Energy band alignment of 2D/3D MoS2/4H-SiC heterostructure modulated by multiple interfacial interactions
Huili Zhu, Zifan Hong, Changjie Zhou, Qihui Wu, Tongchang Zheng, Lan Yang, Shuqiong Lan, Weifeng Yang
Energy band alignment of 2D/3D MoS2/4H-SiC heterostructure modulated by multiple interfacial interactions
The interfacial properties of MoS2/4H-SiC heterostructures were studied by combining first-principles calculations and X-ray photoelectron spectroscopy. Experimental (theoretical) valence band offsets (VBOs) increase from 1.49 (1.46) to 2.19 (2.36) eV with increasing MoS2 monolayer (1L) up to 4 layers (4L). A strong interlayer interaction was revealed at 1L MoS2/SiC interface. Fermi level pinning and totally surface passivation were realized for 4H-SiC (0001) surface. About 0.96e per unit cell transferring forms an electric field from SiC to MoS2. Then, 1L MoS2/SiC interface exhibits type I band alignment with the asymmetric conduction band offset (CBO) and VBO. For 2L and 4L MoS2/SiC, Fermi level was just pinning at the lower MoS2 1L. The interaction keeps weak vdW interaction between upper and lower MoS2 layers. They exhibit the type II band alignments and the enlarged CBOs and VBOs, which is attributed to weak vdW interaction and strong interlayer orbital coupling in the multilayer MoS2. High efficiency of charge separation will emerge due to the asymmetric band alignment and built-in electric field for all the MoS2/SiC interfaces. The multiple interfacial interactions provide a new modulated perspective for the next-generation electronics and optoelectronics based on the 2D/3D semiconductors heterojunctions.
MoS2 / SiC / X-ray photoelectron spectroscopy / band alignment / first-principles calculations
[1] |
H. W. Kroto , J. R. Heath , S. C. O’Brien , R. F. Curl , R. E. Smalley . C60: Buckminsterfullerene. Nature, 1985, 318(6042): 162
CrossRef
ADS
Google scholar
|
[2] |
D. S. Bethune , C. H. Kiang , M. S. de Vries , G. Gorman , R. Savoy , J. Vazquez , R. Beyers . Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 1993, 363(6430): 605
CrossRef
ADS
Google scholar
|
[3] |
K. S. Novoselov , A. K. Geim , S. V. Morozov , D. Jiang , Y. Zhang , S. V. Dubonos , I. V. Grigorieva , A. A. Firsov . Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666
CrossRef
ADS
Google scholar
|
[4] |
L. Song , L. Ci , H. Lu , P. B. Sorokin , C. Jin , J. Ni , A. G. Kvashnin , D. G. Kvashnin , J. Lou , B. I. Yakobson , P. M. Ajayan . Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett., 2010, 10(8): 3209
CrossRef
ADS
Google scholar
|
[5] |
L. Li , Y. Yu , G. J. Ye , Q. Ge , X. Ou , H. Wu , D. Feng , X. H. Chen , Y. Zhang . Black phosphorus field-effect transistors. Nat. Nanotechnol., 2014, 9(5): 372
CrossRef
ADS
Google scholar
|
[6] |
P. J. Wang , D. Y. Yang , X. D. Pi . Toward wafer-scale production of 2D transition metal chalcogenides. Adv. Electron. Mater., 2021, 7(8): 2100278
CrossRef
ADS
Google scholar
|
[7] |
M. J. Allen , V. C. Tung , R. B. Kaner . Honeycomb carbon: A review of graphene. Chem. Rev., 2010, 110(1): 132
