
Nonreciprocal ground-state cooling of mechanical resonator in a spinning optomechanical system
Junya Yang, Chengsong Zhao, Zhen Yang, Rui Peng, Shilei Chao, Ling Zhou
Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 52507.
Nonreciprocal ground-state cooling of mechanical resonator in a spinning optomechanical system
We theoretically present a scheme for nonreciprocal ground-state cooling in a double-cavity spinning optomechanical system which is consisted of an optomechanical resonator and a spinning optical harmonic resonator with directional driving. The optical Sagnac effect generated by the whispering-gallery cavity (WGC) rotation creates frequency difference between the WGC mode, we found that the mechanical resonator (MR) can be cooled to the ground state when the propagation direction of driving light is opposite to the spin direction of the WGC, but not from the other side, vice versa, so that the nonreciprocal cooling is achieved. By appropriately selecting the system parameters, the heating process can be completely suppressed due to the quantum interference effect. The proposed approach provides a platform for quantum manipulation of macroscopic mechanical devices beyond the resolved sideband limit.
nonreciprocal ground-state cooling / spinning optomechanical system / optical Sagnac effect
[1] |
M.Poot, H.S. van der Zant. Mechanical systems in the quantum regime. Phys. Rep. , 2012, 511( 5): 273
CrossRef
ADS
Google scholar
|
[2] |
M.Aspelmeyer, T.J. Kippenberg, F.Marquardt. Cavity optomechanics. Rev. Mod. Phys. , 2014, 86( 4): 1391
CrossRef
ADS
Google scholar
|
[3] |
K.y. Zhang, L.Zhou, G.Dong, W.Zhang. Cavity optomechanics with cold atomic gas. Front. Phys. , 2011, 6( 3): 237
CrossRef
ADS
Google scholar
|
[4] |
T.Carmon, H.Rokhsari, L.Yang, T.J. Kippenberg, K.J. Vahala. Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. Phys. Rev. Lett. , 2005, 94( 22): 223902
CrossRef
ADS
Google scholar
|
[5] |
T.J. Kippenberg, H.Rokhsari, T.Carmon, A.Scherer, K.J. Vahala. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. , 2005, 95( 3): 033901
CrossRef
ADS
Google scholar
|
[6] |
Y.C. Liu, Y.F. Xiao. Macroscopic mechanical systems are entering the quantum world. Natl. Sci. Rev. , 2015, 2( 1): 9
CrossRef
ADS
Google scholar
|
[7] |
A.Schliesser, R.Riviere, G.Anetsberger, O.Arcizet, T.J. Kippenberg. Resolved-sideband cooling of a micromechanical oscillator. Nat. Phys. , 2008, 4( 5): 415
CrossRef
ADS
Google scholar
|
[8] |
J.D. Teufel, T.Donner, D.Li, J.W. Harlow, M.Allman, K.Cicak, A.J. Sirois, J.D. Whittaker, K.W. Lehnert, R.W. Simmonds. Sideband cooling of micromechanical motion to the quantum ground state. Nature , 2011, 475( 7356): 359
CrossRef
ADS
Google scholar
|
[9] |
T.J. Kippenberg, K.J. Vahala. Cavity optomechanics: Back-action at the mesoscale. Science , 2008, 321( 5893): 1172
CrossRef
ADS
Google scholar
|
[10] |
Y.C. Liu, Y.W. Hu, C.W. Wong, Y.F. Xiao. Review of cavity optomechanical cooling. Chin. Phys. B , 2013, 22( 11): 114213
CrossRef
ADS
Google scholar
|
[11] |
Y.Guo, K.Li, W.Nie, Y.Li. Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system. Phys. Rev. A , 2014, 90( 5): 053841
CrossRef
ADS
Google scholar
|
[12] |
Y.C. Liu, Y.F. Xiao, X.Luan, Q.Gong, C.W. Wong. Coupled cavities for motional ground-state cooling and strong optomechanical coupling. Phys. Rev. A , 2015, 91( 3): 033818
CrossRef
ADS
Google scholar
|
[13] |
W.Gu, G.Li. Quantum interference effects on ground-state optomechanical cooling. Phys. Rev. A , 2013, 87( 2): 025804
CrossRef
ADS
Google scholar
|
[14] |
S.Zhang, J.Q. Zhang, J.Zhang, C.W. Wu, W.Wu, P.X. Chen. Ground state cooling of an optomechanical resonator assisted by a Λ-type atom. Opt. Express , 2014, 22( 23): 28118
CrossRef
ADS
Google scholar
|
[15] |
C.Genes, H.Ritsch, D.Vitali. Micromechanical oscillator ground-state cooling via resonant intracavity optical gain or absorption. Phys. Rev. A , 2009, 80( 6): 061803
CrossRef
ADS
Google scholar
|
[16] |
B.Vogell, K.Stannigel, P.Zoller, K.Hammerer, M.T. Rakher, M.Korppi, A.Jöckel, P.Treutlein. Cavity-enhanced long-distance coupling of an atomic ensemble to a micromechanical membrane. Phys. Rev. A , 2013, 87( 2): 023816
CrossRef
ADS
Google scholar
|
[17] |
X.Chen, Y.C. Liu, P.Peng, Y.Zhi, Y.F. Xiao. Cooling of macroscopic mechanical resonators in hybrid atom-optomechanical systems. Phys. Rev. A , 2015, 92( 3): 033841
CrossRef
ADS
Google scholar
|
[18] |
J.Y. Yang, D.Y. Wang, C.H. Bai, S.Y. Guan, X.Y. Gao, A.D. Zhu, H.F. Wang. Ground-state cooling of mechanical oscillator via quadratic optomechanical coupling with two coupled optical cavities. Opt. Express , 2019, 27( 16): 22855
CrossRef
ADS
Google scholar
|
[19] |
C.Genes, D.Vitali, P.Tombesi. Simultaneous cooling and entanglement of mechanical modes of a micromirror in an optical cavity. New J. Phys. , 2008, 10( 9): 095009
CrossRef
ADS
Google scholar
|
[20] |
Z.Yang, C.Zhao, R.Peng, S.L. Chao, J.Yang, L.Zhou. The simultaneous ground-state cooling and synchronization of two mechanical oscillators by driving nonlinear medium. Ann. Phys. , 2022, 534( 5): 2100494
CrossRef
ADS
Google scholar
|
[21] |
D.G. Lai, J.F. Huang, X.L. Yin, B.P. Hou, W.Li, D.Vitali, F.Nori, J.Q. Liao. Nonreciprocal ground-state cooling of multiple mechanical resonators. Phys. Rev. A , 2020, 102( 1): 011502
CrossRef
ADS
Google scholar
|
[22] |
Z.X. Yang, L.Wang, Y.M. Liu, D.Y. Wang, C.H. Bai, S.Zhang, H.F. Wang. Ground state cooling of magnomechanical resonator in PT-symmetric cavity magnomechanical system at room temperature. Front. Phys. , 2020, 15( 5): 52504
CrossRef
ADS
Google scholar
|
[23] |
L.Bi, J.Hu, P.Jiang, D.H. Kim, G.F. Dionne, L.C. Kimerling, C.Ross. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nat. Photonics , 2011, 5( 12): 758
CrossRef
ADS
Google scholar
|
[24] |
R.J. Potton. Reciprocity in optics. Rep. Prog. Phys. , 2004, 67( 5): 717
CrossRef
ADS
Google scholar
|
[25] |
P.Lodahl, S.Mahmoodian, S.Stobbe, A.Rauschenbeutel, P.Schneeweiss, J.Volz, H.Pichler, P.Zoller. Chiral quantum optics. Nature , 2017, 541( 7638): 473
CrossRef
ADS
Google scholar
|
[26] |
X.W. Xu, H.Q. Shi, A.X. Chen. Nonreciprocal transition between two indirectly coupled energy levels. Front. Phys. , 2022, 17( 4): 42505
CrossRef
ADS
Google scholar
|
[27] |
X.B. Yan, H.L. Lu, F.Gao, L.Yang. Perfect optical nonreciprocity in a double-cavity optomechanical system. Front. Phys. , 2019, 14( 5): 52601
CrossRef
ADS
Google scholar
|
[28] |
Z.Lin, H.Ramezani, T.Eichelkraut, T.Kottos, H.Cao, D.N. Christodoulides. Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett. , 2011, 106( 21): 213901
CrossRef
ADS
Google scholar
|
[29] |
M.A. Miri, F.Ruesink, E.Verhagen, A.Alù. Optical nonreciprocity based on optomechanical coupling. Phys. Rev. Appl. , 2017, 7( 6): 064014
CrossRef
ADS
Google scholar
|
[30] |
L.Feng, M.Ayache, J.Huang, Y.L. Xu, M.H. Lu, Y.F. Chen, Y.Fainman, A.Scherer. Nonreciprocal light propagation in a silicon photonic circuit. Science , 2011, 333( 6043): 729
CrossRef
ADS
Google scholar
|
[31] |
M.Scheucher, A.Hilico, E.Will, J.Volz, A.Rauschenbeutel. Quantum optical circulator controlled by a single chirally coupled atom. Science , 2016, 354( 6319): 1577
CrossRef
ADS
Google scholar
|
[32] |
B.Peng, Ş.K. Özdemir, F.Lei, F.Monifi, M.Gianfreda, G.L. Long, S.Fan, F.Nori, C.M. Bender, L.Yang. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys. , 2014, 10( 5): 394
CrossRef
ADS
Google scholar
|
[33] |
H.Xiong, L.G. Si, X.Yang, Y.Wu. Asymmetric optical transmission in an optomechanical array. Appl. Phys. Lett. , 2015, 107( 9): 091116
CrossRef
ADS
Google scholar
|
[34] |
J.Kim, M.C. Kuzyk, K.Han, H.Wang, G.Bahl. Non-reciprocal Brillouin scattering induced transparency. Nat. Phys. , 2015, 11( 3): 275
CrossRef
ADS
Google scholar
|
[35] |
S.Barzanjeh, M.Wulf, M.Peruzzo, M.Kalaee, P.Dieterle, O.Painter, J.M. Fink. Mechanical on-chip microwave circulator. Nat. Commun. , 2017, 8( 1): 953
CrossRef
ADS
Google scholar
|
[36] |
R.Huang, A.Miranowicz, J.Q. Liao, F.Nori, H.Jing. Nonreciprocal photon blockade. Phys. Rev. Lett. , 2018, 121( 15): 153601
CrossRef
ADS
Google scholar
|
[37] |
K.Wang, Q.Wu, Y.F. Yu, Z.M. Zhang. Nonreciprocal photon blockade in a two-mode cavity with a second-order nonlinearity. Phys. Rev. A , 2019, 100( 5): 053832
CrossRef
ADS
Google scholar
|
[38] |
B.Li, R.Huang, X.Xu, A.Miranowicz, H.Jing. Nonreciprocal unconventional photon blockade in a spinning optomechanical system. Photon. Res. , 2019, 7( 6): 630
CrossRef
ADS
Google scholar
|
[39] |
Y.F. Jiao, S.D. Zhang, Y.L. Zhang, A.Miranowicz, L.M. Kuang, H.Jing. Nonreciprocal optomechanical entanglement against backscattering losses. Phys. Rev. Lett. , 2020, 125( 14): 143605
CrossRef
ADS
Google scholar
|
[40] |
Y.Jiang, S.Maayani, T.Carmon, F.Nori, H.Jing. Nonreciprocal phonon laser. Phys. Rev. Appl. , 2018, 10( 6): 064037
CrossRef
ADS
Google scholar
|
[41] |
S.S. Chen, S.S. Meng, H.Deng, G.J. Yang. Nonreciprocal mechanical squeezing in a spinning optomechanical system. Ann. Phys. , 2021, 533( 1): 2000343
CrossRef
ADS
Google scholar
|
[42] |
S.M. Spillane, T.J. Kippenberg, O.J. Painter, K.J. Vahala. Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett. , 2003, 91( 4): 043902
CrossRef
ADS
Google scholar
|
[43] |
G.B. Malykin. The Sagnac effect: Correct and incorrect explanations. Phys. Uspekhi , 2000, 43( 12): 1229
CrossRef
ADS
Google scholar
|
[44] |
H.Lü, Y.Jiang, Y.-Z.Wang, H.Jing. Optomechanically induced transparency in a spinning resonator. Photon. Res. , 2017, 5( 4): 367
CrossRef
ADS
Google scholar
|
[45] |
S.Maayani, R.Dahan, Y.Kligerman, E.Moses, A.U. Hassan, H.Jing, F.Nori, D.N. Christodoulides, T.Carmon. Flying couplers above spinning resonators generate irreversible refraction. Nature , 2018, 558( 7711): 569
CrossRef
ADS
Google scholar
|
[46] |
L.Ding, C.Baker, P.Senellart, A.Lemaitre, S.Ducci, G.Leo, I.Favero. Wavelength-sized GaAs optomechanical resonators with gigahertz frequency. Appl. Phys. Lett. , 2011, 98( 11): 113108
CrossRef
ADS
Google scholar
|
[47] |
G.Enzian, M.Szczykulska, J.Silver, L.Del Bino, S.Zhang, I.A. Walmsley, P.Del’Haye, M.R. Vanner. Observation of Brillouin optomechanical strong coupling with an 11 GHz mechanical mode. Optica , 2019, 6( 1): 7
CrossRef
ADS
Google scholar
|
[48] |
H.Snijders, J.A. Frey, J.Norman, M.P. Bakker, E.C. Langman, A.Gossard, J.E. Bowers, M.P. van Exter, D.Bouwmeester, W.Löffler. Purification of a single-photon nonlinearity. Nat. Commun. , 2016, 7( 1): 12578
CrossRef
ADS
Google scholar
|
[49] |
S.L. Chao, Z.Yang, C.S. Zhao, R.Peng, L.Zhou. Force sensing in a dual-mode optomechanical system with linear–quadratic coupling and modulated photon hopping. Opt. Lett. , 2021, 46( 13): 3075
CrossRef
ADS
Google scholar
|
[50] |
X.Li, B.Xiong, S.Chao, C.Zhao, H.T. Tan, L.Zhou. Remote weak-signal measurement via bound states in optomechanical systems. Commum. Theor. Phys. , 2021, 73( 2): 025102
CrossRef
ADS
Google scholar
|
[51] |
I.Wilson-Rae, N.Nooshi, W.Zwerger, T.J. Kippenberg. Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. , 2007, 99( 9): 093901
CrossRef
ADS
Google scholar
|
[52] |
F.Marquardt, J.P. Chen, A.A. Clerk, S.M. Girvin. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. , 2007, 99( 9): 093902
CrossRef
ADS
Google scholar
|
[53] |
K.J. Vahala. Optical microcavities. Nature , 2003, 424( 6950): 839
CrossRef
ADS
Google scholar
|
[54] |
G.C. Righini, Y.Dumeige, P.Feron, M.Ferrari, G.Nunzi Conti, D.Ristic, S.Soria. Whispering gallery mode microresonators: Fundamentals and applications. Riv. Nuovo Cim. , 2011, 34 : 435
CrossRef
ADS
Google scholar
|
[55] |
R.Reimann, M.Doderer, E.Hebestreit, R.Diehl, M.Frimmer, D.Windey, F.Tebbenjohanns, L.Novotny. GHZ rotation of an optically trapped nanoparticle in vacuum. Phys. Rev. Lett. , 2018, 121( 3): 033602
CrossRef
ADS
Google scholar
|
[56] |
J.Ahn, Z.Xu, J.Bang, Y.H. Deng, T.M. Hoang, Q.Han, R.M. Ma, T.Li. Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor. Phys. Rev. Lett. , 2018, 121( 3): 033603
CrossRef
ADS
Google scholar
|
[57] |
E.Verhagen, S.Deléglise, S.Weis, A.Schliesser, T.J. Kippenberg. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature , 2012, 482( 7383): 63
CrossRef
ADS
Google scholar
|
[58] |
Y.Zeng, B.Xiong, C.Li. Suppressing laser phase noise in an optomechanical system. Front. Phys. , 2022, 17( 1): 12503
CrossRef
ADS
Google scholar
|
[59] |
J.Zhang, B.Peng, Ş.K. Özdemir, K.Pichler, D.O. Krimer, G.Zhao, F.Nori, Y.Liu, S.Rotter, L.Yang. A phonon laser operating at an exceptional point. Nat. Photonics , 2018, 12( 8): 479
CrossRef
ADS
Google scholar
|
[60] |
M.Li, W.Pernice, H.Tang. Tunable bipolar optical interactions between guided lightwaves. Nat. Photonics , 2009, 3( 8): 464
CrossRef
ADS
Google scholar
|
[61] |
I.S. Grudinin, H.Lee, O.Painter, K.J. Vahala. Phonon laser action in a tunable two-level system. Phys. Rev. Lett. , 2010, 104( 8): 083901
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |