Prospective study on observations of γ-ray sources in the Galaxy using the HADAR experiment

Xiangli Qian, Huiying Sun, Tianlu Chen, Danzengluobu, Youliang Feng, Qi Gao, Quanbu Gou, Yiqing Guo, Hongbo Hu, Mingming Kang, Haijin Li, Cheng Liu, Maoyuan Liu, Wei Liu, Bingqiang Qiao, Xu Wang, Zhen Wang, Guangguang Xin, Yuhua Yao, Qiang Yuan, Yi Zhang

PDF(5709 KB)
PDF(5709 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (6) : 64602. DOI: 10.1007/s11467-022-1206-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Prospective study on observations of γ-ray sources in the Galaxy using the HADAR experiment

Author information +
History +

Abstract

The High Altitude Detection of Astronomical Radiation (HADAR) experiment is a refracting terrestrial telescope array based on the atmospheric Cherenkov imaging technique. It focuses the Cherenkov light emitted by extensive air showers through a large aperture water-lens system for observing very-high-energy γ-rays and cosmic rays. With the advantages of a large field-of-view (FOV) and low energy threshold, the HADAR experiment operates in a large-scale sky scanning mode to observe galactic sources. This study presents the prospects of using the HADAR experiment for the sky survey of TeV γ-ray sources from TeVCat and provids a one-year survey of statistical significance. Results from the simulation show that a total of 23 galactic point sources, including five supernova remnant sources and superbubbles, four pulsar wind nebula sources, and 14 unidentified sources, were detected in the HADAR FOV with a significance greater than 5 standard deviations (σ). The statistical significance for the Crab Nebula during one year of operation reached 346.0 σ and the one-year integral sensitivity of HADAR above 1 TeV was ~1.3%–2.4% of the flux from the Crab Nebula.

Graphical abstract

Keywords

HADAR / Galactic sources / significance / gamma rays

Cite this article

Download citation ▾
Xiangli Qian, Huiying Sun, Tianlu Chen, Danzengluobu, Youliang Feng, Qi Gao, Quanbu Gou, Yiqing Guo, Hongbo Hu, Mingming Kang, Haijin Li, Cheng Liu, Maoyuan Liu, Wei Liu, Bingqiang Qiao, Xu Wang, Zhen Wang, Guangguang Xin, Yuhua Yao, Qiang Yuan, Yi Zhang. Prospective study on observations of γ-ray sources in the Galaxy using the HADAR experiment. Front. Phys., 2022, 17(6): 64602 https://doi.org/10.1007/s11467-022-1206-x

References

[1]
L. O. Drury. An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas. Rep. Prog. Phys., 1983, 46(8): 973
CrossRef ADS Google scholar
[2]
R. Blandford, D. Eichler. Particle acceleration at astrophysical shocks: A theory of cosmic ray origin. Phys. Rep., 1987, 154(1): 1
CrossRef ADS Google scholar
[3]
J. Holder. TeV gamma-ray astronomy: A summary. Astropart. Phys., 2012, 39: 61
CrossRef ADS Google scholar
[4]
K. M. Schure, A. R. Bell, L. O. Drury, A. M. Bykov. Diffusive shock acceleration and magnetic field amplification. Space. Sci. Rev., 2012, 173: 491
CrossRef ADS Google scholar
[5]
V.L. GinzburgS.I. Syrovatskii, The Origin of Cosmic Rays, New York, 1964
[6]
Q. Yuan, S. M. Liu, X. J. Bi. An attempt at a unified model for the gamma-ray emission of supernova remnants. Astrophys. J., 2012, 761(2): 133
CrossRef ADS Google scholar
[7]
H. Abdalla, A. Abramowski, F. Aharonian. . The H.E.S.S. galactic plane survey. Astron. Astrophys., 2018, 612: A1
CrossRef ADS Google scholar
[8]
J. A. Hinton. The status of the HESS project. New. Astron. Rev., 2004, 48(5): 331
CrossRef ADS Google scholar
[9]
J. Aleksić, S. Ansoldi, L. A. Antonelli. . The major upgrade of the MAGIC telescopes (Part I): The hardware improvements and the commissioning of the system. Astropart. Phys., 2016, 72: 61
CrossRef ADS Google scholar
[10]
J. Holder, R. W. Atkins, H. M. Badran. . The first VERITAS telescope. Astropart. Phys., 2006, 25(6): 391
CrossRef ADS Google scholar
[11]
CTA Consortium, Science with the Cherenkov Telescope Array, World Scientific, Singapore, 2018
[12]
M.de Naurois, The very high energy sky from ~20 GeV to hundreds of TeV - selected highlights, Proceedings of the 34th International Cosmic Ray Conference, Hague, Netherlands, 30 July − 6 August, 34, 021 (2015)
[13]
M. A. Mostafá. . The high-altitude water cherenkov observatory. Braz. J. Phys., 2014, 44: 571
CrossRef ADS Google scholar
[14]
A. U. Abeysekara, A. Albert, R. Alfaro. . The 2HWC HAWC observatory gamma-ray catalog. Astrophys. J., 2017, 843(1): 40
CrossRef ADS Google scholar
[15]
R. Atkins, W. Benbow, D. Berley. . TeV gamma-ray survey of the northern hemisphere sky using the Milagro observatory. Astrophys. J., 2004, 608(2): 680
CrossRef ADS Google scholar
[16]
B. Bartoli, P. Bernardini, X. J. Bi. . TeV gamma-ray survey of the northern sky using the ARGO-YBJ detector. Astrophys. J., 2013, 779(1): 27
CrossRef ADS Google scholar
[17]
X. H. Ma, Y. J. Bi, Z. Cao. . Chapter 1 LHAASO Instruments and detector technology. Chin. Phys. C, 2022, 46(3): 030001
CrossRef ADS Google scholar
[18]
Z. Cao, F. A. Aharonian, Q. An. . Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray galactic sources. Nature, 2021, 594(7861): 33
CrossRef ADS Google scholar
[19]
M. Amenomori, Y. W. Bao, X. J. Bi. . First detection of photons with energy beyond 100 TeV from an astrophysical source. Phys. Rev. Lett., 2019, 123: 051101
CrossRef ADS Google scholar
[20]
A. U. Abeysekara, A. Albert, R. Alfaro. . Multiple galactic sources with emission above 56 TeV detected by HAWC. Phys. Rev. Lett., 2020, 124: 021102
CrossRef ADS Google scholar
[21]
O. Gress, I. Astapov, N. Budnev. . The wide-aperture gamma-ray telescope TAIGA-HiSCORE in the Tunka valley: Design, composition and commissioning. Nucl. Instrum. Meth. A, 2017, 845: 367
CrossRef ADS Google scholar
[22]
H. Cai, Y. Zhang, C. Liu, Q. Gao, Z. Wang, T. L. Chen, X. Y. Zhang, Y. L. Feng, Q. Wang, Z. Tian, Y. Q. Guo, Q. B. Gou, Danzengluobu Y. Liu, M. J. Li, H. E. Yao. Wide field-of-view atmospheric cherenkov telescope based on refractive lens. J. Instrum., 2017, 12: 09023
CrossRef ADS Google scholar
[23]
T. L. Chen, C. Liu, Q. Gao, H. Cai, Z. Wang, Y. Zhang, Y. L. Feng, Q. Wang, Y. Q. Guo, H. B. Hu, Danzengluobu Y. Liu, M. J. Li, H. G. Xin, G. B. Gou, Q. Cai, H. Shi. Performance of a wide field-of-view atmospheric cherenkov telescope prototype based on a refractive lens. Nucl. Instrum. Meth. A, 2019, 927: 46
CrossRef ADS Google scholar
[24]
Z. Wang, Y. Q. Guo, H. Cai, J. F. Chang, T. L. Chen, Danzengluobu L. Feng, Y. Gao, Q. B. Gou, Q. Y. Guo, Y. Hou, C. B. Hu, H. Liu, Labaciren J. Li, C. Liu, H. Y. Liu, J. Q. Qiao, M. L. Qian, B. D. Sheng, X. Tian, X. Wang, Z. Xue, Q. H. Yao, L. R. Zhang, Y. Y. Zhang, S. Zhang. Performance of a scintillation detector array operated with LHAASO-KM2A electronics. Exp. Astron., 2018, 45: 363
CrossRef ADS Google scholar
[25]
H. J. Völk, K. Bernlöhr. Imaging very high energy gamma-ray telescopes. Exp. Astron., 2009, 25: 173
CrossRef ADS Google scholar
[26]
G. G. Xin, Y. H. Yao, X. L. Qian, C. Liu, Q. Gao, Danzengluobu L. Feng, Y. B. Gou, Q. B. Hu, H. J. Li, H. Y. Liu, M. Liu, W. Q. Qiao, B. Wang, Z. Zhang, Y. Cai, H. L. Chen, T. Q. Guo. Prospects for the detection of the prompt very-high-energy emission from γ-ray bursts with the high altitude detection of astronomical radiation experiment. Astrophys. J., 2021, 923(1): 112
CrossRef ADS Google scholar
[27]
M.HollerA. BalzerR.Chalmé-CalvetM.de NauroisD.Zaborov, Photon reconstruction for H.E.S.S. using a semi-analytical model, Proceedings of the 34th International Cosmic Ray Conference, Hague, Netherlands, 30 July − 6 August, 34, 980 (2015)
[28]
J. Aleksić, S. Ansoldi, L. A. Antonelli. . The major upgrade of the MAGIC telescopes (Part II): A performance study using observations of the Crab Nebula. Astropart. Phys., 2016, 72: 76
CrossRef ADS Google scholar
[29]
T. DeYoung. The HAWC observatory. Nucl. Instrum. Meth. A, 2012, 692: 72
CrossRef ADS Google scholar
[30]
M. Amenomori, S. Ayabe, D. Chen. . A northern sky survey for steady tera-electron volt gamma-ray point sources using the Tibet air shower array. Astrophys. J., 2005, 633(2): 1005
CrossRef ADS Google scholar
[31]
T. K. Gaisser, T. Stanev, S. Tilav. Cosmic ray energy spectrum from measurements of air showers. Front. Phys., 2013, 8(6): 748
CrossRef ADS Google scholar
[32]
B. Bartoli, P. Bernardini, X. J. Bi. . Identification of the TeV gamma-ray source ARGO J2031+4157 with the cygnus cocoon. Astrophys. J., 2014, 790(2): 152
CrossRef ADS Google scholar
[33]
M. L. Ahnen, S. Ansoldi, L. A. Antonelli. . A cut-off in the TeV gamma-ray spectrum of the SNR Cassiopeia A. Mon. Not. R. Astron. Soc., 2017, 472(3): 2956
CrossRef ADS Google scholar
[34]
A. U. Abeysekara, A. Archer, W. Benbow. . VERITAS and Fermi-LAT observations of TeV gamma-ray sources discovered by HAWC in the 2HWC catalog. Astrophys. J., 2018, 866(1): 24
CrossRef ADS Google scholar
[35]
E. Aliu, H. Anderhub, L. A. Antonelli. . Discovery of a very high energy gamma-ray signal from the 3C 66A/B region. Astrophys. J., 2009, 692(1): L29
CrossRef ADS Google scholar
[36]
F. Aharonian, A. G. Akhperjanian, U. B. De Almeida. . HESS very-high-energy gamma-ray sources without identified counterparts. Astron. Astrophys., 2008, 477(1): 353
CrossRef ADS Google scholar
[37]
R.López-CotoV.MarandonF.Brun, Morphologi-856 cal and spectral measurements of 2HWC J1928+177 with 857 HAWC and H.E.S.S., Proceedings of the 35th International 858 Cosmic Ray Conference, Bexco, Busan, Korea, 10−20 July, 35, 732 (2017)
[38]
E. Aliu, S. Archambault, T. Arlen. . Discovery of TeV gamma-ray emission toward supernova remnant SNR G78.2+2.1. Astrophys. J., 2013, 770(2): 93
CrossRef ADS Google scholar
[39]
F. Aharonian, A. G. Akhperjanian, A. R. Bazer-Bachi. . Observations of the crab nebula with HESS. Astron. Astrophys., 2006, 457(3): 899
CrossRef ADS Google scholar
[40]
F. Aharonian, A. G. Akhperjanian, U. B. De Almeida. . Discovery of very-high-energy γ-ray emission from the vicinity of PSR J1913+1011 with HESS. Astron. Astrophys., 2008, 484(2): 435
CrossRef ADS Google scholar
[41]
B. Bartoli, P. Bernardini, X. J. Bi. . Observation of TeV gamma rays from the unidentified source HESS J1841-055 with the ARGO-YBJ experiment. Astrophys. J., 2013, 767(2): 99
CrossRef ADS Google scholar
[42]
S. Ranasinghe, D. A. Leahy. Revised distances to 21 supernova remnants. Astrophys. J., 2018, 155(5): 204
CrossRef ADS Google scholar
[43]
B. C. Koo, K. T. Kim, F. D. Seward. Rosat observations of the supernova remnant W51C. Astrophys. J., 1995, 447: 211
CrossRef ADS Google scholar
[44]
A. A. Abdo, M. Ackermann, M. Ajello. . Fermi LAT discovery of extended gamma-ray emission in the direction of supernova remnant W51C. Astrophys. J., 2009, 706(1): L1
CrossRef ADS Google scholar
[45]
A.FiassonV. MarandonR.C. G. ChavesO.Tibolla, Discovery of a VHE gamma-ray source in the W51 region, Proceedings of the 31th International Cosmic Ray Conference, Lodz, Poland, 7−15 July, 31, 889 (2009)
[46]
J. Aleksić, E. A. Alvarez, L. A. Antonelli. . Morphological and spectral properties of the W51 region measured with the MAGIC telescopes. Astron. Astrophys., 2012, 541: A13
CrossRef ADS Google scholar
[47]
F. Aharonian, A. Akhperjanian, M. Beilicke. . The unidentified TeV source (TeV J2032+4130) and surrounding field: Final HEGRA IACT-system results. Astron. Astrophys., 2005, 431(1): 197
CrossRef ADS Google scholar
[48]
A. Konopelko, R. W. Atkins, G. Blaylock. . Observations of the unidentified TeV γ-ray source TeV J2032+4130 with the whipple observatory 10 m telescope. Astrophys. J., 2007, 658(2): 1062
CrossRef ADS Google scholar
[49]
J. Albert, E. Aliu, H. Anderhub. . MAGIC observations of the unidentified γ-ray source TeV J2032+4130. Astrophys. J., 2008, 675(1): L25
CrossRef ADS Google scholar
[50]
E. Aliu, T. Aune, B. Behera. . Observations of the unidentified gamma-ray source TeV J2032+4130 by VERITAS. Astrophys. J., 2014, 783(1): 16
CrossRef ADS Google scholar
[51]
A. U. Abeysekara, W. Benbow, R. Bird. . Periastron observations of TeV gamma-ray emission from a binary system with a 50-year period. Astrophys. J. Lett., 2018, 867(1): L19
CrossRef ADS Google scholar
[52]
M. Ackermann, M. Ajello, A. Allafort. . A cocoon of freshly accelerated cosmic rays detected by Fermi in the cygnus superbubble. Science, 2011, 334(6059): 1103
CrossRef ADS Google scholar
[53]
B. Bartoli, P. Bernardini, X. J. Bi. . Observation of TeV gamma rays from the cygnus region with the ARGO-YBJ experiment. Astrophys. J. Lett., 2012, 745(2): L22
CrossRef ADS Google scholar
[54]
A. A. Abdo, B. Allen, D. Berley. . TeV gamma-ray sources from a survey of the galactic plane with Milagro. Astrophys. J., 2007, 664(2): L91
CrossRef ADS Google scholar
[55]
W. B. Ashworth. A probable flamsteed observation of the Cassiopeia A supernova. J. Hist. Astron., 1980, 11(1): 1
CrossRef ADS Google scholar
[56]
J. E. Reed, J. J. Hester, A. C. Fabian, P. F. Winkler. The three-dimensional structure of the Cassiopeia A supernova remnant I: The spherical shell. Astrophys. J., 1995, 440: 706
CrossRef ADS Google scholar
[57]
A. A. Abdo, M. Ackermann, M. Ajello. . Fermi-lat discovery of GeV gamma-ray emission from the young supernova remnant Cassiopeia A. Astrophys. J. Lett., 2010, 710(1): L92
CrossRef ADS Google scholar
[58]
Y. J. Yuan, S. Funk, G. Jóhannesson, J. Lande, L. Tibaldo, Y. Uchiyama. Fermi large area telescope detection of a break in the gamma-ray spectrum of the supernova remnant Cassiopeia A. Astrophys. J., 2013, 779(2): 117
CrossRef ADS Google scholar
[59]
F. Aharonian, A. Akhperjanian, J. Barrio. . Evidence for TeV gamma ray emission from Cassiopeia A. Astron. Astrophys., 2001, 370(1): 112
CrossRef ADS Google scholar
[60]
J. Albert, E. Aliu, H. Anderhub. . Observation of VHE γ-rays from Cassiopeia A with the MAGIC telescope. Astron. Astrophys., 2007, 474(3): 937
CrossRef ADS Google scholar
[61]
V. A. Acciari, E. Aliu, T. Arlen. . Observations of the shell-type supernova remnant Cassiopeia A at TeV energies with VERITAS. Astrophys. J., 2010, 714(1): 163
CrossRef ADS Google scholar
[62]
J. J. Hester. The Crab nebula: An astrophysical chimera. Annu. Rev. Astron. Astr., 2008, 46: 127
CrossRef ADS Google scholar
[63]
F. Aharonian, A. Akhperjanian, M. Beilicke. . The crab nebula and pulsar between 500 GeV and 80 TeV: Observations with the HEGRA stereoscopic air cerenkov telescopes. Astrophys. J., 2004, 614(2): 897
CrossRef ADS Google scholar
[64]
T. C. Weekes, M. F. Cawley, D. J. Fegan, K. G. Gibbs, A. M. Hillas, P. W. Kwok, R. C. Lamb, D. A. Lewis, D. Macomb, N. A. Porter, P. T. Reynolds, G. Vacanti. Observation of TeV gamma-rays from the crab nebula using the atmospheric cherenkov imaging technique. Astrophys. J., 1989, 342: 379
CrossRef ADS Google scholar
[65]
K.Meagher, Six years of VERITAS observations of the crab nebula, Proceedings of the 34th International Cosmic Ray Conference, Hague, Netherlands, 30 July − 6 August, 34, 792 (2015)
[66]
J. Aleksić, S. Ansoldi, L. A. Antonelli. . Measurement of the crab nebula spectrum over three decades in energy with the MAGIC telescopes. J. High. Energy Astrophys., 2015, 5: 30
CrossRef ADS Google scholar
[67]
A. U. Abeysekara, A. Albert, R. Alfaro. . Observation of the crab nebula with the HAWC gamma-ray observatory. Astrophys. J., 2017, 843(1): 39
CrossRef ADS Google scholar
[68]
A. M. Atoyan, F. A. Aharonian. On the mechanisms of gamma radiation in the crab nebula. Mon. Not. R. Astron. Soc., 1996, 278(2): 525
CrossRef ADS Google scholar
[69]
C. Nigro, C. Deil, R. Zanin. . Towards open and reproducible multi-instrument analysis in gamma-ray astronomy. Astron. Astrophys., 2019, 625: A10
CrossRef ADS Google scholar
[70]
J. P. Halpern, S. S. Holt. Discovery of soft X-ray pulsations from the γ-ray source geminga. Nature, 1992, 357(6375): 222
CrossRef ADS Google scholar
[71]
J. Faherty, F. M. Walter, J. Anderson. The trigonometric parallax of the neutron star geminga. Astrophys. Space. Sci., 2007, 308: 225
CrossRef ADS Google scholar
[72]
A. A. Abdo, B. T. Allen, T. Aune. . Milagro observations of multi-TeV emission from galactic sources in the FERMI bright source list. Astrophys. J., 2009, 700(2): L127
CrossRef ADS Google scholar
[73]
