Machine learning-based direct solver for one-to-many problems on temporal shaping of relativistic electron beams

Jinyu Wan, Yi Jiao

PDF(5427 KB)
PDF(5427 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (6) : 64601. DOI: 10.1007/s11467-022-1205-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Machine learning-based direct solver for one-to-many problems on temporal shaping of relativistic electron beams

Author information +
History +

Abstract

To control the temporal profile of a relativistic electron beam to meet requirements of various advanced scientific applications like free-electron-laser and plasma wakefield acceleration, a widely-used technique is to manipulate the dispersion terms which turns out to be one-to-many problems. Due to their intrinsic one-to-many property, current popular stochastic optimization approaches on temporal shaping may face the problems of long computing time or sometimes suggesting only one solution. Here we propose a real-time solver for one-to-many problems of temporal shaping, with the aid of a semi-supervised machine learning method, the conditional generative adversarial network (CGAN). We demonstrate that the CGAN solver can learn the one-to-many dynamics and is able to accurately and quickly predict the required dispersion terms for different custom temporal profiles. This machine learning-based solver is expected to have the potential for wide applications to one-to-many problems in other scientific fields.

Graphical abstract

Keywords

beam shaping / one-to-many problem / machine learning

Cite this article

Download citation ▾
Jinyu Wan, Yi Jiao. Machine learning-based direct solver for one-to-many problems on temporal shaping of relativistic electron beams. Front. Phys., 2022, 17(6): 64601 https://doi.org/10.1007/s11467-022-1205-y

References

[1]
P.Emma, R.Akre, J.Arthur, R.Bionta, C.Bostedt, J.Bozek, A.Brachmann, P.Bucksbaum, R.Coffee, F.J. Decker, Y.Ding, D.Dowell, S.Edstrom, A.Fisher, J.Frisch, S.Gilevich, J.Hastings, G.Hays, Ph.Hering, Z.Huang, R.Iverson, H.Loos, M.Messerschmidt, A.Miahnahri, S.Moeller, H.D. Nuhn, G.Pile, D.Ratner, J.Rzepiela, D.Schultz, T.Smith, P.Stefan, H.Tompkins, J.Turner, J.Welch, W.White, J.Wu, G.Yocky, J.Galayda. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photonics , 2010, 4( 9): 641
CrossRef ADS Google scholar
[2]
E.Allaria, D.Castronovo, P.Cinquegrana, P.Craievich, M.Dal Forno, M.B. Danailov, G.D’Auria, A.Demidovich, G.De Ninno, S.Di Mitri, B.Diviacco, W.M. Fawley, M.Ferianis, E.Ferrari, L.Froehlich, G.Gaio, D.Gauthier, L.Giannessi, R.Ivanov, B.Mahieu, N.Mahne, I.Nikolov, F.Parmigiani, G.Penco, L.Raimondi, C.Scafuri, C.Serpico, P.Sigalotti, S.Spampinati, C.Spezzani, M.Svandrlik, C.Svetina, M.Trovo, M.Veronese, D.Zangrando, M.Zangrando. Two-stage seeded soft-X-ray free-electron laser. Nat. Photonics , 2013, 7( 11): 913
CrossRef ADS Google scholar
[3]
N.Huang, H.Deng, B.Liu, D.Wang, Z.Zhao. Features and futures of X-ray free-electron lasers. The Innovation , 2021, 2 : 100097
CrossRef ADS Google scholar
[4]
S.Bielawski, C.Evain, T.Hara, M.Hosaka, M.Katoh, S.Kimura, A.Mochihashi, M.Shimada, C.Szwaj, T.Takahashi, Y.Takashima. Tunable narrowband terahertz emission from mastered laser–electron beam interaction. Nat. Phys. , 2008, 4( 5): 390
CrossRef ADS Google scholar
[5]
H.Tang, L.Zhao, P.Zhu, X.Zou, J.Qi, Y.Cheng, J.Qiu, X.Hu, W.Song, D.Xiang, J.Zhang. Stable and scalable multistage terahertz-driven particle accelerator. Phys. Rev. Lett. , 2021, 127( 7): 074801
CrossRef ADS Google scholar
[6]
X.Q. Yan, C.Lin, H.Y. Lu, K.Zhu, Y.B. Zou, H.Y. Wang, B.Liu, S.Zhao, J.Zhu, Y.X. Geng, H.Z. Fu, Y.Shang, C.Cao, Y.R. Shou, W.Song, Y.R. Lu, Z.X. Yuan, Z.Y. Guo, X.T. He, J.E. Chen. Recent progress of laser driven particle acceleration at Peking University. Front. Phys. , 2013, 8( 5): 577
CrossRef ADS Google scholar
[7]
E.Gschwendtner, P.Muggli. Plasma wakefield accelerators. Nat. Rev. Phys. , 2019, 1( 4): 246
CrossRef ADS Google scholar
[8]
B.E. Cole, J.B. Williams, B.T. King, M.S. Sherwin, C.R. Stanley. Coherent manipulation of semiconductor quantum bits with terahertz radiation. Nature , 2001, 410( 6824): 60
CrossRef ADS Google scholar
[9]
S.P. Hau-Riege, R.A. London, R.M. Bionta, M.A. McKernan, S.L. Baker, J.Krzywinski, R.Sobierajski, R.Nietubyc, J.B. Pelka, M.Jurek, L.Juha, J.Chalupský, J.Cihelka, V.Hájková, A.Velyhan, J.Krása, J.Kuba, K.Tiedtke, S.Toleikis, T.Tschentscher, H.Wabnitz, M.Bergh, C.Caleman, K.Sokolowski-Tinten, N.Stojanovic, U.Zastrau. Damage threshold of inorganic solids under free-electron-laser irradiation at 32.5 nm wavelength. Appl. Phys. Lett. , 2007, 90( 17): 173128
CrossRef ADS Google scholar
[10]
G.J. Wilmink, J.E. Grundt. Current state of research on biological effects of terahertz radiation. Int. J. Infrared Millim. Terahertz Waves , 2011, 32( 10): 1074
CrossRef ADS Google scholar
[11]
M.L. Grünbein, J.Bielecki, A.Gorel, M.Stricker, R.Bean, M.Cammarata, K.Dörner, L.Fröhlich, E.Hartmann, S.Hauf, M.Hilpert, Y.Kim, M.Kloos, R.Letrun, M.Messerschmidt, G.Mills, G.N. Kovacs, M.Ramilli, C.M. Roome, T.Sato, M.Scholz, M.Sliwa, J.Sztuk-Dambietz, M.Weik, B.Weinhausen, N.Al-Qudami, D.Boukhelef, S.Brockhauser, W.Ehsan, M.Emons, S.Esenov, H.Fangohr, A.Kaukher, T.Kluyver, M.Lederer, L.Maia, M.Manetti, T.Michelat, A.Münnich, F.Pallas, G.Palmer, G.Previtali, N.Raab, A.Silenzi, J.Szuba, S.Venkatesan, K.Wrona, J.Zhu, R.B. Doak, R.L. Shoeman, L.Foucar, J.-P.Colletier, A.P. Mancuso, T.R. M. Barends, C.A. Stan, I.Schlichting. Megahertz data collection from protein microcrystals at an X-ray free-electron laser. Nat. Commun. , 2018, 9 : 3487
CrossRef ADS Google scholar
