Influence of the tangential velocity on the compressible Kelvin−Helmholtz instability with nonequilibrium effects
Yaofeng Li, Huilin Lai, Chuandong Lin, Demei Li
Influence of the tangential velocity on the compressible Kelvin−Helmholtz instability with nonequilibrium effects
Kelvin−Helmholtz (KH) instability is a fundamental fluid instability that widely exists in nature and engineering. To better understand the dynamic process of the KH instability, the influence of the tangential velocity on the compressible KH instability is investigated by using the discrete Boltzmann method based on the nonequilibrium statistical physics. Both hydrodynamic and thermodynamic nonequilibrium (TNE) effects are probed and analyzed. It is found that, on the whole, the global density gradients, the TNE strength and area firstly increase and decrease afterwards. Both the global density gradient and heat flux intensity in the vertical direction are almost constant in the initial stage before a vortex forms. Moreover, with the increase of the tangential velocity, the KH instability evolves faster, hence the global density gradients, the TNE strength and area increase in the initial stage and achieve their peak earlier, and their maxima are higher for a larger tangential velocity. Physically, there are several competitive mechanisms in the evolution of the KH instability. (i) The physical gradients increase and the TNE effects are strengthened as the interface is elongated. The local physical gradients decrease and the local TNE intensity is weakened on account of the dissipation and/or diffusion. (ii) The global heat flux intensity is promoted when the physical gradients increase. As the contact area expands, the heat exchange is enhanced and the global heat flux intensity increases. (iii) The global TNE intensity reduces with the decreasing of physical gradients and increase with the increasing of TNE area. (iv) The nonequilibrium area increases as the fluid interface is elongated and is widened because of the dissipation and/or diffusion.
Kelvin−Helmholtz instability / thermodynamic nonequilibrium effect / viscous stress / discrete Boltzmann method
[1] |
S.Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Oxford University Press, London, 1961
|
[2] |
C.K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, 2000
|
[3] |
H.Luce, L.Kantha, M.Yabuki, H.Hashiguchi. Atmospheric Kelvin−Helmholtz billows captured by the MU radar, lidars and a fish-eye camera. Earth Planets Space , 2018, 70( 1): 162
CrossRef
ADS
Google scholar
|
[4] |
L.F. Wang, W.H. Ye, X.T. He, J.F. Wu, Z.F. Fan, C.Xue, H.Y. Guo, W.Y. Miao, Y.T. Yuan, J.Q. Dong, G.Jia, J.Zhang, Y.J. Li, J.Liu, M.Wang, Y.K. Ding, W.Y. Zhang. Theoretical and simulation research of hydrodynamic instabilities in inertial-confinement fusion implosions. Sci. China: Phys. Mech. Astron. , 2017, 60( 5): 055201
CrossRef
ADS
Google scholar
|
[5] |
R.V. Coelho, M.Mendoza, M.M. Doria, H.J. Herrmann. Kelvin−Helmholtz instability of the Dirac fluid of charge carriers on graphene. Phys. Rev. B , 2017, 96( 18): 184307
CrossRef
ADS
Google scholar
|
[6] |
