Equipartition of current in metallic armchair nanoribbon of graphene-based device

Hui Yang, Junjie Zeng, Sanyi You, Yulei Han, Zhenhua Qiao

PDF(5988 KB)
PDF(5988 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (6) : 63508. DOI: 10.1007/s11467-022-1201-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Equipartition of current in metallic armchair nanoribbon of graphene-based device

Author information +
History +

Abstract

We numerically investigate the mesoscopic electronic transport properties of Bernal-stacked bilayer/trilayer graphene connected with four monolayer graphene terminals. In armchair-terminated metallic bilayer graphene, we show that the current from one incoming terminal can be equally partitioned into other three outgoing terminals near the charge-neutrality point, and the conductance periodically fluctuates, which is independent of the ribbon width but influenced by the interlayer hopping energy. This finding can be clearly understood by using the wave function matching method, in which a quantitative relationship between the periodicity, Fermi energy, and interlayer hopping energy can be reached. Interestingly, for the trilayer case, when the Fermi energy is located around the charge-neutrality point, the fractional quantized conductance 1/(4e2h) can be achieved when system exceeds a critical length.

Graphical abstract

Keywords

graphene / electronic transport / armchair nanoribbon

Cite this article

Download citation ▾
Hui Yang, Junjie Zeng, Sanyi You, Yulei Han, Zhenhua Qiao. Equipartition of current in metallic armchair nanoribbon of graphene-based device. Front. Phys., 2022, 17(6): 63508 https://doi.org/10.1007/s11467-022-1201-2