M. L. Ahnen, S. Ansoldi, L. A. Antonelli. . Search for VHE gamma-ray emission from geminga pulsar and nebula with the MAGIC telescopes. Astron. Astrophys., 2016, 591: A138
CrossRef ADS Google scholar
[74]
A. U. Abeysekara, A. Albert, R. Alfaro. . Extended gamma-ray sources around pulsars constrain the origin of the positron flux at earth. Science, 2017, 358(6365): 911
CrossRef ADS Google scholar
[75]
R. Y. Liu, H. R. Yan, H. S. Zhang. Understanding the multiwavelength observation of geminga’s TeV halo: The role of anisotropic diffusion of particles. Phys. Rev. Lett., 2019, 123(22): 221103
CrossRef ADS Google scholar
[76]
R. López-Coto, G. Giacinti. Constraining the properties of the magnetic turbulence in the geminga region using HAWC γ-ray data. Mon. Not. R. Astron. Soc., 2018, 479(4): 4526
CrossRef ADS Google scholar
[77]
K. Fang, X. J. Bi, P. F. Yin, Q. Yuan. Two-zone diffusion of electrons and positrons from geminga explains the positron anomaly. Astrophys. J., 2018, 863(1): 30
CrossRef ADS Google scholar
[78]
F. Camilo, D. R. Lorimer, N. D. R. Bhat, E. V. Gotthelf, J. P. Halpern, Q. D. Wang, F. J. Lu, N. Mirabal. Discovery of a 136 millisecond radio and X-ray pulsar in supernova remnant G54.1+0.3. Astrophys. J., 2002, 574(1): L71
CrossRef ADS Google scholar
[79]
V. A. Acciari, E. Aliu, T. Arlen. . Discovery of very high energy γ-ray emission from the SNR G54.1+0.3. Astrophys. J. Lett., 2010, 719(1): L69
CrossRef ADS Google scholar
[80]
J. Holder. Latest results from VERITAS: Gamma 2016. AIP Conference Proceedings, 2017, 1792: 020013
CrossRef ADS Google scholar
[81]
R. Kothes, T. L. Landecker, W. Reich, S. Safi-Harb, Z. Arzoumanian. DA 495: An aging pulsar wind nebula. Astrophys. J., 2008, 687(1): 516
CrossRef ADS Google scholar
[82]
F. Aharonian, A. G. Akhperjanian, K. M. Aye. . Discovery of the binary pulsar PSR B1259-63 in very-high-energy gamma rays around periastron with HESS. Astron. Astrophys., 2005, 442(1): 1
CrossRef ADS Google scholar
[83]
F. Aharonian, A. G. Akhperjanian, K. M. Aye. . Discovery of very high energy gamma rays associated with an X-ray binary. Science, 2005, 309(5735): 746
CrossRef ADS Google scholar
[84]
J. Albert, E. Aliu, H. Anderhub. . Variable very-high-energy gamma-ray emission from the microquasar LS I+61° 303. Science, 2006, 312(5781): 1771
CrossRef ADS Google scholar
[85]
S. Archambault, A. Archer, T. Aune. . Exceptionally bright TeV flares from the binary LS I+61° 303. Astrophys. J. Lett., 2016, 817(1): L7
CrossRef ADS Google scholar
[86]
F. A. Aharonian, A. G. Akhperjanian, A. R. Bazer-Bachi. . Discovery of a point-like very-high-energy γ-ray source in monoceros. Astron. Astrophys., 2007, 469(1): L1
CrossRef ADS Google scholar
[87]
A. Abramowski, F. Aharonian, F. A. Benkhali. . Discovery of variable VHE γ-ray emission from the binary system 1FGL J1018.6-5856. Astron. Astrophys., 2015, 577: A131
CrossRef ADS Google scholar
[88]
A. G. Lyne, B. W. Stappers, M. J. Keith, P. S. Ray, M. Kerr, F. Camilo, T. J. Johnson. The binary nature of PSR J2032+4127. Mon. Not. R. Astron. Soc., 2015, 451(1): 581
CrossRef ADS Google scholar
[89]
W. C. G. Ho, C. Y. Ng, A. G. Lyne, B. W. Stappers, M. J. Coe, J. P. Halpern, T. J. Johnson, I. A. Steele. Multiwavelength monitoring and X-ray brightening of Be X-ray binary PSR J2032+4127/MT91 213 on its approach to periastron. Mon. Not. R. Astron. Soc., 2017, 464(1): 1211
CrossRef ADS Google scholar
[90]
S. Johnston, R. N. Manchester, A. G. Lyne, M. Bailes, V. M. Kaspi, G. J. Qiao, N. D’Amico. PSR 1259-63: A binary radio pulsar with a Be star companion. Astrophys. J., 1992, 387: L37
CrossRef ADS Google scholar
[91]
A. A. Abdo, M. Ackermann, M. Ajello. . Detection of 16 gamma-ray pulsars through blind frequency searches using the Fermi LAT. Science, 2009, 325(5942): 840
CrossRef ADS Google scholar
[92]
W. W. Morgan, A. D. Code, A. E. Whitford. Studies in galactic structure. II. Luminosity classification for 1270 blue giant stars. Astrophys. J. Suppl. S., 1955, 2: 41
CrossRef ADS Google scholar
[93]
J. A. Hinton, J. L. Skilton, S. Funk, J. Brucker, F. A. Aharonian, G. Dubus, A. Fiasson, Y. Gallant, W. Hofmann, A. Marcowith, O. Reimer. HESS J0632+057: A new gamma-ray binary?. Astrophys. J., 2008, 690(2): L101
CrossRef ADS Google scholar
[94]
C. Aragona, M. V. McSwain, M. De Becker. HD 259440: The proposed optical counterpart of the γ-ray binary HESS J0632+057. Astrophys. J., 2010, 724(1): 306
CrossRef ADS Google scholar
[95]
E. Aliu, S. Archambault, T. Aune. . Long-term TeV and X-ray observations of the gamma-ray binary HESS J0632+057. Astrophys. J., 2013, 780(2): 168
CrossRef ADS Google scholar
[96]
V. A. Acciari, E. Aliu, T. Arlen. . Evidence for long-term gamma-ray and X-ray variability from the unidentified TeV source HESS J0632+057. Astrophys. J., 2009, 698(2): L94
CrossRef ADS Google scholar
[97]
J. Aleksić, E. A. Alvarez, L. A. Antonelli. . Detection of VHE γ-rays from HESS J0632+057 during the 2011 February X-ray outburst with the MAGIC telescopes. Astrophys. J. Lett., 2012, 754(1): L10
CrossRef ADS Google scholar
[98]
S. D. Bongiorno, A. D. Falcone, M. Stroh, J. Holder, J. L. Skilton, J. A. Hinton, N. Gehrels, J. Grube. A new TeV binary: The discovery of an orbital period in HESS J0632+057. Astrophys. J. Lett., 2011, 737(1): L11
CrossRef ADS Google scholar
[99]
A. D. Falcone1, J. Grube, J. Hinton, J. Holder, G. Maier, R. Mukherjee, J. Skilton, M. Stroh. Probing the nature of the unidentified TeV gamma-ray source HESS J0632+057 with SWIFT. Astrophys. J. Lett., 2009, 708(1): L52
[100]
J. Casares, M. Ribó, I. Ribas, J. M. Paredes, F. Vilardell, I. Negueruela. On the binary nature of the γ-ray sources AGL J2241+4454 (= MWC 656) and HESS J0632+057 (= MWC 148). Mon. Not. R. Astron. Soc., 2012, 421(2): 1103
CrossRef ADS Google scholar
[101]
C. B. Adams, W. Benbow, A. Brill. . Observation of the gamma-ray binary HESS J0632+057 with the H.E.S.S., MAGIC, and VERITAS telescopes. Astrophys. J., 2021, 923(2): 241
CrossRef ADS Google scholar
[102]
S. Abdollahi, F. Acero, M. Ackermann. . Fermi large area telescope fourth source catalog. Astrophys. J. Suppl. S., 2020, 247(1): 33
CrossRef ADS Google scholar
[103]
A. Albert, R. Alfaro, C. Alvarez. . 3HWC: The third HAWC catalog of very-high-energy gamma-ray sources. Astrophys. J., 2020, 905(1): 76
CrossRef ADS Google scholar
[104]
R. Z. Yang, B. Liu. On the surface brightness radial profile of the extended γ-ray sources. Sci. China. Phys. Chem., 2022, 65(1): 1
CrossRef ADS Google scholar
[105]
A.M. W. MitchellS.CaroffJ.Hinton L.Mohrmannd, ., Detection of extended TeV emission around the geminga pulsar with H.E.S.S., arXiv: 210802556 (2021)

Acknowledgements

We acknowledge the support from the National Natural Science Foundation of China (Nos. 11873005, 11705103, 12005120, 12147218, U1831208, U1632104, 11875264, and U2031110).

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(5709 KB)

Accesses

Citations

Detail

Sections
Recommended

/