V.V. Mishin, V.M. Tomozov. Kelvin−Helmholtz instability in the solar atmosphere, solar wind and geomagnetosphere. Sol. Phys. , 2016, 291( 11): 3165
CrossRef
ADS
Google scholar
|
[7] |
A.Petrarolo, M.Kobald, S.Schlechtriem. Understanding Kelvin−Helmholtz instability in paraffin-based hybrid rocket fuels. Exp. Fluids , 2018, 59( 4): 62
CrossRef
ADS
Google scholar
|
[8] |
R.K. Azadboni, A.Heidari, J.X. Wen. Numerical studies of flame acceleration and onset of detonation in homogenous and inhomogeneous mixture. J. Loss Prev. Process Ind. , 2020, 64 : 104063
CrossRef
ADS
Google scholar
|
[9] |
X.Y. Zhang, S.P. Li, B.Y. Yang, N.F. Wang. Flow structures of over-expanded supersonic gaseous jets for deep-water propulsion. Ocean Eng. , 2020, 213 : 107611
CrossRef
ADS
Google scholar
|
[10] |
X.F. Xiao, G.B. Zhao, W.X. Zhou, S.Martynenko. Large-eddy simulation of transpiration cooling in turbulent channel with porous wall. Appl. Therm. Eng. , 2018, 145 : 618
CrossRef
ADS
Google scholar
|
[11] |
W.Huang, Z.Du, L.Yan, Z.Xia. Supersonic mixing in airbreathing propulsion systems for hypersonic flights. Prog. Aerosp. Sci. , 2019, 109 : 100545
CrossRef
ADS
Google scholar
|
[12] |
E.C. Harding, J.F. Hansen, O.A. Hurricane, R.P. Drake, H.F. Robey, C.C. Kuranz, B.A. Remington, M.J. Bono, M.J. Grosskopf, R.S. Gillespie. Observation of a Kelvin−Helmholtz instability in a high-energydensity plasma on the omega laser. Phys. Rev. Lett. , 2009, 103( 4): 045005
CrossRef
ADS
Google scholar
|
[13] |
M.K. Awasthi, R.Asthana, G.Agrawal. Viscous correction for the viscous potential flow analysis of Kelvin−Helmholtz instability of cylindrical flow with heat and mass transfer. Int. J. Heat Mass Transf. , 2014, 78 : 251
CrossRef
ADS
Google scholar
|
[14] |
B.Akula, P.Suchandra, M.Mikhaeil, D.Ranjan. Dynamics of unstably stratified free shear flows: An experimental investigation of coupled Kelvin−Helmholtz and Rayleigh−Taylor instability. J. Fluid Mech. , 2017, 816 : 619
CrossRef
ADS
Google scholar
|
[15] |
C.D. Lin, A.G. Xu, G.C. Zhang, Y.J. Li, S.Succi. Polarcoordinate lattice Boltzmann modeling of compressible flows. Phys. Rev. E , 2014, 89( 1): 013307
CrossRef
ADS
Google scholar
|
[16] |
A.G. Xu, G.C. Zhang, Y.B. Gan, F.Chen, X.J. Yu. Lattice Boltzmann modeling and simulation of compressible flows. Front. Phys. , 2012, 7( 5): 582
CrossRef
ADS
Google scholar
|
[17] |
J.P. Parker, C.P. Caulfield, R.R. Kerswell. The effects of Prandtl number on the nonlinear dynamics of Kelvin−Helmholtz instability in two dimensions. J. Fluid Mech. , 2021, 915 : A37
CrossRef
ADS
Google scholar
|
[18] |
V.Mohan, A.Sameen, B.Srinivasan, S.S. Girimaji. Influence of Knudsen and Mach numbers on Kelvin−Helmholtz instability. Phys. Rev. E , 2021, 103( 5): 053104
CrossRef
ADS
Google scholar
|
[19] |
Y.B. Gan, A.G. Xu, G.C. Zhang, C.D. Lin, H.L. Lai, Z.P. Liu. Nonequilibrium and morphological characterizations of Kelvin−Helmholtz instability in compressible flows. Front. Phys. , 2019, 14( 4): 43602
CrossRef
ADS
Google scholar
|
[20] |
H.G. Lee, J.Kim. Two-dimensional Kelvin− Helmholtz instabilities of multi-component fluids. Eur. J. Mech. BFluids , 2015, 49 : 77
CrossRef
ADS
Google scholar
|
[21] |
K.S. Kim, M.H. Kim. Simulation of the Kelvin−Helmholtz instability using a multi-liquid moving particle semi-implicit method. Ocean Eng. , 2017, 130 : 531
CrossRef
ADS
Google scholar
|
[22] |
M.J. Yao, W.Q. Shang, Y.Zhang, H.Gao, D.X. Zhang, P.Y. Liu. Numerical analysis of Kelvin−Helmholtz instability in inclined walls. Chin. J. Comput. Phys. , 2019, 36 : 403
|
[23] |
K.I. Ebihara, T.Watanabe. Lattice Boltzmann simulation of the interfacial growth of the horizontal stratified two-phase flow. Int. J. Mod. Phys. B , 2003, 17( 01n02): 113
CrossRef
ADS
Google scholar
|
[24] |
Y.B. Gan, A.G. Xu, G.C. Zhang, Y.J. Li. Lattice Boltzmann study on Kelvin−Helmholtz instability: Roles of velocity and density gradients. Phys. Rev. E , 2011, 83( 5): 056704
CrossRef
ADS
Google scholar
|
[25] |
Y.G. Li, X.G. Geng, Z.J. Liu, H.P. Wang, D.Y. Zang. Simulating Kelvin−Helmholtz instability using dissipative particle dynamics. Fluid Dyn. Res. , 2018, 50( 4): 045512
CrossRef
ADS
Google scholar
|
[26] |
W.Q. Shang, Y.Zhang, Z.Q. Chen, Z.P. Yuan, B.H. Dong. Numerical simulation of two-dimensional Kelvin−Helmholtz instabilities using a front tracking method. Chin. J. Comput. Mech. , 2018, 35 : 424
|
[27] |
G.A. Hoshoudy, M.K. Awasthi. Compressibility effects on the Kelvin−Helmholtz and Rayleigh−Taylor instabilities between two immiscible fluids flowing through a porous medium. Eur. Phys. J. Plus , 2020, 135( 2): 169
CrossRef
ADS
Google scholar
|
[28] |
E.P. Budiana. The meshless numerical simulation of Kelvin−Helmholtz instability during the wave growth of liquid−liquid slug flow. Comput. Math. Appl. , 2020, 80( 7): 1810
CrossRef
ADS
Google scholar
|
[29] |
R.M. McMullen, M.C. Krygier, J.R. Torczynski, M.A. Gallis. Navier−Stokes equations do not describe the smallest scales of turbulence in gases. Phys. Rev. Lett. , 2022, 128( 11): 114501
CrossRef
ADS
Google scholar
|
[30] |
A.G. Xu, C.D. Lin, G.C. Zhang, Y.J. Li. Multiple-relaxation-time lattice Boltzmann kinetic model for combustion. Phys. Rev. E , 2015, 91( 4): 043306
CrossRef
ADS
Google scholar
|
[31] |
C.D. Lin, K.H. Luo. Discrete Boltzmann modeling of unsteady reactive flows with nonequilibrium effects. Phys. Rev. E , 2019, 99( 1): 012142
CrossRef
ADS
Google scholar
|
[32] |
X.L. Su, C.D. Lin. Nonequilibrium effects of reactive flow based on gas kinetic theory. Commum. Theor. Phys. , 2022, 74( 3): 035604
CrossRef
ADS
Google scholar
|
[33] |
Y.B. Gan, A.G. Xu, G.C. Zhang, S.Succi. Discrete Boltzmann modeling of multiphase flows: Hydrodynamic and thermodynamic nonequilibrium effects. Soft Matter , 2015, 11( 26): 5336
CrossRef
ADS
Google scholar
|
[34] |
Y.B. Gan, A.G. Xu, G.C. Zhang, Y.D. Zhang, S.Succi. Discrete Boltzmann trans-scale modeling of high-speed compressible flows. Phys. Rev. E , 2018, 97( 5): 053312
CrossRef
ADS
Google scholar
|
[35] |
H.L. Lai, A.G. Xu, G.C. Zhang, Y.B. Gan, Y.J. Li, S.Succi. Nonequilibrium thermohydrodynamic effects on the Rayleigh−Taylor instability in compressible flows. Phys. Rev. E , 2016, 94( 2): 023106
CrossRef
ADS
Google scholar