CrossRef
ADS
Google scholar
|
[8] |
S. Imani Yengejeh , W. Wen , Y. Wang . Mechanical properties of lateral transition metal dichalcogenide heterostructures. Front. Phys., 2021, 16(1): 13502
CrossRef
ADS
Google scholar
|
[9] |
R. Szczȩśniak , A. P. Durajski , M. W. Jarosik . Strong-coupling superconductivity induced by calcium intercalation in bilayer transition-metal dichalcogenides. Front. Phys., 2018, 13(2): 137401
CrossRef
ADS
Google scholar
|
[10] |
Y. P. Venkata Subbaiah , K. J. Saji , A. Tiwari . Atomically thin MoS2: A versatile nongraphene 2D material. Adv. Funct. Mater., 2016, 26(13): 2046
CrossRef
ADS
Google scholar
|
[11] |
S. A. Han , R. Bhatia , S. W. Kim . Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides. Nano Converg., 2015, 2: 17
CrossRef
ADS
Google scholar
|
[12] |
H. L. Zhu , C. J. Zhou , X. J. Huang , X. L. Wang , H. Z. Xu , Y. Lin , W. H. Yang , Y. P. Wu , W. Lin , F. Guo . Evolution of band structures in MoS2-based homo- and heterobilayers. J. Phys. D, 2016, 49(6): 065304
CrossRef
ADS
Google scholar
|
[13] |
B. Radisavljevic , A. Radenovic , J. Brivio , V. Giacometti , A. Kis . Single-layer MoS2 transistors. Nat. Nanotechnol., 2011, 6(3): 147
CrossRef
ADS
Google scholar
|
[14] |
Y. D. Zhao , K. Xu , F. Pan , C. J. Zhou , F. C. Zhou , Y. Chai . Doping, contact and interface engineering of two-dimensional layered transition metal dichalcogenides transistors. Adv. Funct. Mater., 2017, 27(19): 1603484
CrossRef
ADS
Google scholar
|
[15] |
L. Teitz , M. C. Toroker . Theoretical investigation of dielectric materials for two-dimensional field-effect transistors. Adv. Funct. Mater., 2020, 30(18): 1808544
CrossRef
ADS
Google scholar
|
[16] |
E. Z. Zhang , W. Y. Wang , C. Zhang , Y. B. Jin , G. D. Zhu , Q. Q. Sun , D. W. Zhang , P. Zhou , F. X. Xiu . Tunable charge-trap memory based on few-layer MoS2. ACS Nano, 2015, 9(1): 612
CrossRef
ADS
Google scholar
|
[17] |
N. Li , Q. Q. Wang , C. Shen , Z. Wei , H. Yu , J. Zhao , X. B. Lu , G. L. Wang , C. L. He , L. Xie , J. Q. Zhu , L. J. Du , R. Yang , D. X. Shi , G. Y. Zhang . Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron., 2020, 3(11): 711
CrossRef
ADS
Google scholar
|
[18] |
M. Y. Tsai , A. Tarasov , Z. R. Hesabi , H. Taghinejad , P. M. Campbell , C. A. Joiner , A. Adibi , E. M. Vogel . Flexible MoS2 field-effect transistors for gate-tunable piezoresistive strain sensors. ACS Appl. Mater. Interfaces, 2015, 7(23): 12850
CrossRef
ADS
Google scholar
|
[19] |
J. M. Choi , H. Y. Jang , A. R. Kim , J. D. Kwon , B. Cho , M. H. Park , Y. Kim . Ultraflexible and rollable 2D-MoS2/Si heterojunction-based near-infrared photodetector via direct synthesis. Nanoscale, 2021, 13(2): 672
CrossRef
ADS
Google scholar
|
[20] |
Y. F. Xiao , L. Min , X. K. Liu , W. J. Liu , U. Younis , T. H. Peng , X. W. Kang , X. H. Wu , S. J. Ding , D. W. Zhang . Facile integration of MoS2/SiC photodetector by direct chemical vapor deposition. Nanophotonics, 2020, 9(9): 3035
CrossRef
ADS
Google scholar
|
[21] |