References

[1]
M.Xu, T.Liang, M.Shi, H.Chen. Graphene-like two-dimensional materials. Chem. Rev. , 2013, 113( 5): 3766
CrossRef ADS Google scholar
[2]
Q.H. Wang, K.Kalantar-Zadeh, A.Kis, J.N. Coleman, M.S. Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. , 2012, 7( 11): 699
CrossRef ADS Google scholar
[3]
K.S. Novoselov, D.Jiang, F.Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA , 2005, 102( 30): 10451
CrossRef ADS Google scholar
[4]
Y.L. Han, Z.H. Qiao. Universal conductance fluctuations in Sierpinski carpets. Front. Phys. , 2019, 14( 6): 63603
CrossRef ADS Google scholar
[5]
S.Zhou, L.You, H.Zhou, Y.Pu, Z.Gui, J.Wang. Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications. Front. Phys. , 2021, 16( 1): 13301
CrossRef ADS Google scholar
[6]
H.Z. Lu, S.Q. Shen. Quantum transport in topological semimetals under magnetic fields. Front. Phys. , 2017, 12( 3): 127201
CrossRef ADS Google scholar
[7]
H.Dong, S.Guo, Y.Duan, F.Huang, W.Xu, J.Zhang. Electronic and optical properties of single-layer MoS2. Front. Phys. , 2018, 13( 4): 137307
CrossRef ADS Google scholar
[8]
X.R. Hu, J.M. Zheng, Z.Y. Ren. Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation. Front. Phys. , 2018, 13( 2): 137302
CrossRef ADS Google scholar
[9]
Y.Ren, Z.Qiao, Q.Niu. Topological phases in two-dimensional materials: A review. Rep. Prog. Phys. , 2016, 79( 6): 066501
CrossRef ADS Google scholar
[10]
X.T. Bi, J.Jung, Z.H. Qiao. Role of geometry and topological defects in the one-dimensional zero-line modes of graphene. Phys. Rev. B , 2015, 92( 23): 235421
CrossRef ADS Google scholar
[11]
K.Wang, Y.F. Ren, X.Z. Deng, S.A. Yang, J.Jung, Z.H. Qiao. Gate-tunable current partition in graphene-based topological zero lines. Phys. Rev. B , 2017, 95( 24): 245420
CrossRef ADS Google scholar
[12]
Z.H. Qiao, J.Jung, C.Lin, Y.F. Ren, A.H. MacDonald, Q.Niu. Current partition at topological channel intersections. Phys. Rev. Lett. , 2014, 112( 20): 206601
CrossRef ADS Google scholar
[13]
Z.H. Qiao, J.Jung, Q.Niu, A.H. MacDonald. Electronic highways in bilayer graphene. Nano Lett. , 2011, 11( 8): 3453
CrossRef ADS Google scholar
[14]
T.Hou, G.Chen, W.K. Tse, C.Zeng, Z.Qiao. Topological zero-line modes in folded bilayer graphene. Phys. Rev. B , 2018, 98( 24): 245417
CrossRef ADS Google scholar
[15]
X.Y. Peng, R.Ahuja. Symmetry breaking induced bandgap in epitaxial graphene layers on SiC. Nano Lett. , 2008, 8( 12): 4464
CrossRef ADS Google scholar
[16]
G.Giovannetti, P.A. Khomyakov, G.Brocks, P.J. Kelly, J.van den Brink. Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys. Rev. B , 2007, 76( 7): 073103
CrossRef ADS Google scholar
[17]
W.Yao, S.A. Yang, Q.Niu. Edge states in graphene: From gapped flat-band to gapless chiral modes. Phys. Rev. Lett. , 2009, 102( 9): 096801
CrossRef ADS Google scholar
[18]
K.S. Novoselov, A.K. Geim, S.V. Morozov, D.Jiang, Y.Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov. Electric field effect in atomically thin carbon films. Science , 2004, 306( 5696): 666
CrossRef ADS Google scholar
[19]
Y.Zhang, Y.W. Tan, H.L. Stormer, P.Kim. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature , 2005, 438( 7065): 201
CrossRef ADS Google scholar
[20]
C.W. J. Beenakker. Andreev reflection and Klein tunneling in graphene. Rev. Mod. Phys. , 2008, 80( 4): 1337
CrossRef ADS Google scholar
[21]
A.H. Castro Neto, F.Guinea, N.M. R. Peres, K.S. Novoselov, A.K. Geim. The electronic properties of graphene. Rev. Mod. Phys. , 2009, 81( 1): 109
CrossRef ADS Google scholar
[22]
S.Y. Zhou, G.H. Gweon, A.V. Fedorov, P.N. First, W.A. de Heer, D.H. Lee, F.Guinea, A.H. Castro Neto, A.Lanzara. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. , 2007, 6( 10): 770
CrossRef ADS Google scholar
[23]
K.M. M. Habib, S.S. Sylvia, S.Ge, M.Neupane, R.K. Lake. The coherent interlayer resistance of a single, rotated interface between two stacks of AB graphite. Appl. Phys. Lett. , 2013, 103( 24): 243114
CrossRef ADS Google scholar
[24]
S.Ge, K.M. M. Habib, A.De, Y.Barlas, D.Wickramaratne, M.R. Neupane, R.K. Lake. Interlayer transport through a graphene/rotated boron nitride/graphene heterostructure. Phys. Rev. B , 2017, 95( 4): 045303
CrossRef ADS Google scholar
[25]
F.Xia, D.B. Farmer, Y.Lin, P.Avouris. Graphene field-effect transistors with high On/Off current ratio and large transport band gap at room temperature. Nano Lett. , 2010, 10( 2): 715
CrossRef ADS Google scholar
[26]
Y.Kim, H.Yun, S.G. Nam, M.Son, D.S. Lee, D.C. Kim, S.Seo, H.C. Choi, H.J. Lee, S.W. Lee, J.S. Kim. Breakdown of the interlayer coherence in twisted bilayer graphene. Phys. Rev. Lett. , 2013, 110( 9): 096602
CrossRef ADS Google scholar
[27]
E.McCann, M.Koshino. The electronic properties of bilayer graphene. Rep. Prog. Phys. , 2013, 76( 5): 056503
CrossRef ADS Google scholar
[28]
K.Wang, T.Hou, Y.F. Ren, Z.H. Qiao. Enhanced robustness of zero-line modes in graphene via magnetic field. Front. Phys. , 2019, 14( 2): 23501
CrossRef ADS Google scholar
[29]
R.Wang, X.Ren, Z.Yan, L.J. Jiang, W.E. I. Sha, G.C. Shan. Graphene based functional devices: A short review. Front. Phys. , 2019, 14( 1): 13603
CrossRef ADS Google scholar
[30]
X.Z. Deng, H.L. Yang, S.F. Qi, X.H. Xu, Z.H. Qiao. Quantum anomalous Hall effect and giant Rashba spin−orbit splitting in graphene system co-doped with boron and 5d transition-metal atoms. Front. Phys. , 2018, 13( 5): 137308
CrossRef ADS Google scholar
[31]
L.J. Yin, K.K. Bai, W.X. Wang, S.Y. Li, Y.Zhang, L.He. Landau quantization of Dirac fermions in graphene and its multilayers. Front. Phys. , 2017, 12( 4): 127208
CrossRef ADS Google scholar
[32]
J.L. Ge, T.R. Wu, M.Gao, Z.B. Bai, L.Cao, X.F. Wang, Y.Y. Qin, F.Q. Song. Weak localization of bismuth cluster-decorated graphene and its spin–orbit interaction. Front. Phys. , 2017, 12( 4): 127210
CrossRef ADS Google scholar
[33]
W.Yan, S.Y. Li, L.J. Yin, J.B. Qiao, J.C. Nie, L.He. Spatially resolving unconventional interface Landau quantization in a graphene monolayer-bilayer planar junction. Phys. Rev. B , 2016, 93( 19): 195408
CrossRef ADS Google scholar
[34]
L.J. Yin, K.K. Bai, W.X. Wang, S.Y. Li, Y.Zhang, L.He. Landau quantization of Dirac fermions in graphene and its multilayers. Front. Phys. , 2017, 12( 4): 127208
CrossRef ADS Google scholar
[35]
S.Cho, Y.F. Chen, M.S. Fuhrer. Gate-tunable graphene spin valve. Appl. Phys. Lett. , 2007, 91( 12): 123105
CrossRef ADS Google scholar
[36]
Y.T. Zhang, Z.H. Qiao, Q.F. Sun. Detecting zero-line mode in bilayer graphene via the quantum Hall effect. Phys. Rev. B , 2013, 87( 23): 235405
CrossRef ADS Google scholar
[37]
M.Sui, G.Chen, L.Ma, W.Y. Shan, D.Tian, K.Watanabe, T.Taniguchi, X.Jin, W.Yao, D.Xiao, Y.Zhang. Gate-tunable topological valley transport in bilayer graphene. Nat. Phys. , 2015, 11( 12): 1027
CrossRef ADS Google scholar
[38]
L.Meng, Z.D. Chu, Y.Zhang, J.Y. Yang, R.F. Dou, J.C. Nie, L.He. Enhanced intervalley scattering of twisted bilayer graphene by periodic AB stacked atoms. Phys. Rev. B , 2012, 85( 23): 235453
CrossRef ADS Google scholar
[39]
V.Ryzhii, T.Otsuji, M.Ryzhii, V.Ya. Aleshkin, A.A. Dubinov, V.Mitin, M.S. Shur. Vertical electron transport in van der Waals heterostructures with graphene layers. J. Appl. Phys. , 2015, 117( 15): 154504
CrossRef ADS Google scholar
[40]
J.W. González, H.Santos, M.Pacheco, L.Chico, L.Brey. Electronic transport through bilayer graphene flakes. Phys. Rev. B , 2010, 81( 19): 195406
CrossRef ADS Google scholar
[41]
S.Das Sarma, S.Adam, E.H. Hwang, E.Rossi. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. , 2011, 83( 2): 407
CrossRef ADS Google scholar
[42]
T.Nakanishi, M.Koshino, T.Ando. Transmission through a boundary between monolayer and bilayer graphene. Phys. Rev. B , 2010, 82( 12): 125428
CrossRef ADS Google scholar
[43]
L.Brey, H.A. Fertig. Electronic states of graphene nanoribbons studied with the Dirac equation. Phys. Rev. B , 2006, 73( 23): 235411
CrossRef ADS Google scholar
[44]
I.Snyman, C.W. J. Beenakker. Ballistic transmission through a graphene bilayer. Phys. Rev. B , 2007, 75( 4): 045322
CrossRef ADS Google scholar
[45]
H.M. Abdullah, B.Van Duppen, M.Zarenia, H.Bahlouli, F.M. Peeters. Quantum transport across van der Waals domain walls in bilayer graphene. J. Phys.: Condens. Matter , 2017, 29( 42): 425303
CrossRef ADS Google scholar
[46]
H.M. Abdullah, D.R. da Costa, H.Bahlouli, A.Chaves, F.M. Peeters, B.Van Duppen. Electron collimation at van der Waals domain walls in bilayer graphene. Phys. Rev. B , 2019, 100( 4): 045137
CrossRef ADS Google scholar
[47]
J.W. González, H.Santos, E.Prada, L.Brey, L.Chico. Gate-controlled conductance through bilayer graphene ribbons. Phys. Rev. B , 2011, 83( 20): 205402
CrossRef ADS Google scholar
[48]
H.Zheng, Z.F. Wang, T.Luo, Q.W. Shi, J.Chen. Analytical study of electronic structure in armchair graphene nanoribbons. Phys. Rev. B , 2007, 75( 16): 165414
CrossRef ADS Google scholar
[49]
H.Santos, A.Ayuela, W.Jaskólski, M.Pelc, L.Chico. Interface states in carbon nanotube junctions: Rolling up graphene. Phys. Rev. B , 2009, 80( 3): 035436
CrossRef ADS Google scholar
[50]
C.Berger, Z.Song, X.Li, X.Wu, N.Brown, C.Naud, D.Mayou, T.Li, J.Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer. Electronic confinement and coherence in patterned epitaxial graphene. Science , 2006, 312( 5777): 1191
CrossRef ADS Google scholar
[51]
A.K. Geim, K.S. Novoselov. The rise of graphene. Nat. Mater. , 2007, 6( 3): 183
CrossRef ADS Google scholar
[52]
X.Li, W.Cai, J.An, S.Kim, J.Nah, D.Yang, R.Piner, A.Velamakanni, I.Jung, E.Tutuc, S.K. Banerjee, L.Colombo, R.S. Ruoff. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science , 2009, 324( 5932): 1312
CrossRef ADS Google scholar
[53]
K.S. Kim, Y.Zhao, H.Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P.Kim, J.Y. Choi, B.H. Hong. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature , 2009, 457( 7230): 706
CrossRef ADS Google scholar
[54]
W.X. Wang M.Zhou X.Li S. Y. Li X.Wu W.Duan L.He, Energy gaps of atomically precise armchair graphene sidewall nanoribbons, Phys. Rev. B 93, 241403(R) ( 2016)
[55]
J.Kunstmann, C.Özdogan, A.Quandt, H.Fehske. Stability of edge states and edge magnetism in graphene nanoribbons. Phys. Rev. B , 2011, 83( 4): 045414
CrossRef ADS Google scholar
[56]
L.Salemi, A.Lherbier, J.C. Charlier. Spin-dependent properties in zigzag graphene nanoribbons with phenyl-edge defects. Phys. Rev. B , 2018, 98( 21): 214204
CrossRef ADS Google scholar
[57]
S.Datta, Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge UK, 1997

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 11974327 and 12004369), the Fundamental Research Funds for the Central Universities (Nos. WK3510000010 and WK2030020032), Anhui Initiative in Quantum Information Technologies (Grant No. AHY170000). We also thank the supercomputing service of AM-HPC and the Supercomputing Center of University of Science and Technology of China for providing the high performance computing resources.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(5988 KB)

Accesses

Citations

Detail

Sections
Recommended

/