P212121-C16: An ultrawide bandgap and ultrahard carbon allotrope with the bandgap larger than diamond

Mingqing Liao, Jumahan Maimaitimusha, Xueting Zhang, Jingchuan Zhu, Fengjiang Wang

PDF(11296 KB)
PDF(11296 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (6) : 63507. DOI: 10.1007/s11467-022-1204-z
RESEARCH ARTICLE
RESEARCH ARTICLE

P212121-C16: An ultrawide bandgap and ultrahard carbon allotrope with the bandgap larger than diamond

Author information +
History +

Abstract

Ultrawide bandgap semiconductor, e.g., diamond, is considered as the next generation of semiconductor. Here, a new orthorhombic carbon allotrope (P212121-C16) with ultrawide bandgap and ultra-large hardness is identified. The stability of the newly designed carbon is confirmed by the energy, phonon spectrum, ab-initio molecular dynamics and elastic constants. The hardness ranges from 88 GPa to 93 GPa according to different models, which is comparable to diamond. The indirect bandgap reaches 6.23 eV, which is obviously larger than that of diamond, and makes it a promising ultra-wide bandgap semiconductor. Importantly, the experimental possibility is confirmed by comparing the simulated X-ray diffraction with experimental results, and two hypothetical transformation paths to synthesize it from graphite are proposed.

Graphical abstract

Keywords

carbon allotrope / ultrawide bandgap semiconductor / ultrahard / first-principles

Cite this article

Download citation ▾
Mingqing Liao, Jumahan Maimaitimusha, Xueting Zhang, Jingchuan Zhu, Fengjiang Wang. P212121-C16: An ultrawide bandgap and ultrahard carbon allotrope with the bandgap larger than diamond. Front. Phys., 2022, 17(6): 63507 https://doi.org/10.1007/s11467-022-1204-z

References

[1]
J.Millan, P.Godignon, X.Perpina, A.Perez-Tomas, J.Rebollo. A survey of wide bandgap power semiconductor devices. IEEE Trans. Power Electron. , 2014, 29( 5): 2155
CrossRef ADS Google scholar
[2]
H.Okumura. A roadmap for future wide bandgap semiconductor power electronics. MRS Bull. , 2015, 40( 5): 439
CrossRef ADS Google scholar
[3]
P.R. Wilson, B.Ferreira, J.Zhang, C.DiMarino. IEEE ITRW: International technology roadmap for wide-bandgap power semiconductors: An overview. IEEE Power Electron. Mag. , 2018, 5( 2): 22
CrossRef ADS Google scholar
[4]
J.Y. Tsao, S.Chowdhury, M.A. Hollis, D.Jena, N.M. Johnson, K.A. Jones, R.J. Kaplar, S.Rajan, C.G. Van de Walle, E.Bellotti, C.L. Chua, R.Collazo, M.E. Coltrin, J.A. Cooper, K.R. Evans, S.Graham, T.A. Grotjohn, E.R. Heller, M.Higashiwaki, M.S. Islam, P.W. Juodawlkis, M.A. Khan, A.D. Koehler, J.H. Leach, U.K. Mishra, R.J. Nemanich, R.C. N. Pilawa‐Podgurski, J.B. Shealy, Z.Sitar, M.J. Tadjer, A.F. Witulski, M.Wraback, J.A. Simmons. Ultrawide‐bandgap semiconductors: Research opportunities and challenges. Adv. Electron. Mater. , 2018, 4( 1): 1600501
CrossRef ADS Google scholar
[5]
B.J. Baliga. Semiconductors for high‐voltage, vertical channel field‐effect transistors. J. Appl. Phys. , 1982, 53( 3): 1759
CrossRef ADS Google scholar
[6]
X.Shi, C.He, C.J. Pickard, C.Tang, J.Zhong. Stochastic generation of complex crystal structures combining group and graph theory with application to carbon. Phys. Rev. B , 2018, 97( 1): 014104
CrossRef ADS Google scholar
[7]
P.Gao, B.Gao, S.Lu, H.Liu, J.Lv, Y.Wang, Y.Ma. Structure search of two-dimensional systems using CALYPSO methodology. Front. Phys. , 2022, 17( 2): 23203
CrossRef ADS Google scholar
[8]
R.-S.Zhang, J.-W.Jiang. The art of designing carbon allotropes. Front. Phys. , 2019, 14( 1): 13401
CrossRef ADS Google scholar
[9]
W.Tong, Q.Wei, H.-Y.Yan, M.-G.Zhang, X.-M.Zhu. Accelerating inverse crystal structure prediction by machine learning: A case study of carbon allotropes. Front. Phys. , 2020, 15( 6): 63501
CrossRef ADS Google scholar
[10]
H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley. C60: Buckminsterfullerene. Nature , 1985, 318( 6042): 162
CrossRef ADS Google scholar
[11]
S.Iijima. Helical microtubules of graphitic carbon. Nature , 1991, 354( 6348): 56
CrossRef ADS Google scholar
[12]
K.S. Novoselov, A.K. Geim, S.V. Morozov, D.Jiang, Y.Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov. Electric field effect in atomically thin carbon films. Science , 2004, 306( 5696): 666
CrossRef ADS Google scholar
[13]
H.Tang, X.Yuan, Y.Cheng, H.Fei, F.Liu, T.Liang, Z.Zeng, T.Ishii, M.-S.Wang, T.Katsura, H.Sheng, H.Gou. Synthesis of paracrystalline diamond. Nature , 2021, 599( 7886): 605
CrossRef ADS Google scholar
[14]
X.-L. Sheng, Q.-B. Yan, F.Ye, Q.-R. Zheng, G.Su. T-carbon: A novel carbon allotrope. Phys. Rev. Lett. , 2011, 106( 15): 155703
CrossRef ADS Google scholar
[15]
F.Occelli, P.Loubeyre, R.Letoullec. Properties of diamond under hydrostatic pressures up to 140 GPa. Nat. Mater. , 2003, 2( 3): 151
CrossRef ADS Google scholar
[16]
X.-Y. Ding, C.Zhang, D.-Q. Wang, B.-S. Li, Q.Wang, Z.G. Yu, K.-W. Ang, Y.-W. Zhang. A new carbon allotrope: T5-carbon. Scr. Mater. , 2020, 189 : 72
CrossRef ADS Google scholar
[17]
M.Liao, F.Wang, J.Zhu, Z.Lai, Y.Liu. P2221-C8: A novel carbon allotrope denser than diamond. Scr. Mater. , 2022, 212 : 114549
