Nonreciprocal ground-state cooling of mechanical resonator in a spinning optomechanical system

Junya Yang, Chengsong Zhao, Zhen Yang, Rui Peng, Shilei Chao, Ling Zhou

Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 52507.

PDF(4252 KB)
Front. Phys. All Journals
PDF(4252 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 52507. DOI: 10.1007/s11467-022-1202-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Nonreciprocal ground-state cooling of mechanical resonator in a spinning optomechanical system

Author information +
History +

Abstract

We theoretically present a scheme for nonreciprocal ground-state cooling in a double-cavity spinning optomechanical system which is consisted of an optomechanical resonator and a spinning optical harmonic resonator with directional driving. The optical Sagnac effect generated by the whispering-gallery cavity (WGC) rotation creates frequency difference between the WGC mode, we found that the mechanical resonator (MR) can be cooled to the ground state when the propagation direction of driving light is opposite to the spin direction of the WGC, but not from the other side, vice versa, so that the nonreciprocal cooling is achieved. By appropriately selecting the system parameters, the heating process can be completely suppressed due to the quantum interference effect. The proposed approach provides a platform for quantum manipulation of macroscopic mechanical devices beyond the resolved sideband limit.

Graphical abstract

Keywords

nonreciprocal ground-state cooling / spinning optomechanical system / optical Sagnac effect

Cite this article

Download citation ▾
Junya Yang, Chengsong Zhao, Zhen Yang, Rui Peng, Shilei Chao, Ling Zhou. Nonreciprocal ground-state cooling of mechanical resonator in a spinning optomechanical system. Front. Phys., 2022, 17(5): 52507 https://doi.org/10.1007/s11467-022-1202-1
This is a preview of subscription content, contact us for subscripton.

References

[1]
M.Poot, H.S. van der Zant. Mechanical systems in the quantum regime. Phys. Rep. , 2012, 511( 5): 273
CrossRef ADS Google scholar
[2]
M.Aspelmeyer, T.J. Kippenberg, F.Marquardt. Cavity optomechanics. Rev. Mod. Phys. , 2014, 86( 4): 1391
CrossRef ADS Google scholar
[3]
K.y. Zhang, L.Zhou, G.Dong, W.Zhang. Cavity optomechanics with cold atomic gas. Front. Phys. , 2011, 6( 3): 237
CrossRef ADS Google scholar
[4]
T.Carmon, H.Rokhsari, L.Yang, T.J. Kippenberg, K.J. Vahala. Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. Phys. Rev. Lett. , 2005, 94( 22): 223902
CrossRef ADS Google scholar
[5]
T.J. Kippenberg, H.Rokhsari, T.Carmon, A.Scherer, K.J. Vahala. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. , 2005, 95( 3): 033901
CrossRef ADS Google scholar
[6]
Y.C. Liu, Y.F. Xiao. Macroscopic mechanical systems are entering the quantum world. Natl. Sci. Rev. , 2015, 2( 1): 9
CrossRef ADS Google scholar
[7]
A.Schliesser, R.Riviere, G.Anetsberger, O.Arcizet, T.J. Kippenberg. Resolved-sideband cooling of a micromechanical oscillator. Nat. Phys. , 2008, 4( 5): 415
CrossRef ADS Google scholar
[8]
J.D. Teufel, T.Donner, D.Li, J.W. Harlow, M.Allman, K.Cicak, A.J. Sirois, J.D. Whittaker, K.W. Lehnert, R.W. Simmonds. Sideband cooling of micromechanical motion to the quantum ground state. Nature , 2011, 475( 7356): 359
CrossRef ADS Google scholar
[9]
T.J. Kippenberg, K.J. Vahala. Cavity optomechanics: Back-action at the mesoscale. Science , 2008, 321( 5893): 1172
CrossRef ADS Google scholar
[10]
Y.C. Liu, Y.W. Hu, C.W. Wong, Y.F. Xiao. Review of cavity optomechanical cooling. Chin. Phys. B , 2013, 22( 11): 114213
CrossRef ADS Google scholar
[11]
Y.Guo, K.Li, W.Nie, Y.Li. Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system. Phys. Rev. A , 2014, 90( 5): 053841
CrossRef ADS Google scholar
[12]
Y.C. Liu, Y.F. Xiao, X.Luan, Q.Gong, C.W. Wong. Coupled cavities for motional ground-state cooling and strong optomechanical coupling. Phys. Rev. A , 2015, 91( 3): 033818
CrossRef ADS Google scholar
[13]
W.Gu, G.Li. Quantum interference effects on ground-state optomechanical cooling. Phys. Rev. A , 2013, 87( 2): 025804
CrossRef ADS Google scholar
[14]
S.Zhang, J.Q. Zhang, J.Zhang, C.W. Wu, W.Wu, P.X. Chen. Ground state cooling of an optomechanical resonator assisted by a Λ-type atom. Opt. Express , 2014, 22( 23): 28118
CrossRef ADS Google scholar
[15]
C.Genes, H.Ritsch, D.Vitali. Micromechanical oscillator ground-state cooling via resonant intracavity optical gain or absorption. Phys. Rev. A , 2009, 80( 6): 061803
CrossRef ADS Google scholar
[16]
B.Vogell, K.Stannigel, P.Zoller, K.Hammerer, M.T. Rakher, M.Korppi, A.Jöckel, P.Treutlein. Cavity-enhanced long-distance coupling of an atomic ensemble to a micromechanical membrane. Phys. Rev. A , 2013, 87( 2): 023816
CrossRef ADS Google scholar
[17]
X.Chen, Y.C. Liu, P.Peng, Y.Zhi, Y.F. Xiao. Cooling of macroscopic mechanical resonators in hybrid atom-optomechanical systems. Phys. Rev. A , 2015, 92( 3): 033841
CrossRef ADS Google scholar
[18]
J.Y. Yang, D.Y. Wang, C.H. Bai, S.Y. Guan, X.Y. Gao, A.D. Zhu, H.F. Wang. Ground-state cooling of mechanical oscillator via quadratic optomechanical coupling with two coupled optical cavities. Opt. Express , 2019, 27( 16): 22855
CrossRef ADS Google scholar
[19]
C.Genes, D.Vitali, P.Tombesi. Simultaneous cooling and entanglement of mechanical modes of a micromirror in an optical cavity. New J. Phys. , 2008, 10( 9): 095009
CrossRef ADS Google scholar
[20]
Z.Yang, C.Zhao, R.Peng, S.L. Chao, J.Yang, L.Zhou. The simultaneous ground-state cooling and synchronization of two mechanical oscillators by driving nonlinear medium. Ann. Phys. , 2022, 534( 5): 2100494
CrossRef ADS Google scholar
[21]
D.G. Lai, J.F. Huang, X.L. Yin, B.P. Hou, W.Li, D.Vitali, F.Nori, J.Q. Liao. Nonreciprocal ground-state cooling of multiple mechanical resonators. Phys. Rev. A , 2020, 102( 1): 011502
CrossRef ADS Google scholar
[22]
Z.X. Yang, L.Wang, Y.M. Liu, D.Y. Wang, C.H. Bai, S.Zhang, H.F. Wang. Ground state cooling of magnomechanical resonator in PT-symmetric cavity magnomechanical system at room temperature. Front. Phys. , 2020, 15( 5): 52504
CrossRef ADS Google scholar
[23]
L.Bi, J.Hu, P.Jiang, D.H. Kim, G.F. Dionne, L.C. Kimerling, C.Ross. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nat. Photonics , 2011, 5( 12): 758
CrossRef ADS Google scholar
[24]
R.J. Potton. Reciprocity in optics. Rep. Prog. Phys. , 2004, 67( 5): 717
CrossRef ADS Google scholar
[25]
P.Lodahl, S.Mahmoodian, S.Stobbe, A.Rauschenbeutel, P.Schneeweiss, J.Volz, H.Pichler, P.Zoller. Chiral quantum optics. Nature , 2017, 541( 7638): 473
CrossRef ADS Google scholar
[26]
X.W. Xu, H.Q. Shi, A.X. Chen. Nonreciprocal transition between two indirectly coupled energy levels. Front. Phys. , 2022, 17( 4): 42505
CrossRef ADS Google scholar
[27]
X.B. Yan, H.L. Lu, F.Gao, L.Yang. Perfect optical nonreciprocity in a double-cavity optomechanical system. Front. Phys. , 2019, 14( 5): 52601
CrossRef ADS Google scholar
[28]
Z.Lin, H.Ramezani, T.Eichelkraut, T.Kottos, H.Cao, D.N. Christodoulides. Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett. , 2011, 106( 21): 213901
CrossRef ADS Google scholar
[29]
M.A. Miri, F.Ruesink, E.Verhagen, A.Alù. Optical nonreciprocity based on optomechanical coupling. Phys. Rev. Appl. , 2017, 7( 6): 064014
CrossRef ADS Google scholar
[30]
L.Feng, M.Ayache, J.Huang, Y.L. Xu, M.H. Lu, Y.F. Chen, Y.Fainman, A.Scherer. Nonreciprocal light propagation in a silicon photonic circuit. Science , 2011, 333( 6043): 729
CrossRef ADS Google scholar
[31]
M.Scheucher, A.Hilico, E.Will, J.Volz, A.Rauschenbeutel. Quantum optical circulator controlled by a single chirally coupled atom. Science , 2016, 354( 6319): 1577
CrossRef ADS Google scholar
[32]
B.Peng, Ş.K. Özdemir, F.Lei, F.Monifi, M.Gianfreda, G.L. Long, S.Fan, F.Nori, C.M. Bender, L.Yang. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys. , 2014, 10( 5): 394
CrossRef ADS Google scholar
[33]
H.Xiong, L.G. Si, X.Yang, Y.Wu. Asymmetric optical transmission in an optomechanical array. Appl. Phys. Lett. , 2015, 107( 9): 091116
CrossRef ADS Google scholar
[34]
J.Kim, M.C. Kuzyk, K.Han, H.Wang, G.Bahl. Non-reciprocal Brillouin scattering induced transparency. Nat. Phys. , 2015, 11( 3): 275
CrossRef ADS Google scholar
[35]
S.Barzanjeh, M.Wulf, M.Peruzzo, M.Kalaee, P.Dieterle, O.Painter, J.M. Fink. Mechanical on-chip microwave circulator. Nat. Commun. , 2017, 8( 1): 953
CrossRef ADS Google scholar
[36]
R.Huang, A.Miranowicz, J.Q. Liao, F.Nori, H.Jing. Nonreciprocal photon blockade. Phys. Rev. Lett. , 2018, 121( 15): 153601
CrossRef ADS Google scholar
[37]
K.Wang, Q.Wu, Y.F. Yu, Z.M. Zhang. Nonreciprocal photon blockade in a two-mode cavity with a second-order nonlinearity. Phys. Rev. A , 2019, 100( 5): 053832
CrossRef ADS Google scholar
[38]
B.Li, R.Huang, X.Xu, A.Miranowicz, H.Jing. Nonreciprocal unconventional photon blockade in a spinning optomechanical system. Photon. Res. , 2019, 7( 6): 630
CrossRef ADS Google scholar
[39]
Y.F. Jiao, S.D. Zhang, Y.L. Zhang, A.Miranowicz, L.M. Kuang, H.Jing. Nonreciprocal optomechanical entanglement against backscattering losses. Phys. Rev. Lett. , 2020, 125( 14): 143605
CrossRef ADS Google scholar
[40]
Y.Jiang, S.Maayani, T.Carmon, F.Nori, H.Jing. Nonreciprocal phonon laser. Phys. Rev. Appl. , 2018, 10( 6): 064037
CrossRef ADS Google scholar
[41]
S.S. Chen, S.S. Meng, H.Deng, G.J. Yang. Nonreciprocal mechanical squeezing in a spinning optomechanical system. Ann. Phys. , 2021, 533( 1): 2000343
CrossRef ADS Google scholar
[42]
S.M. Spillane, T.J. Kippenberg, O.J. Painter, K.J. Vahala. Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett. , 2003, 91( 4): 043902
CrossRef ADS Google scholar
[43]
G.B. Malykin. The Sagnac effect: Correct and incorrect explanations. Phys. Uspekhi , 2000, 43( 12): 1229
CrossRef ADS Google scholar
[44]
H.Lü, Y.Jiang, Y.-Z.Wang, H.Jing. Optomechanically induced transparency in a spinning resonator. Photon. Res. , 2017, 5( 4): 367
CrossRef ADS Google scholar
[45]
S.Maayani, R.Dahan, Y.Kligerman, E.Moses, A.U. Hassan, H.Jing, F.Nori, D.N. Christodoulides, T.Carmon. Flying couplers above spinning resonators generate irreversible refraction. Nature , 2018, 558( 7711): 569
CrossRef ADS Google scholar
[46]
L.Ding, C.Baker, P.Senellart, A.Lemaitre, S.Ducci, G.Leo, I.Favero. Wavelength-sized GaAs optomechanical resonators with gigahertz frequency. Appl. Phys. Lett. , 2011, 98( 11): 113108
CrossRef ADS Google scholar
[47]
G.Enzian, M.Szczykulska, J.Silver, L.Del Bino, S.Zhang, I.A. Walmsley, P.Del’Haye, M.R. Vanner. Observation of Brillouin optomechanical strong coupling with an 11 GHz mechanical mode. Optica , 2019, 6( 1): 7
CrossRef ADS Google scholar
[48]
H.Snijders, J.A. Frey, J.Norman, M.P. Bakker, E.C. Langman, A.Gossard, J.E. Bowers, M.P. van Exter, D.Bouwmeester, W.Löffler. Purification of a single-photon nonlinearity. Nat. Commun. , 2016, 7( 1): 12578
CrossRef ADS Google scholar
[49]
S.L. Chao, Z.Yang, C.S. Zhao, R.Peng, L.Zhou. Force sensing in a dual-mode optomechanical system with linear–quadratic coupling and modulated photon hopping. Opt. Lett. , 2021, 46( 13): 3075
CrossRef ADS Google scholar
[50]
X.Li, B.Xiong, S.Chao, C.Zhao, H.T. Tan, L.Zhou. Remote weak-signal measurement via bound states in optomechanical systems. Commum. Theor. Phys. , 2021, 73( 2): 025102
CrossRef ADS Google scholar
[51]
I.Wilson-Rae, N.Nooshi, W.Zwerger, T.J. Kippenberg. Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. , 2007, 99( 9): 093901
CrossRef ADS Google scholar
[52]
F.Marquardt, J.P. Chen, A.A. Clerk, S.M. Girvin. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. , 2007, 99( 9): 093902
CrossRef ADS Google scholar
[53]
K.J. Vahala. Optical microcavities. Nature , 2003, 424( 6950): 839
CrossRef ADS Google scholar
[54]
G.C. Righini, Y.Dumeige, P.Feron, M.Ferrari, G.Nunzi Conti, D.Ristic, S.Soria. Whispering gallery mode microresonators: Fundamentals and applications. Riv. Nuovo Cim. , 2011, 34 : 435
CrossRef ADS Google scholar
[55]
R.Reimann, M.Doderer, E.Hebestreit, R.Diehl, M.Frimmer, D.Windey, F.Tebbenjohanns, L.Novotny. GHZ rotation of an optically trapped nanoparticle in vacuum. Phys. Rev. Lett. , 2018, 121( 3): 033602
CrossRef ADS Google scholar
[56]
J.Ahn, Z.Xu, J.Bang, Y.H. Deng, T.M. Hoang, Q.Han, R.M. Ma, T.Li. Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor. Phys. Rev. Lett. , 2018, 121( 3): 033603
CrossRef ADS Google scholar
[57]
E.Verhagen, S.Deléglise, S.Weis, A.Schliesser, T.J. Kippenberg. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature , 2012, 482( 7383): 63
CrossRef ADS Google scholar
[58]
Y.Zeng, B.Xiong, C.Li. Suppressing laser phase noise in an optomechanical system. Front. Phys. , 2022, 17( 1): 12503
CrossRef ADS Google scholar
[59]
J.Zhang, B.Peng, Ş.K. Özdemir, K.Pichler, D.O. Krimer, G.Zhao, F.Nori, Y.Liu, S.Rotter, L.Yang. A phonon laser operating at an exceptional point. Nat. Photonics , 2018, 12( 8): 479
CrossRef ADS Google scholar
[60]
M.Li, W.Pernice, H.Tang. Tunable bipolar optical interactions between guided lightwaves. Nat. Photonics , 2009, 3( 8): 464
CrossRef ADS Google scholar
[61]
I.S. Grudinin, H.Lee, O.Painter, K.J. Vahala. Phonon laser action in a tunable two-level system. Phys. Rev. Lett. , 2010, 104( 8): 083901
CrossRef ADS Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11874099) and the National Key R&D Program of China (No. 2021YFE0193500).

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(4252 KB)

787

Accesses

11

Citations

Detail

Sections
Recommended

/