K. Zhang , M. Z. Peng , A. F. Yu , Y. J. Fan , J. Y. Zhai , Z. L. Wang . A substrate-enhanced MoS2 photodetector through a dual-photogating effect. Mater. Horiz., 2019, 6(4): 826
CrossRef
ADS
Google scholar
|
[22] |
W. Z. Wang , X. B. Zeng , J. H. Warner , Z. Y. Guo , Y. S. Hu , Y. Zeng , J. J. Lu , W. Jin , S. B. Wang , J. C. Lu , Y. R. Zeng , Y. H. Xiao . Photoresponse-bias modulation of a highperformance MoS2 photodetector with a unique vertically stacked 2H-MoS2/1T@2H-MoS2 structure. ACS Appl. Mater. Interfaces, 2020, 12(29): 33325
CrossRef
ADS
Google scholar
|
[23] |
M. X. Sun , P. F. Yang , D. Xie , Y. L. Sun , J. L. Xu , T. L. Ren , Y. F. Zhang . Self-powered MoS2-PDPP3T heterotransistor-based broadband photodetectors. Adv. Electron. Mater., 2019, 5(2): 1800580
|
[24] |
U. Krishnan , M. Kaur , K. Singh , M. Kumar , A. Kumar . A synoptic review of MoS2: Synthesis to applications. Superlattices Microstruct., 2019, 128: 274
CrossRef
ADS
Google scholar
|
[25] |
Y. Liu , Y. J. Fang , D. R. Yang , X. D. Pi , P. J. Wang . Recent progress of heterostructures based on two dimensional materials and wide bandgap semiconductors. J. Phys.: Condens. Matter, 2022, 34(18): 183001
CrossRef
ADS
Google scholar
|
[26] |
C. Langpoklakpam , A. C. Liu , K. H. Chu , L. H. Hsu , W. C. Lee , S. C. Chen , C. W. Sun , M. H. Shih , K. Y. Lee , H. C. Kuo . Review of silicon carbide processing for power MOSFET. Crystals (Basel), 2022, 12(2): 245
CrossRef
ADS
Google scholar
|
[27] |
F. Roccaforte , P. Fiorenza , M. Vivona , G. Greco , F. Giannazzo . Selective doping in silicon carbide power devices. Materials (Basel), 2021, 14(14): 3923
CrossRef
ADS
Google scholar
|
[28] |
M. S. Kang , C. H. Lee , J. B. Park , H. Yoo , G. C. Yi . Gallium nitride nanostructures for light-emitting diode applications. Nano Energy, 2012, 1(3): 391
CrossRef
ADS
Google scholar
|
[29] |
Y. Sun , X. W. Kang , Y. K. Zheng , J. Lu , X. L. Tian , K. Wei , H. Wu , W. B. Wang , X. Y. Liu , G. Q. Zhang . Review of the recent progress on GaN-based vertical power Schottky barrier diodes (SBDs). Electronics (Basel), 2019, 8(5): 575
CrossRef
ADS
Google scholar
|
[30] |
N. G. Wright , A. B. Horsfall , K. Vassilevski . Prospects for SiC electronics and sensors. Mater. Today, 2008, 11(1−2): 16
CrossRef
ADS
Google scholar
|
[31] |
N. Goel , R. Kumar , B. Roul , M. Kumar , S. B. Krupanidhi . Wafer-scale synthesis of a uniform film of few-layer MoS2 on GaN for 2D heterojunction ultraviolet photodetector. J. Phys. D, 2018, 51(37): 374003
CrossRef
ADS
Google scholar
|
[32] |
M. Moun , M. Kumar , M. Garg , R. Pathak , R. Singh . Understanding of MoS2/GaN heterojunction diode and its photodetection properties. Sci. Rep., 2018, 8: 11799
CrossRef
ADS
Google scholar
|
[33] |
A. Aldalbahi , E. Li , M. Rivera , R. Velazquez , T. Altalhi , X. Y. Peng , P. X. Feng . A new approach for fabrications of SiC based photodetectors. Sci. Rep., 2016, 6: 23457
CrossRef
ADS
Google scholar
|
[34] |
W. Gao , F. Zhang , Z. Q. Zheng , J. B. Li . Unique and tunable photodetecting performance for two-dimensional layered MoSe2/WSe2 p−n junction on the 4H-SiC substrate. ACS Appl. Mater. Interfaces, 2019, 11(21): 19277
CrossRef
ADS
Google scholar
|
[35] |
Z. Cui , K. F. Bai , Y. C. Ding , X. Wang , E. L. Li , J. S. Zheng . Janus XSSe/SiC (X = Mo, W) van der Waals heterostructures as promising water-splitting photocatalysts. Physica E, 2020, 123: 114207
CrossRef
ADS
Google scholar
|
[36] |
M. A. Hassan , M. W. Kim , M. A. Johar , A. Waseem , M. K. Kwon , S. W. Ryu . Transferred monolayer MoS2 onto GaN for heterostructure photoanode: Toward stable and efficient photoelectrochemical water splitting. Sci. Rep., 2019, 9: 20141
CrossRef
ADS
Google scholar
|
[37] |
N. Goel , R. Kumar , S. K. Jain , S. Rajamani , B. Roul , G. Gupta , M. Kumar , S. B. Krupanidhi . A high-performance hydrogen sensor based on a reverse-biased MoS2/GaN heterojunction. Nanotechnology, 2019, 30(31): 314001
CrossRef
ADS
Google scholar
|
[38] |
M. Reddeppa , B. G. Park , G. Murali , S. H. Choi , N. D. Chinh , D. Kim , W. Yang , M. D. Kim . NOx gas sensors based on layer-transferred n-MoS2/p-GaN heterojunction at room temperature: Study of UV light illuminations and humidity. Sens. Actuators B Chem., 2020, 308: 127700
CrossRef
ADS
Google scholar
|
[39] |
Y. H. Ji , A. P. Huang , M. Q. Yang , Q. Gao , X. L. Yang , X. L. Chen , M. Wang , Z. S. Xiao , R. Z. Wang , P. K. Chu . Wrinkled-surface-induced memristive behavior of MoS2 wrapped GaN nanowires. Adv. Electron. Mater., 2020, 6(10): 2000571
CrossRef
ADS
Google scholar
|
[40] |
G. Kresse , J. Hafner . Ab initio molecular dynamics for liquid metals. Phys. Rev. B, 1993, 47(1): 558
CrossRef
ADS
Google scholar
|
[41] |
J. P. Perdew , K. Burke , M. Ernzerhof . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
CrossRef
ADS
Google scholar
|
[42] |
S. Grimme , J. Antony , S. Ehrlich , H. Krieg . A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 2010, 132(15): 154104
CrossRef
ADS
Google scholar
|
[43] |
J. Heyd , G. E. Scuseria , M. Ernzerhof . Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys., 2003, 118(18): 8207
CrossRef
ADS
Google scholar
|
[44] |
L. Bengtsson . Dipole correction for surface supercell calculations. Phys. Rev. B, 1999, 59(19): 12301
CrossRef
ADS
Google scholar
|
[45] |
G. Henkelman , A. Arnaldsson , H. Jonsson . A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci., 2006, 36(3): 354
CrossRef
ADS
Google scholar
|
[46] |
J. G. Tao , J. W. Chai , Z. Zhang , J. S. Pan , S. J. Wang . The energy-band alignment at molybdenum disulphide and high-k dielectrics interfaces. Appl. Phys. Lett., 2014, 104(23): 232110
CrossRef
ADS
Google scholar
|
[47] |
J. G. Tao , J. W. Chai , X. Lu , L. M. Wong , T. I. Wong , J. S. Pan , Q. H. Xiong , D. Z. Chi , S. J. Wang . Growth of wafer-scale MoS2 monolayer by magnetron sputtering. Nanoscale, 2015, 7(6): 2497
CrossRef
ADS
Google scholar
|
[48] |