CrossRef ADS Google scholar
[18]
J.T. Wang, C.Chen, H.Mizuseki. Body centered cubic carbon BC14: An all-sp3 bonded full-fledged pentadiamond. Phys. Rev. B , 2020, 102( 18): 184106
CrossRef ADS Google scholar
[19]
J.Liu, Q.Gao, Z.Hu. HSH-carbon: A novel sp2–sp3 carbon allotrope with an ultrawide energy gap. Front. Phys. , 2022, 17( 6): 63505
CrossRef ADS Google scholar
[20]
R.Lv, X.Yang, D.Yang, C.Niu, C.Zhao, J.Qin, J.Zang, F.Dong, L.Dong, C.Shan. Computational prediction of a novel superhard sp3 trigonal carbon allotrope with bandgap larger than diamond. Chin. Phys. Lett. , 2021, 38( 7): 076101
CrossRef ADS Google scholar
[21]
C.He, X.Shi, S.J. Clark, J.Li, C.J. Pickard, T.Ouyang, C.Zhang, C.Tang, J.Zhong. Complex low energy tetrahedral polymorphs of group IV elements from first principles. Phys. Rev. Lett. , 2018, 121( 17): 175701
CrossRef ADS Google scholar
[22]
Q.Zhu, A.R. Oganov, M.A. Salvadó, P.Pertierra, A.O. Lyakhov. Denser than diamond: Ab initio search for superdense carbon allotropes. Phys. Rev. B , 2011, 83( 19): 193410
CrossRef ADS Google scholar
[23]
X.Zhang, Y.Wang, J.Lv, C.Zhu, Q.Li, M.Zhang, Q.Li, Y.Ma. First-principles structural design of superhard materials. J. Chem. Phys. , 2013, 138( 11): 114101
CrossRef ADS Google scholar
[24]
J.Wang, C.Chen, Y.Kawazoe. Orthorhombic carbon allotrope of compressed graphite: Ab initio calculations. Phys. Rev. B , 2012, 85( 3): 033410
CrossRef ADS Google scholar
[25]
C.J. Pickard, R.J. Needs. Ab initio random structure searching. J. Phys.: Condens. Matter , 2011, 23( 5): 053201
CrossRef ADS Google scholar
[26]
A.J. Karttunen, T.F. Fässler, M.Linnolahti, T.A. Pakkanen. Structural principles of semiconducting group 14 clathrate frameworks. Inorg. Chem. , 2011, 50( 5): 1733
CrossRef ADS Google scholar
[27]
H.Yin, X.Shi, C.He, M.Martinez-Canales, J.Li, C.J. Pickard, C.Tang, T.Ouyang, C.Zhang, J.Zhong. Stone−Wales graphene: A two-dimensional carbon semimetal with magic stability. Phys. Rev. B , 2019, 99( 4): 041405
CrossRef ADS Google scholar
[28]
S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I. J. Probert, K.Refson, M.C. Payne. First principles methods using CASTEP. Z. Kristallogr. , 2005, 220 : 567
CrossRef ADS Google scholar
[29]
J.E. Peralta, J.Heyd, G.E. Scuseria, R.L. Martin. Spin−orbit splittings and energy band gaps calculated with the Heyd−Scuseria−Ernzerhof screened hybrid functional. Phys. Rev. B , 2006, 74( 7): 073101
CrossRef ADS Google scholar
[30]
J.P. Perdew, K.Burke, M.Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett. , 1996, 77( 18): 3865
CrossRef ADS Google scholar
[31]
D.R. Hamann, M.Schlüter, C.Chiang. Norm-conserving pseudopotentials. Phys. Rev. Lett. , 1979, 43( 20): 1494
CrossRef ADS Google scholar
[32]
D.Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B , 1990, 41( 11): 7892
CrossRef ADS Google scholar
[33]
B.G. Pfrommer, M.Côté, S.G. Louie, M.L. Cohen. Relaxation of crystals with the quasi-Newton method. J. Comput. Phys. , 1997, 131( 1): 233
CrossRef ADS Google scholar
[34]
S.Baroni, S.de Gironcoli, A.Dal Corso, P.Giannozzi. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. , 2001, 73( 2): 515
CrossRef ADS Google scholar
[35]
M.Liao, Y.Liu, F.Zhou, T.Han, D.Yang, N.Qu, Z.Lai. A high-efficient strain-stress method for calculating higher-order elastic constants from first-principles. Comput. Phys. Commun. , 2022, 280 : 108478
CrossRef ADS Google scholar
[36]
M.Liao, Y.Liu, S.-L.Shang, F.Zhou, N.Qu, Y.Chen, Z.Lai, Z.-K.Liu, J.Zhu. Elastic3rd: A tool for calculating third-order elastic constants from first-principles calculations. Comput. Phys. Commun. , 2021, 261 : 107777
CrossRef ADS Google scholar
[37]
M.Liao, Y.Liu, Y.Wang, F.Zhou, N.Qu, T.Han, D.Yang, Z.Lai, Z.-K.Liu, J.Zhu. Revisiting the third-order elastic constants of diamond: The higher-order effect. Diam. Relat. Mater. , 2021, 117 : 108490
CrossRef ADS Google scholar
[38]
R.Hill. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Sect. A , 1952, 65( 5): 349
CrossRef ADS Google scholar
[39]
M.Liao, Y.Liu, P.Cui, N.Qu, F.Zhou, D.Yang, T.Han, Z.Lai, J.Zhu. Modeling of alloying effect on elastic properties in BCC Nb−Ti−V−Zr solid solution: From unary to quaternary. Comput. Mater. Sci. , 2020, 172 : 109289
CrossRef ADS Google scholar
[40]
F.Gao, J.He, E.Wu, S.Liu, D.Yu, D.Li, S.Zhang, Y.Tian. Hardness of covalent crystals. Phys. Rev. Lett. , 2003, 91( 1): 015502
CrossRef ADS Google scholar
[41]
V.A. Blatov, A.P. Shevchenko, D.M. Proserpio. Applied topological analysis of crystal structures with the program package topospro. Cryst. Growth Des. , 2014, 14( 7): 3576
CrossRef ADS Google scholar
[42]
V.A. Blatov, O.A. Blatova, F.Daeyaert, M.W. Deem. Nanoporous materials with predicted zeolite topologies. RSC Adv. , 2020, 10( 30): 17760
CrossRef ADS Google scholar
[43]
R.Hoffmann, A.A. Kabanov, A.A. Golov, D.M. Proserpio. Homo citans and carbon allotropes: For an ethics of citation. Angew. Chemie Int. Ed. , 2016, 55( 37): 10962
CrossRef ADS Google scholar
[44]
M.Al-Fahdi, A.Rodriguez, T.Ouyang, M.Hu. High-throughput computation of new carbon allotropes with diverse hybridization and ultrahigh hardness. Crystals , 2021, 11( 7): 783
CrossRef ADS Google scholar
[45]
N.A. Anurova, V.A. Blatov, G.D. Ilyushin, D.M. Proserpio. Natural tilings for zeolite-type frameworks. J. Phys. Chem. C , 2010, 114( 22): 10160
CrossRef ADS Google scholar
[46]
O.Delgado-Friedrichs, M.O’Keeffe. Identification of and symmetry computation for crystal nets. Acta Crystallogr. Sect. A Found. Crystallogr. , 2003, 59( 4): 351
CrossRef ADS Google scholar
[47]
J.-T.Wang, H.Weng, S.Nie, Z.Fang, Y.Kawazoe, C.Chen. Body-centered orthorhombic C16 : A novel topological node-line semimetal. Phys. Rev. Lett. , 2016, 116( 19): 195501
CrossRef ADS Google scholar
[48]
N.N. Matyushenko, V.E. Strel’Nitskiǐ, V.A. Gusev. A dense new version of crystalline carbon C8. JETP Lett. , 1979, 30( 4): 199
[49]
R.L. Johnston, R.Hoffmann. Superdense carbon, C8: supercubane or analog of . gamma. -silicon?. J. Am. Chem. Soc. , 1989, 111( 3): 810
CrossRef ADS Google scholar
[50]
Z.-Z.Li, C.-S.Lian, J.Xu, L.-F.Xu, J.-T.Wang, C.Chen. Computational prediction of body-centered cubic carbon in an all-sp3 six-member ring configuration. Phys. Rev. B , 2015, 91( 21): 214106
CrossRef ADS Google scholar
[51]
J.-T. Wang, C.Chen, E.Wang, Y.Kawazoe. A new carbon allotrope with six-fold helical chains in all-sp2 bonding networks. Sci. Rep. , 2015, 4( 1): 4339
CrossRef ADS Google scholar
[52]
F.Mouhat, F.-X.Coudert. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B , 2014, 90( 22): 224104
CrossRef ADS Google scholar
[53]
S.F. Pugh. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. London, Edinburgh, Dublin Philos. Mag. J. Sci. , 1954, 45( 367): 823
CrossRef ADS Google scholar
[54]
