Nonreciprocal ground-state cooling of mechanical resonator in a spinning optomechanical system

Junya Yang , Chengsong Zhao , Zhen Yang , Rui Peng , Shilei Chao , Ling Zhou

Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 52507

PDF (4252KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 52507 DOI: 10.1007/s11467-022-1202-1
RESEARCH ARTICLE

Nonreciprocal ground-state cooling of mechanical resonator in a spinning optomechanical system

Author information +
History +
PDF (4252KB)

Abstract

We theoretically present a scheme for nonreciprocal ground-state cooling in a double-cavity spinning optomechanical system which is consisted of an optomechanical resonator and a spinning optical harmonic resonator with directional driving. The optical Sagnac effect generated by the whispering-gallery cavity (WGC) rotation creates frequency difference between the WGC mode, we found that the mechanical resonator (MR) can be cooled to the ground state when the propagation direction of driving light is opposite to the spin direction of the WGC, but not from the other side, vice versa, so that the nonreciprocal cooling is achieved. By appropriately selecting the system parameters, the heating process can be completely suppressed due to the quantum interference effect. The proposed approach provides a platform for quantum manipulation of macroscopic mechanical devices beyond the resolved sideband limit.

Graphical abstract

Keywords

nonreciprocal ground-state cooling / spinning optomechanical system / optical Sagnac effect

Cite this article

Download citation ▾
Junya Yang, Chengsong Zhao, Zhen Yang, Rui Peng, Shilei Chao, Ling Zhou. Nonreciprocal ground-state cooling of mechanical resonator in a spinning optomechanical system. Front. Phys., 2022, 17(5): 52507 DOI:10.1007/s11467-022-1202-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M.Poot, H.S. van der Zant. Mechanical systems in the quantum regime. Phys. Rep. , 2012, 511( 5): 273

[2]

M.Aspelmeyer, T.J. Kippenberg, F.Marquardt. Cavity optomechanics. Rev. Mod. Phys. , 2014, 86( 4): 1391

[3]

K.y. Zhang, L.Zhou, G.Dong, W.Zhang. Cavity optomechanics with cold atomic gas. Front. Phys. , 2011, 6( 3): 237

[4]

T.Carmon, H.Rokhsari, L.Yang, T.J. Kippenberg, K.J. Vahala. Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. Phys. Rev. Lett. , 2005, 94( 22): 223902

[5]

T.J. Kippenberg, H.Rokhsari, T.Carmon, A.Scherer, K.J. Vahala. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. , 2005, 95( 3): 033901

[6]

Y.C. Liu, Y.F. Xiao. Macroscopic mechanical systems are entering the quantum world. Natl. Sci. Rev. , 2015, 2( 1): 9

[7]

A.Schliesser, R.Riviere, G.Anetsberger, O.Arcizet, T.J. Kippenberg. Resolved-sideband cooling of a micromechanical oscillator. Nat. Phys. , 2008, 4( 5): 415

[8]

J.D. Teufel, T.Donner, D.Li, J.W. Harlow, M.Allman, K.Cicak, A.J. Sirois, J.D. Whittaker, K.W. Lehnert, R.W. Simmonds. Sideband cooling of micromechanical motion to the quantum ground state. Nature , 2011, 475( 7356): 359

[9]

T.J. Kippenberg, K.J. Vahala. Cavity optomechanics: Back-action at the mesoscale. Science , 2008, 321( 5893): 1172

[10]

Y.C. Liu, Y.W. Hu, C.W. Wong, Y.F. Xiao. Review of cavity optomechanical cooling. Chin. Phys. B , 2013, 22( 11): 114213

[11]

Y.Guo, K.Li, W.Nie, Y.Li. Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system. Phys. Rev. A , 2014, 90( 5): 053841

[12]

Y.C. Liu, Y.F. Xiao, X.Luan, Q.Gong, C.W. Wong. Coupled cavities for motional ground-state cooling and strong optomechanical coupling. Phys. Rev. A , 2015, 91( 3): 033818

[13]

W.Gu, G.Li. Quantum interference effects on ground-state optomechanical cooling. Phys. Rev. A , 2013, 87( 2): 025804

[14]

S.Zhang, J.Q. Zhang, J.Zhang, C.W. Wu, W.Wu, P.X. Chen. Ground state cooling of an optomechanical resonator assisted by a Λ-type atom. Opt. Express , 2014, 22( 23): 28118

[15]

C.Genes, H.Ritsch, D.Vitali. Micromechanical oscillator ground-state cooling via resonant intracavity optical gain or absorption. Phys. Rev. A , 2009, 80( 6): 061803

[16]

B.Vogell, K.Stannigel, P.Zoller, K.Hammerer, M.T. Rakher, M.Korppi, A.Jöckel, P.Treutlein. Cavity-enhanced long-distance coupling of an atomic ensemble to a micromechanical membrane. Phys. Rev. A , 2013, 87( 2): 023816

[17]

X.Chen, Y.C. Liu, P.Peng, Y.Zhi, Y.F. Xiao. Cooling of macroscopic mechanical resonators in hybrid atom-optomechanical systems. Phys. Rev. A , 2015, 92( 3): 033841

[18]

J.Y. Yang, D.Y. Wang, C.H. Bai, S.Y. Guan, X.Y. Gao, A.D. Zhu, H.F. Wang. Ground-state cooling of mechanical oscillator via quadratic optomechanical coupling with two coupled optical cavities. Opt. Express , 2019, 27( 16): 22855

[19]

C.Genes, D.Vitali, P.Tombesi. Simultaneous cooling and entanglement of mechanical modes of a micromirror in an optical cavity. New J. Phys. , 2008, 10( 9): 095009

[20]

Z.Yang, C.Zhao, R.Peng, S.L. Chao, J.Yang, L.Zhou. The simultaneous ground-state cooling and synchronization of two mechanical oscillators by driving nonlinear medium. Ann. Phys. , 2022, 534( 5): 2100494

[21]

D.G. Lai, J.F. Huang, X.L. Yin, B.P. Hou, W.Li, D.Vitali, F.Nori, J.Q. Liao. Nonreciprocal ground-state cooling of multiple mechanical resonators. Phys. Rev. A , 2020, 102( 1): 011502

[22]

Z.X. Yang, L.Wang, Y.M. Liu, D.Y. Wang, C.H. Bai, S.Zhang, H.F. Wang. Ground state cooling of magnomechanical resonator in PT-symmetric cavity magnomechanical system at room temperature. Front. Phys. , 2020, 15( 5): 52504

[23]

L.Bi, J.Hu, P.Jiang, D.H. Kim, G.F. Dionne, L.C. Kimerling, C.Ross. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nat. Photonics , 2011, 5( 12): 758

[24]

R.J. Potton. Reciprocity in optics. Rep. Prog. Phys. , 2004, 67( 5): 717

[25]

P.Lodahl, S.Mahmoodian, S.Stobbe, A.Rauschenbeutel, P.Schneeweiss, J.Volz, H.Pichler, P.Zoller. Chiral quantum optics. Nature , 2017, 541( 7638): 473

[26]

X.W. Xu, H.Q. Shi, A.X. Chen. Nonreciprocal transition between two indirectly coupled energy levels. Front. Phys. , 2022, 17( 4): 42505

[27]

X.B. Yan, H.L. Lu, F.Gao, L.Yang. Perfect optical nonreciprocity in a double-cavity optomechanical system. Front. Phys. , 2019, 14( 5): 52601

[28]

Z.Lin, H.Ramezani, T.Eichelkraut, T.Kottos, H.Cao, D.N. Christodoulides. Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett. , 2011, 106( 21): 213901

[29]

M.A. Miri, F.Ruesink, E.Verhagen, A.Alù. Optical nonreciprocity based on optomechanical coupling. Phys. Rev. Appl. , 2017, 7( 6): 064014

[30]

L.Feng, M.Ayache, J.Huang, Y.L. Xu, M.H. Lu, Y.F. Chen, Y.Fainman, A.Scherer. Nonreciprocal light propagation in a silicon photonic circuit. Science , 2011, 333( 6043): 729

[31]

M.Scheucher, A.Hilico, E.Will, J.Volz, A.Rauschenbeutel. Quantum optical circulator controlled by a single chirally coupled atom. Science , 2016, 354( 6319): 1577

[32]

B.Peng, Ş.K. Özdemir, F.Lei, F.Monifi, M.Gianfreda, G.L. Long, S.Fan, F.Nori, C.M. Bender, L.Yang. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys. , 2014, 10( 5): 394

[33]

H.Xiong, L.G. Si, X.Yang, Y.Wu. Asymmetric optical transmission in an optomechanical array. Appl. Phys. Lett. , 2015, 107( 9): 091116

[34]

J.Kim, M.C. Kuzyk, K.Han, H.Wang, G.Bahl. Non-reciprocal Brillouin scattering induced transparency. Nat. Phys. , 2015, 11( 3): 275

[35]

S.Barzanjeh, M.Wulf, M.Peruzzo, M.Kalaee, P.Dieterle, O.Painter, J.M. Fink. Mechanical on-chip microwave circulator. Nat. Commun. , 2017, 8( 1): 953

[36]

R.Huang, A.Miranowicz, J.Q. Liao, F.Nori, H.Jing. Nonreciprocal photon blockade. Phys. Rev. Lett. , 2018, 121( 15): 153601

[37]

K.Wang, Q.Wu, Y.F. Yu, Z.M. Zhang. Nonreciprocal photon blockade in a two-mode cavity with a second-order nonlinearity. Phys. Rev. A , 2019, 100( 5): 053832

[38]

B.Li, R.Huang, X.Xu, A.Miranowicz, H.Jing. Nonreciprocal unconventional photon blockade in a spinning optomechanical system. Photon. Res. , 2019, 7( 6): 630

[39]

Y.F. Jiao, S.D. Zhang, Y.L. Zhang, A.Miranowicz, L.M. Kuang, H.Jing. Nonreciprocal optomechanical entanglement against backscattering losses. Phys. Rev. Lett. , 2020, 125( 14): 143605

[40]

Y.Jiang, S.Maayani, T.Carmon, F.Nori, H.Jing. Nonreciprocal phonon laser. Phys. Rev. Appl. , 2018, 10( 6): 064037

[41]

S.S. Chen, S.S. Meng, H.Deng, G.J. Yang. Nonreciprocal mechanical squeezing in a spinning optomechanical system. Ann. Phys. , 2021, 533( 1): 2000343

[42]

S.M. Spillane, T.J. Kippenberg, O.J. Painter, K.J. Vahala. Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett. , 2003, 91( 4): 043902

[43]

G.B. Malykin. The Sagnac effect: Correct and incorrect explanations. Phys. Uspekhi , 2000, 43( 12): 1229

[44]

H., Y.Jiang, Y.-Z.Wang, H.Jing. Optomechanically induced transparency in a spinning resonator. Photon. Res. , 2017, 5( 4): 367

[45]

S.Maayani, R.Dahan, Y.Kligerman, E.Moses, A.U. Hassan, H.Jing, F.Nori, D.N. Christodoulides, T.Carmon. Flying couplers above spinning resonators generate irreversible refraction. Nature , 2018, 558( 7711): 569

[46]

L.Ding, C.Baker, P.Senellart, A.Lemaitre, S.Ducci, G.Leo, I.Favero. Wavelength-sized GaAs optomechanical resonators with gigahertz frequency. Appl. Phys. Lett. , 2011, 98( 11): 113108

[47]

G.Enzian, M.Szczykulska, J.Silver, L.Del Bino, S.Zhang, I.A. Walmsley, P.Del’Haye, M.R. Vanner. Observation of Brillouin optomechanical strong coupling with an 11 GHz mechanical mode. Optica , 2019, 6( 1): 7

[48]

H.Snijders, J.A. Frey, J.Norman, M.P. Bakker, E.C. Langman, A.Gossard, J.E. Bowers, M.P. van Exter, D.Bouwmeester, W.Löffler. Purification of a single-photon nonlinearity. Nat. Commun. , 2016, 7( 1): 12578

[49]

S.L. Chao, Z.Yang, C.S. Zhao, R.Peng, L.Zhou. Force sensing in a dual-mode optomechanical system with linear–quadratic coupling and modulated photon hopping. Opt. Lett. , 2021, 46( 13): 3075

[50]

X.Li, B.Xiong, S.Chao, C.Zhao, H.T. Tan, L.Zhou. Remote weak-signal measurement via bound states in optomechanical systems. Commum. Theor. Phys. , 2021, 73( 2): 025102

[51]

I.Wilson-Rae, N.Nooshi, W.Zwerger, T.J. Kippenberg. Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. , 2007, 99( 9): 093901

[52]

F.Marquardt, J.P. Chen, A.A. Clerk, S.M. Girvin. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. , 2007, 99( 9): 093902

[53]

K.J. Vahala. Optical microcavities. Nature , 2003, 424( 6950): 839

[54]

G.C. Righini, Y.Dumeige, P.Feron, M.Ferrari, G.Nunzi Conti, D.Ristic, S.Soria. Whispering gallery mode microresonators: Fundamentals and applications. Riv. Nuovo Cim. , 2011, 34 : 435

[55]

R.Reimann, M.Doderer, E.Hebestreit, R.Diehl, M.Frimmer, D.Windey, F.Tebbenjohanns, L.Novotny. GHZ rotation of an optically trapped nanoparticle in vacuum. Phys. Rev. Lett. , 2018, 121( 3): 033602

[56]

J.Ahn, Z.Xu, J.Bang, Y.H. Deng, T.M. Hoang, Q.Han, R.M. Ma, T.Li. Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor. Phys. Rev. Lett. , 2018, 121( 3): 033603

[57]

E.Verhagen, S.Deléglise, S.Weis, A.Schliesser, T.J. Kippenberg. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature , 2012, 482( 7383): 63

[58]

Y.Zeng, B.Xiong, C.Li. Suppressing laser phase noise in an optomechanical system. Front. Phys. , 2022, 17( 1): 12503

[59]

J.Zhang, B.Peng, Ş.K. Özdemir, K.Pichler, D.O. Krimer, G.Zhao, F.Nori, Y.Liu, S.Rotter, L.Yang. A phonon laser operating at an exceptional point. Nat. Photonics , 2018, 12( 8): 479

[60]

M.Li, W.Pernice, H.Tang. Tunable bipolar optical interactions between guided lightwaves. Nat. Photonics , 2009, 3( 8): 464

[61]

I.S. Grudinin, H.Lee, O.Painter, K.J. Vahala. Phonon laser action in a tunable two-level system. Phys. Rev. Lett. , 2010, 104( 8): 083901

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4252KB)

1101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/