W. F. Yang , H. Kawai , M. Bosman , B. S. Tang , J. W. Chai , W. L. Tay , J. Yang , H. L. Seng , H. L. Zhu , H. Gong , H. F. Liu , K. E. J. Goh , S. J. Wang , D. Z. Chi . Interlayer interactions in 2D WS2/MoS2 heterostructures monolithically grown by in situ physical vapor deposition. Nanoscale, 2018, 10(48): 22927
CrossRef
ADS
Google scholar
|
[49] |
B. S. Tang , Z. G. Yu , L. Huang , J. W. Chai , S. L. Wong , J. Deng , W. F. Yang , H. Gong , S. J. Wang , K. W. Ang , Y. W. Zhang , D. Z. Chi . Direct n- to p-type channel conversion in monolayer/few-layer WS2 field-effect transistors by atomic nitrogen treatment. ACS Nano, 2018, 12(3): 2506
CrossRef
ADS
Google scholar
|
[50] |
L. Cheng , X. B. Wang , W. F. Yang , J. W. Chai , M. Yang , M. J. Chen , Y. Wu , X. X. Chen , D. Z. Chi , K. E. J. Goh , J. X. Zhu , H. D. Sun , S. J. Wang , J. C. W. Song , M. Battiato , H. Yang , E. E. M. Chia . Far out-of-equilibrium spin populations trigger giant spin injection into atomically thin MoS2. Nat. Phys., 2019, 15(4): 347
CrossRef
ADS
Google scholar
|
[51] |
H. Li , Q. Zhang , C. C. R. Yap , B. K. Tay , T. H. T. Edwin , A. Olivier , D. Baillargeat . From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater., 2012, 22(7): 1385
CrossRef
ADS
Google scholar
|
[52] |
C. Lee , H. Yan , L. E. Brus , T. F. Heinz , J. Hone , S. Ryu . Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano, 2010, 4(5): 2695
CrossRef
ADS
Google scholar
|
[53] |
B. Chakraborty , H. S. S. R. Matte , A. K. Sood , C. N. R. Rao . Layer-dependent resonant Raman scattering of a few layer MoS2. J. Raman Spectrosc., 2013, 44(1): 92
CrossRef
ADS
Google scholar
|
[54] |
H. Deng , K. Endo , K. Yamamura . Competition between surface modification and abrasive polishing: A method of controlling the surface atomic structure of 4H-SiC (0001). Sci. Rep., 2015, 5: 8947
CrossRef
ADS
Google scholar
|
[55] |
Q. Wang , X. H. Cheng , L. Zheng , P. Y. Ye , M. L. Li , L. Y. Shen , J. J. Li , D. L. Zhang , Z. Y. Gu , Y. H. Yu . Interfacial chemistry and energy band alignment of TiAlO on 4H-SiC determined by X-ray photoelectron spectroscopy. Appl. Surf. Sci., 2017, 409: 71
CrossRef
ADS
Google scholar
|
[56] |
N. M. D. Brown , N. Y. Cui , A. McKinley . An XPS study of the surface modification of natural MoS2 following treatment in an RF-oxygen plasma. Appl. Surf. Sci., 1998, 134(1−4): 11
CrossRef
ADS
Google scholar
|
[57] |
G. Eda , H. Yamaguchi , D. Voiry , T. Fujita , M. W. Chen , M. Chhowalla . Photoluminescence from chemically exfoliated MoS2. Nano Lett., 2011, 11(12): 5111
CrossRef
ADS
Google scholar
|
[58] |
M. A. Baker , R. Gilmore , C. Lenardi , W. Gissler . XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions. Appl. Surf. Sci., 1999, 150(1−4): 255
CrossRef
ADS
Google scholar
|
[59] |
L. X. Cheng , X. Y. Qin , A. T. Lucero , A. Azcatl , J. Huang , R. M. Wallace , K. Cho , J. Kim . Atomic layer deposition of a high-k dielectric on MoS2 using trimethylaluminum and ozone. ACS Appl. Mater. Interfaces, 2014, 6(15): 11834
CrossRef
ADS
Google scholar
|
[60] |
A. Santoni , F. Biccari , C. Malerba , M. Valentini , R. Chierchia , A. Mittiga . Valence band offset at the CdS/Cu2ZnSnS4 interface probed by X-ray photoelectron spectroscopy. J. Phys. D, 2013, 46(17): 175101
CrossRef
ADS
Google scholar
|
[61] |
H. M. Hill , A. F. Rigosi , K. T. Rim , G. W. Flynn , T. F. Heinz . Band alignment in MoS2/WS2 transition metal dichalcogenide heterostructures probed by scanning tunneling microscopy and spectroscopy. Nano Lett., 2016, 16(8): 4831
CrossRef
ADS
Google scholar
|
[62] |
L. Lin , Y. J. Chen , L. W. Yao , J. T. Huang , R. X. Chen , X. Chen , H. L. Tao . First-principles study of In and Mn dopants on the magnetic and optical properties of 4H-SiC. J. Lumin., 2021, 239: 118341
CrossRef
ADS
Google scholar
|
[63] |
A. Bauer , J. Krausslich , L. Dressler , P. Kuschnerus , J. Wolf , K. Goetz , P. Kackell , J. Furthmuller , F. Bechstedt . High-precision determination of atomic positions in crystals: The case of 6H- and 4H-SiC. Phys. Rev. B, 1998, 57(5): 2647
CrossRef
ADS
Google scholar
|
[64] |
Y. X. Chen , X. Xu , P. Y. Liu , W. G. Xie , K. Chen , L. L. Shui , C. Q. Shang , Z. H. Chen , X. G. Ma , G. F. Zhou , T. T. Shi , X. Wang . Unusual mechanism behind enhanced photocatalytic activity and surface passivation of SiC(0001) via forming heterostructure with a MoS2 monolayer. J. Phys. Chem. C, 2020, 124(2): 1362
CrossRef
ADS
Google scholar
|
[65] |
C. Gong , L. Colombo , R. M. Wallace , K. Cho . The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces. Nano Lett., 2014, 14(4): 1714
CrossRef
ADS
Google scholar
|
[66] |
Z. F. Zhang , Q. K. Qian , B. K. Li , K. J. Chen . Interface engineering of monolayer MoS2/GaN hybrid heterostructure: Modified band alignment for photocatalytic water splitting application by nitridation treatment. ACS Appl. Mater. Interfaces, 2018, 10(20): 17419
CrossRef
ADS
Google scholar
|
[67] |
H. L. Zhu , C. J. Zhou , X. L. Wang , X. W. Chen , W. H. Yang , Y. P. Wu , W. Lin . Doping behaviors of adatoms adsorbed on phosphorene. Phys. Status Solidi B, 2016, 253(6): 1156
CrossRef
ADS
Google scholar
|
[68] |
H. L. Zhu , C. J. Zhou , B. S. Tang , W. F. Yang , J. W. Chai , W. L. Tay , H. Gong , J. S. Pan , W. D. Zou , S. J. Wang , D. Z. Chi . Band alignment of 2D WS2/HfO2 interfaces from X-ray photoelectron spectroscopy and first-principles calculations. Appl. Phys. Lett., 2018, 112(17): 171604
CrossRef
ADS
Google scholar
|
[69] |
M. Yang , J. W. Chai , M. Callsen , J. Zhou , T. Yang , T. T. Song , J. S. Pan , D. Z. Chi , Y. P. Feng , S. J. Wang . Interfacial interaction between HfO2 and MoS2: From thin films to monolayer. J. Phys. Chem. C, 2016, 120(18): 9804
CrossRef
ADS
Google scholar
|
[70] |
C. J. Zhou , H. L. Zhu , W. F. Yang , Q. B. Lin , T. C. Zheng , L. Yang , S. Q. Lan . Interfacial properties of 2D WS2 on SiO2 substrate from X-ray photoelectron spectroscopy and first-principles calculations. Front. Phys., 2022, 17(5): 53500
CrossRef
ADS
Google scholar
|
[71] |
T. Cusati , A. Fortunelli , G. Fiori , G. Iannaccone . Stacking and interlayer electron transport in MoS2. Phys. Rev. B, 2018, 98(11): 115403
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |