González-Tudela. Qubit-photon bound states in topological waveguides with long-range hoppings. Phys. Rev. A, 2021, 104(5): 053522
CrossRef ADS Google scholar
[45]
A. Soro, A. F. Kockum. Chiral quantum optics with giant atoms. Phys. Rev. A, 2022, 105(2): 023712
CrossRef ADS Google scholar
[46]
X. Wang, H. R. Li. Chiral quantum network with giant atoms. Quantum Sci. Technol., 2022, 7(3): 035007
CrossRef ADS Google scholar
[47]
L. Du, Y. Zhang, J. H. Wu, A. F. Kockum, Y. Li. Giant atoms in synthetic frequency dimensions. Phys. Rev. Lett., 2022, 128(22): 223602
CrossRef ADS Google scholar
[48]
L. Du, Y. Li. Single-photon frequency conversion via a giant Λ-type atom. Phys. Rev. A, 2021, 104(2): 023712
CrossRef ADS Google scholar
[49]
L. Du, Y. T. Chen, Y. Li. Nonreciprocal frequency conversion with chiral Λ-type atoms. Phys. Rev. Res., 2021, 3(4): 043226
CrossRef ADS Google scholar
[50]
Q. Y. Cai, W. Z. Jia. Coherent single-photon scattering spectra for a giant-atom waveguide-QED system beyond the dipole approximation. Phys. Rev. A, 2021, 104(3): 033710
CrossRef ADS Google scholar
[51]
S. L. Feng, W. Z. Jia. Manipulating single-photon transport in a waveguide-QED structure containing two giant atoms. Phys. Rev. A, 2021, 104(6): 063712
CrossRef ADS Google scholar
[52]
W. Zhao, Y. Zhang, Z. Wang. Phase-modulated Autler−Townes splitting in a giant-atom system within waveguide QED. Front. Phys., 2022, 17(4): 42506
CrossRef ADS Google scholar
[53]
X. L. Yin, Y. H. Liu, J. F. Huang, J. Q. Liao. Single photon scattering in a giant-molecule waveguide-QED system. Phys. Rev. A, 2022, 106(1): 013715
CrossRef ADS Google scholar
[54]
Y. T. Chen, L. Du, L. Guo, Z. Wang, Y. Zhang, Y. Li, J. H. Wu. Nonreciprocal and chiral single-photon scattering for giant atoms. Commun. Phys., 2022, 5(1): 215
CrossRef ADS Google scholar
[55]
H. Xiao, L. Wang, Z.-H. Li, X. Chen, L. Yuan. Bound state in a giant atom-modulated resonators system. npj Quantum Infom., 2022, 8: 80
CrossRef ADS Google scholar
[56]
W. D. Oliver, Y. Yu, J. C. Lee, K. K. Berggren, L. S. Levitov, T. P. Orlando. Mach−Zehnder interferometry in a strongly driven superconducting qubit. Science, 2005, 310(5754): 1653
CrossRef ADS Google scholar
[57]
C. M. Wilson, T. Duty, F. Persson, M. Sandberg, G. Johansson, P. Delsing. Coherence times of dressed states of a superconducting qubit under extreme driving. Phys. Rev. Lett., 2007, 98(25): 257003
CrossRef ADS Google scholar
[58]
M. Metcalfe, S. M. Carr, A. Muller, G. S. Solomon, J. Lawall. Resolved sideband emission of InAs/GaAs quantum dots strained by surface acoustic waves. Phys. Rev. Lett., 2010, 105(3): 037401
CrossRef ADS Google scholar
[59]
M. Schmidt, S. Kessler, V. Peano, O. Painter, F. Marquardt. Optomechanical creation of magnetic fields for photons on a lattice. Optica, 2015, 2(7): 635
CrossRef ADS Google scholar
[60]
P. Roushan, C. Neill, A. Megrant, Y. Chen, R. Babbush, R. Barends, B. Campbell, Z. Chen, B. Chiaro, A. Dunsworth, A. Fowler, E. Jeffrey, J. Kelly, E. Lucero, J. Mutus, P. J. J. O’Malley, M. Neeley, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. White, E. Kapit, H. Neven, J. Martinis. Chiral ground-state currents of interacting photons in a synthetic magnetic field. Nat. Phys., 2017, 13(2): 146
CrossRef ADS Google scholar
[61]
K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, O. Painter. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys., 2017, 13(5): 465
CrossRef ADS Google scholar
[62]
L. Jin, P. Wang, Z. Song. One-way light transport controlled by synthetic magnetic fluxes and PT-symmetric resonators. New J. Phys., 2017, 19(1): 015010
CrossRef ADS Google scholar
[63]
L. Jin, Z. Song. Incident direction independent wave propagation and unidirectional lasing. Phys. Rev. Lett., 2018, 121(7): 073901
CrossRef ADS Google scholar
[64]
T. Ramos, B. Vermersch, P. Hauke, H. Pichler, P. Zoller. Non-Markovian dynamics in chiral quantum networks with spins and photons. Phys. Rev. A, 2016, 93(6): 062104
CrossRef ADS Google scholar
[65]
J. T. Shen, S. Fan. Theory of single-photon transport in a single-mode waveguide (I): Coupling to a cavity containing a two-level atom. Phys. Rev. A, 2009, 79(2): 023837
CrossRef ADS Google scholar
[66]
S. Longhi. Photonic simulation of giant atom decay. Opt. Lett., 2020, 45(11): 3017
CrossRef ADS Google scholar
[67]
L. Guo, A. Grimsmo, A. F. Kockum, M. Pletyukhov, G. Johansson. Giant acoustic atom: A single quantum system with a deterministic time delay. Phys. Rev. A, 2017, 95(5): 053821
CrossRef ADS Google scholar
[68]
R. H. Dicke. Coherence in spontaneous radiation processes. Phys. Rev., 1954, 93(1): 99
CrossRef ADS Google scholar
[69]
K. Lalumière, B. C. Sanders, A. F. van Loo, A. Fedorov, A. Wallraff, A. Blais. Input−output theory for waveguide QED with an ensemble of inhomogeneous atoms. Phys. Rev. A, 2013, 88(4): 043806
CrossRef ADS Google scholar
[70]
M. Macovei, C. H. Keitel. Quantum dynamics of a two-level emitter with a modulated transition frequency. Phys. Rev. A, 2014, 90(4): 043838
CrossRef ADS Google scholar
[71]
L. Du, Y. T. Chen, Y. Zhang, Y. Li. Giant atoms with time-dependent couplings. Phys. Rev. Res., 2022, 4(2): 023198
CrossRef ADS Google scholar
[72]
M. Janowicz. Non-Markovian decay of an atom coupled to a reservoir: Modification by frequency modulation. Phys. Rev. A, 2000, 61(2): 025802
CrossRef ADS Google scholar
[73]
G. Andersson, B. Suri, L. Guo, T. Aref, P. Delsing. Non-exponential decay of a giant artificial atom. Nat. Phys., 2019, 15(11): 1123
CrossRef ADS Google scholar
[74]
S. Lorenzo, F. Plastina, M. Paternostro. Geometrical characterization of non-Markovianity. Phys. Rev. A, 2013, 88: 020102(R)
CrossRef ADS Google scholar
[75]
K. Koshino, H. Terai, K. Inomata, T. Yamamoto, W. Qiu, Z. Wang, Y. Nakamura. Observation of the three-state dressed states in circuit quantum electrodynamics. Phys. Rev. Lett., 2013, 110(26): 263601
CrossRef ADS Google scholar
[76]
Y. Liu, A. A. Houck. Quantum electrodynamics near a photonic bandgap. Nat. Phys., 2017, 13(1): 48
CrossRef ADS Google scholar
[77]
M. Mirhosseini, E. Kim, V. S. Ferreira, M. Kalaee, A. Sipahigil, A. J. Keller, O. Painter. Superconducting metamaterials for waveguide quantum electrodynamics. Nat. Commun., 2018, 9(1): 3706
CrossRef ADS Google scholar
[78]
M. Bello, G. Platero, J. I. Cirac, A. González-Tudela. Unconventional quantum optics in topological waveguide QED. Sci. Adv., 2019, 5(7): eaaw0297
CrossRef ADS Google scholar
[79]
E. Sánchez-Burillo, C. Wan, D. Zueco, A. González-Tudela. Chiral quantum optics in photonic sawtooth lattices. Phys. Rev. Res., 2020, 2(2): 023003
CrossRef ADS Google scholar
[80]
P.-O. Guimond, B. Vermersch, M. L. Juan, A. Sharafiev, G. Kirchmair, P. Zoller. A unidirectional onchip photonic interface for superconducting circuits. npj Quantum Infom., 2020, 6: 32
CrossRef ADS Google scholar
[81]
L. Du, M. R. Cai, J. H. Wu, Z. Wang, Y. Li. Single-photon nonreciprocal excitation transfer with non-Markovian retarded effects. Phys. Rev. A, 2021, 103(5): 053701
CrossRef ADS Google scholar
[82]
Q.Y. QiuY. WuX.Y. Lü, Collective radiance of giant atoms in non-Markovian regime, arXiv: 2205.10982 (2022)
[83]
A.SoroC. S. MuñozA.F. Kockum, Interaction between giant atoms in a one-dimensional structured environment, arXiv: 2208.04102 (2022)
[84]
Z. Jin, S. L. Su, A. D. Zhu, H. F. Wang, S. Zhang. Engineering multipartite steady entanglement of distant atoms via dissipation. Front. Phys., 2018, 13(5): 134209
CrossRef ADS Google scholar
[85]
A.A. Clerk, Introduction to quantum non-reciprocal interactions: From non-Hermitian Hamiltonians to quantum master equations and quantum feedforward schemes, arXiv: 2201.00894 (2022)
[86]
M. P. Silveri, J. A. Tuorila, E. V. Thuneberg, G. S. Paraoanu. Quantum systems under frequency modulation. Rep. Prog. Phys., 2017, 80(5): 056002
CrossRef ADS Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12074030 and 12274107) and the Science Foundation of the Education Department of Jilin Province (Grant No. JJKH20211279KJ).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(9508 KB)

Accesses

Citations

Detail

Sections
Recommended

/