[12]
M.Litos, E.Adli, W.An, C.I. Clarke, C.E. Clayton, S.Corde, J.P. Delahaye, R.J. England, A.S. Fisher, J.Frederico, S.Gessner, S.Z. Green, M.J. Hogan, C.Joshi, W.Lu, K.A. Marsh, W.B. Mori, P.Muggli, N.Vafaei-Najafabadi, D.Walz, G.White, Z.Wu, V.Yakimenko, G.Yocky. High-efficiency acceleration of an electron beam in a plasma wakefield accelerator. Nature , 2014, 515( 7525): 92
CrossRef ADS Google scholar
[13]
D.P. Anderle, V.Bertone, X.Cao, L.Chang, N.Chang, G.Chen, X.Chen, Z.Chen, Z.Cui, L.Dai, W.Deng, M.Ding, X.Feng, C.Gong, L.Gui, F.K. Guo, C.Han, J.He, T.J. Hou, H.Huang, Y.Huang, K.I. KumeričKi, L.P. Kaptari, D.Li, H.Li, M.Li, X.Li, Y.Liang, Z.Liang, C.Liu, C.Liu, G.Liu, J.Liu, L.Liu, X.Liu, T.Liu, X.Luo, Z.Lyu, B.Ma, F.Ma, J.Ma, Y.Ma, L.Mao, C.Mezrag, H.Moutarde, J.Ping, S.Qin, H.Ren, C.D. Roberts, J.Rojo, G.Shen, C.Shi, Q.Song, H.Sun, P.Sznajder, E.Wang, F.Wang, Q.Wang, R.Wang, R.Wang, T.Wang, W.Wang, X.Wang, X.Wang, J.Wu, X.Wu, L.Xia, B.Xiao, G.Xiao, J.J. Xie, Y.Xie, H.Xing, H.Xu, N.Xu, S.Xu, M.Yan, W.Yan, W.Yan, X.Yan, J.Yang, Y.B. Yang, Z.Yang, D.Yao, Z.Ye, P.Yin, C.P. Yuan, W.Zhan, J.Zhang, J.Zhang, P.Zhang, Y.Zhang, C.H. Chang, Z.Zhang, H.Zhao, K.T. Chao, Q.Zhao, Y.Zhao, Z.Zhao, L.Zheng, J.Zhou, X.Zhou, X.Zhou, B.Zou, L.Zou. Electron-ion collider in China. Front. Phys. , 2021, 16( 6): 64701
CrossRef ADS Google scholar
[14]
K.L. F. Bane, P.Chen, P.B. Wilson. On collinear wake field acceleration. IEEE Trans. Nucl. Sci. , 1985, 32( 5): 3524
CrossRef ADS Google scholar
[15]
R.J. England, J.B. Rosenzweig, G.Travish. Generation and measurement of relativistic electron bunches characterized by a linearly ramped current profile. Phys. Rev. Lett. , 2008, 100( 21): 214802
CrossRef ADS Google scholar
[16]
Y.Ding, K.L. F. Bane, W.Colocho, F.J. Decker, P.Emma, J.Frisch, M.W. Guetg, Z.Huang, R.Iverson, J.Krzywinski, H.Loos, A.Lutman, T.J. Maxwell, H.D. Nuhn, D.Ratner, J.Turner, J.Welch, F.Zhou. Beam shaping to improve the free-electron laser performance at the Linac coherent light source. Phys. Rev. Accel. Beams , 2016, 19( 10): 100703
CrossRef ADS Google scholar
[17]
T.K. Charles D.M. Paganin M.J. Boland R.T. Dowd, in: Proceedings of 8th International Particle Accelerator Conference, Copenhagen, Denmark, May 2017, paper MOPIK055, pp 644− 647
[18]
N.Sudar, P.Musumeci, I.Gadjev, Y.Sakai, S.Fabbri, M.Polyanskiy, I.Pogorelsky, M.Fedurin, C.Swinson, K.Kusche, M.Babzien, M.Palmer. Demonstration of cascaded modulator-chicane microbunching of a relativistic electron beam. Phys. Rev. Lett. , 2018, 120( 11): 114802
CrossRef ADS Google scholar
[19]
V.Shpakov, M.P. Anania, M.Bellaveglia, A.Biagioni, F.Bisesto, F.Cardelli, M.Cesarini, E.Chiadroni, A.Cianchi, G.Costa, M.Croia, A.Del Dotto, D.Di Giovenale, M.Diomede, M.Ferrario, F.Filippi, A.Giribono, V.Lollo, M.Marongiu, V.Martinelli, A.Mostacci, L.Piersanti, G.Di Pirro, R.Pompili, S.Romeo, J.Scifo, C.Vaccarezza, F.Villa, A.Zigler. Longitudinal phase-space manipulation with beam-driven plasma wakefields. Phys. Rev. Lett. , 2019, 122( 11): 114801
CrossRef ADS Google scholar
[20]
E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov. An analytical description of longitudinal phase space distortions in magnetic bunch compressors. Nucl. Instrum. Methods Phys. Res. Sect. A , 2002, 483 : 516
CrossRef ADS Google scholar
[21]
K.L. Brown, Stanford Linear Accelerator Center: SLAC report No. 75, 1971.
[22]
M.W. Guetg, B.Beutner, E.Prat, S.Reiche. Optimization of free electron laser performance by dispersion-based beam-tilt correction. Phys. Rev. Spec. Top. Accel. Beams , 2015, 18( 3): 030701
CrossRef ADS Google scholar
[23]
E.Prat, P.Dijkstal, E.Ferrari, S.Reiche. Demonstration of large bandwidth hard X-ray free-electron laser pulses at SwissFEL. Phys. Rev. Lett. , 2020, 124( 7): 074801
CrossRef ADS Google scholar
[24]
P.Piot, C.Behrens, C.Gerth, M.Dohlus, F.Lemery, D.Mihalcea, P.Stoltz, M.Vogt. Generation and characterization of electron bunches with ramped current profiles in a dual-frequency superconducting linear accelerator. Phys. Rev. Lett. , 2012, 108( 3): 034801
CrossRef ADS Google scholar
[25]
T.K. Charles, D.M. Paganin, R.T. Dowd. Caustic-based approach to understanding bunching dynamics and current spike formation in particle bunches. Phys. Rev. Accel. Beams , 2016, 19( 10): 104402
CrossRef ADS Google scholar
[26]
D.J. Dunning J.K.Jones H.M. Castaneda Cortés, in: Proceedings of the 39th Free Electron Laser Conference, Hamburg, Germany, August 2019, pp 711– 714
[27]
Y.Ding K.L. F. Bane Y.M. Nosochkov, in: Proceedings of the 39th Free Electron Laser Conference, Hamburg, Germany, August 2019, pp 661– 664
[28]
F.Mayet, R.Assmann, F.Lemery. Longitudinal phase space synthesis with tailored 3D-printable dielectric-lined waveguides. Phys. Rev. Accel. Beams , 2020, 23( 12): 121302
CrossRef ADS Google scholar
[29]
L.Yang, D.Robin, F.Sannibale, C.Steier, W.Wan. Global optimization of an accelerator lattice using multiobjective genetic algorithms. Nucl. Instrum. Methods Phys. Res. Sect. A , 2009, 609 : 50
CrossRef ADS Google scholar
[30]
J.Wu, N.Hu, H.Setiawan, X.Huang, T.O. Raubenheimer, Y.Jiao, G.Yu, A.Mandlekar, S.Spampinati, K.Fang, C.Chu, J.Qiang. Multi-dimensional optimization of a terawatt seeded tapered free electron laser with a multi-objective genetic algorithm. Nucl. Instrum. Methods Phys. Res. Sect. A , 2017, 846 : 56
CrossRef ADS Google scholar
[31]
X.Huang, J.Safranek. Nonlinear dynamics optimization with particle swarm and genetic algorithms for SPEAR3 emittance upgrade. Nucl. Instrum. Methods Phys. Res. Sect. A , 2014, 757 : 48
CrossRef ADS Google scholar
[32]
N.Bruchon, G.Fenu, G.Gaio, M.Lonza, F.A. Pellegrino, L.Saule. Free-electron laser spectrum evaluation and automatic optimization. Nucl. Instrum. Methods Phys. Res. Sect. A , 2017, 871 : 20
CrossRef ADS Google scholar
[33]
T.Takahama S.Sakai, in: Proceedings of 2006 IEEE International Conference on Evolutionary Computation, 2006, pp 1– 8
[34]
M.Wielgosz, A.Skoczeń, M.Mertik. Using LSTM recurrent neural networks for monitoring the LHC superconducting magnets. Nucl. Instrum. Methods Phys. Res. Sect. A , 2017, 867 : 40
CrossRef ADS Google scholar
[35]
Y.Li, W.Cheng, H.Y. Li, R.Rainer. Genetic algorithm enhanced by machine learning in dynamic aperture optimization. Phys. Rev. Accel. Beams , 2018, 21( 5): 054601
CrossRef ADS Google scholar
[36]
C.Emma, A.Edelen, M.J. Hogan, B.O’Shea, G.White, V.Yakimenko. Machine learning-based longitudinal phase space prediction of particle accelerators. Phys. Rev. Accel. Beams , 2018, 21( 11): 112802
CrossRef ADS Google scholar
[37]
A.Scheinker, A.Edelen, D.Bohler, C.Emma, A.Lutman. Demonstration of model-independent control of the longitudinal phase space of electron beams in the Linac-coherent light source with femtosecond resolution. Phys. Rev. Lett. , 2018, 121( 4): 044801
CrossRef ADS Google scholar
[38]
J.Wan, P.Chu, Y.Jiao, Y.Li. Improvement of machine learning enhanced genetic algorithm for nonlinear beam dynamics optimization. Nucl. Instrum. Methods Phys. Res. Sect. A , 2019, 946 : 162683
CrossRef ADS Google scholar
[39]
S.C. Leemann, S.Liu, A.Hexemer, M.A. Marcus, C.N. Melton, H.Nishimura, C.Sun. Demonstration of machine learning-based model-independent stabilization of source properties in synchrotron light sources. Phys. Rev. Lett. , 2019, 123( 19): 194801
CrossRef ADS Google scholar
[40]
X.Xu, Y.Zhou, Y.Leng. Machine learning based image processing technology application in bunch longitudinal phase information extraction. Phys. Rev. Accel. Beams , 2020, 23( 3): 032805
CrossRef ADS Google scholar
[41]
A.Edelen, N.Neveu, M.Frey, Y.Huber, C.Mayes, A.Adelmann. Machine learning for orders of magnitude speedup in multiobjective optimization of particle accelerator systems. Phys. Rev. Accel. Beams , 2020, 23( 4): 044601
CrossRef ADS Google scholar
[42]
J.Wan, P.Chu, Y.Jiao. Neural network-based multiobjective optimization algorithm for nonlinear beam dynamics. Phys. Rev. Accel. Beams , 2020, 23( 8): 081601
CrossRef ADS Google scholar
[43]
M.Mirza S.Osindero, Conditional generative adversarial nets, arXiv: 1411.1784 (2014)
[44]
I.Goodfellow J.Pouget-Abadie M.Mirza B.Xu D. Warde-Farley S. Ozair A.Courville Y.Bengio, Generative adversarial networks, arXiv: 1406.2661 (2014)
[45]
Y.L. Tuan, H.Y. Lee. Improving conditional sequence generative adversarial networks by stepwise evaluation. IEEE/ACM Trans. Audio Speech Lang. Process. , 2019, 27( 4): 788
CrossRef ADS Google scholar
[46]
V.Sandfort, K.Yan, P.J. Pickhardt, R.M. Summers. Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks. Sci. Rep. , 2019, 9( 1): 16884
CrossRef ADS Google scholar
[47]
E.L. Denton S.Chintala A.Szlam R.Fergus, Deep generative image models using a Laplacian pyramid of adversarial networks, arXiv: 1506.05751 (2015)
[48]
J.Y. Zhu T.Park P.Isola A.A. Efros, in: Proceedings of 2017 IEEE International Conference on Computer Vision, 2017, pp 2242– 2251
[49]
C.Ledig L.Theis F.Huszár J.Caballero A.Cunningham A.Acosta A.Aitken A.Tejani J.Totz Z.Wang W.Shi, in: Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp 105– 114
[50]
S.Gurumurthy R.K. Sarvadevabhatla V.B. Radhakrishnan, in Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp 4941– 4949
[51]
P.Isola J.Y. Zhu T.Zhou A.A. Efros, Image-to-image translation with conditional adversarial networks, In: Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp 5967− 5976
[52]
R.J. England, J.B. Rosenzweig, G.Andonian, P.Musumeci, G.Travish, R.Yoder. Sextupole correction of the longitudinal transport of relativistic beams in dispersionless translating sections. Phys. Rev. Spec. Top. Accel. Beams , 2005, 8( 1): 012801
CrossRef ADS Google scholar
[53]
J.C. Lagarias, J.A. Reeds, M.H. Wright, P.E. Wright. Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J. Optim. , 1998, 9( 1): 112
CrossRef ADS Google scholar
[54]
A.Terebilo, in: Proceedings of the 2001 Particle Accelerator Conference, Vol. 4, 2001, pp 3203– 3205
[55]
G.Rizzo, T.H. M. Van. Adversarial text generation with context adapted global knowledge and a self-attentive discriminator. Inf. Process. Manage. , 2020, 57( 6): 102217
CrossRef ADS Google scholar
[56]
D.P. Kingma J.Ba, Adam: A method for stochastic optimization, arXiv: 1412.6980 (2014)
[57]
M.Abadi A.Agarwal P.Barham E.Brevdo Z.Chen C.Citro G.S. Corrado A.Davis J.Dean M.Devin S.Ghemawat I.Goodfellow A.Harp G.Irving M.Isard Y.Jia R.Jozefowicz L.Kaiser M.Kudlur J.Levenberg D.Mane R.Monga S.Moore D.Murray C.Olah M.Schuster J.Shlens B.Steiner I.Sutskever K.Talwar P.Tucker V.Vanhoucke V.Vasudevan F.Viegas O.Vinyals P.Warden M.Wattenberg M.Wicke Y.Yu X. Zheng, TensorFlow: Large-scale machine learning on heterogeneous distributed systems, arXiv: 1603.04467 ( 2016)
[58]
M.Borland, Technical Report No. LS-287, Argonne National Laboratory, 2000
[59]
T.K. Charles, D.M. Paganin, A.Latina, M.J. Boland, R.T. Dowd. Current-horn suppression for reduced coherent-synchrotron-radiation-induced emittance growth in strong bunch compression. Phys. Rev. Accel. Beams , 2017, 20( 3): 030705
CrossRef ADS Google scholar

Acknowledgements

The authors thank Dr. Juhao Wu for nice discussion and suggestions. This work was supported by National Natural Science Foundation of China (No. 11922512), Youth Innovation Promotion Association of Chinese Academy of Sciences (No. Y201904) and National Key R&D Program of China (No. 2016YFA0401900).

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(5427 KB)

Accesses

Citations

Detail

Sections
Recommended

/