X.Chen, H.Niu, D.Li, Y.Li. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics , 2011, 19( 9): 1275
CrossRef ADS Google scholar
[55]
Y.Tian, B.Xu, Z.Zhao. Microscopic theory of hardness and design of novel superhard crystals. Int. J. Refract. Met. Hard Mater. , 2012, 33 : 93
CrossRef ADS Google scholar
[56]
E.Mazhnik, A.R. Oganov. A model of hardness and fracture toughness of solids. J. Appl. Phys. , 2019, 126( 12): 125109
CrossRef ADS Google scholar
[57]
M.Liao, Y.Liu, Z.Lai, J.Zhu, Pressuredependence of second-order elastic constants from third-order elastic constants in TMC (TM=Nb. Zr). Ceram. Int. , 2021, 47( 19): 27535
CrossRef ADS Google scholar
[58]
R.R. Rao, A.Padmaja. Effective second-order elastic constants of a strained crystal using the finite strain elasticity theory. J. Appl. Phys. , 1987, 62( 2): 440
CrossRef ADS Google scholar
[59]
H.J. McSkimin, P.Andreatch. Elastic moduli of diamond as a function of pressure and temperature. J. Appl. Phys. , 1972, 43( 7): 2944
CrossRef ADS Google scholar
[60]
B.Sundqvist. Carbon under pressure. Phys. Rep. , 2021, 909 : 1
CrossRef ADS Google scholar
[61]
J.Wang, C.Chen, Y.Kawazoe. Low-temperature phase transformation from graphite to sp3 orthorhombic carbon. Phys. Rev. Lett. , 2011, 106( 7): 075501
CrossRef ADS Google scholar
[62]
J.Q. Wang, C.X. Zhao, C.Y. Niu, Q.Sun, Y.Jia. C20-T carbon: A novel superhard sp3 carbon allotrope with large cavities. J. Phys.: Condens. Matter , 2016, 28( 47): 475402
CrossRef ADS Google scholar
[63]
A.Mujica, C.J. Pickard, R.J. Needs. Low-energy tetrahedral polymorphs of carbon, silicon, and germanium. Phys. Rev. B , 2015, 91( 21): 214104
CrossRef ADS Google scholar
[64]
L.D. Landau E.M. Lifshitz, in: Electrodynamics of Continuous Media (2nd Ed. ), Eds. L. D. Landau and E. M. Lifshitz, Pergamon, Amsterdam, Second Edi. ( 1984), Vol. 8, pp 257– 289
[65]
D.Pantea, S.Brochu, S.Thiboutot, G.Ampleman, G.Scholz. A morphological investigation of soot produced by the detonation of munitions. Chemosphere , 2006, 65( 5): 821
CrossRef ADS Google scholar
[66]
P.Chen, F.Huang, S.Yun. Characterization of the condensed carbon in detonation soot. Carbon , 2003, 41( 11): 2093
CrossRef ADS Google scholar
[67]
K.Yamada. Shock synthesis of a new cubic form of carbon. Carbon , 2003, 41( 6): 1309
CrossRef ADS Google scholar
[68]
Q.Li, Y.Ma, A.R. Oganov, H.Wang, H.Wang, Y.Xu, T.Cui, H.-K.Mao, G.Zou. Superhard monoclinic polymorph of carbon. Phys. Rev. Lett. , 2009, 102( 17): 175506
CrossRef ADS Google scholar
[69]
C.He, L.Sun, C.Zhang, X.Peng, K.Zhang, J.Zhong. New superhard carbon phases between graphite and diamond. Solid State Commun. , 2012, 152( 16): 1560
CrossRef ADS Google scholar
[70]
C.He, C.X. Zhang, L.Z. Sun, N.Jiao, K.W. Zhang, J.Zhong. Structure, stability and electronic properties of tricycle type graphane. Phys. Status Solidi - Rapid Res. Lett. , 2012, 6( 11): 427
CrossRef ADS Google scholar
[71]
H.Niu, X.-Q.Chen, S.Wang, D.Li, W.L. Mao, Y.Li. Families of superhard crystalline carbon allotropes constructed via cold compression of graphite and nanotubes. Phys. Rev. Lett. , 2012, 108( 13): 135501
CrossRef ADS Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51875269), and the Startup Foundation of Jiangsu University of Science and Technology (No. 202100000135).

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(11296 KB)

Accesses

Citations

Detail

Sections
Recommended

/