|
[36] |
D.M. Li, H.L. Lai, A.G. Xu, G.C. Zhang, C.D. Lin, Y.B. Gan. Discrete Boltzmann simulation of Rayleigh−Taylor instability in compressible flows. Acta Physica Sinica , 2018, 67( 8): 080501
CrossRef
ADS
Google scholar
|
[37] |
H.Y. Ye, H.L. Lai, D.M. Li, Y.B. Gan, C.D. Lin, L.Chen, A.G. Xu. Knudsen number effects on two-dimensional Rayleigh−Taylor instability in compressible fluid: Based on a discrete Boltzmann method. Entropy (Basel) , 2020, 22( 5): 500
CrossRef
ADS
Google scholar
|
[38] |
L.Chen, H.L. Lai, C.D. Lin, D.M. Li. Specific heat ratio effects of compressible Rayleigh−Taylor instability studied by discrete Boltzmann method. Front. Phys. , 2021, 16( 5): 52500
CrossRef
ADS
Google scholar
|
[39] |
L.Chen, H.L. Lai, C.D. Lin, D.M. Li. Numerical study of multimode Rayleigh−Taylor instability by using the discrete Boltzmann method. Acta Aerodyn. Sin. , 2022, 40 : 1
|
[40] |
C.D. Lin, A.G. Xu, G.C. Zhang, Y.J. Li. An efficient two-dimensional discrete Boltzmann model of detonation. Adv. Condens. Matter Phys. , 2015, 4( 3): 102
CrossRef
ADS
Google scholar
|
[41] |
F.Chen, A.G. Xu, G.C. Zhang. Collaboration and competition between Richtmyer−Meshkov instability and Rayleigh-Taylor instability. Phys. Fluids , 2018, 30( 10): 102105
CrossRef
ADS
Google scholar
|
[42] |
Y.D. Zhang, A.G. Xu, G.C. Zhang, Z.H. Chen, P.Wang. Discrete Boltzmann method for non-equilibrium flows: Based on Shakhov model. Comput. Phys. Commun. , 2019, 238 : 50
CrossRef
ADS
Google scholar
|
[43] |
C.D. Lin, K.H. Luo, Y.B. Gan, Z.P. Liu. Kinetic simulation of nonequilibrium Kelvin−Helmholtz instability. Commum. Theor. Phys. , 2019, 71( 1): 132
CrossRef
ADS
Google scholar
|
[44] |
D.J. Zhang, A.G. Xu, Y.D. Zhang, Y.J. Li. Two-fluid discrete Boltzmann model for compressible flows: Based on ellipsoidal statistical Bhatnagar−Gross−Krook. Phys. Fluids , 2020, 32( 12): 126110
CrossRef
ADS
Google scholar
|
[45] |
F.Chen, A.G. Xu, Y.D. Zhang, Q.K. Zeng. Morphological and nonequilibrium analysis of coupled Rayleigh−Taylor−Kelvin−Helmholtz instability. Phys. Fluids , 2020, 32( 10): 104111
CrossRef
ADS
Google scholar
|
[46] |
C.D. Lin, K.H. Luo, A.G. Xu, Y.B. Gan, H.L. Lai. Multiple-relaxation-time discrete Boltzmann modeling of multicomponent mixture with nonequilibrium effects. Phys. Rev. E , 2021, 103( 1): 013305
CrossRef
ADS
Google scholar
|
[47] |
F.Chen, A.G. Xu, Y.D. Zhang, Y.B. Gan, B.B. Liu, S.Wang. Effects of the initial perturbations on the Rayleigh−Taylor−Kelvin−Helmholtz instability system. Front. Phys. , 2022, 17( 3): 33505
CrossRef
ADS
Google scholar
|
[48] |
R.Benzi, S.Succi, M.Vergassola. The lattice Boltzmann equation: Theory and applications. Phys. Rep. , 1992, 222( 3): 145
CrossRef
ADS
Google scholar
|
[49] |
X.Y. He S. Y. Chen G.D. Doolen, A novel thermal model for the lattice Boltzmann method in incompressible limit, J. Comput. Phys . 146(1), 282 ( 1998)
|
[50] |
Z.H. Chai, B.C. Shi. Multiple-relaxation-time lattice Boltzmann method for the Navier−Stokes and nonlinear convection-diffusion equations: Modeling, analysis, and elements. Phys. Rev. E , 2020, 102( 2): 023306
CrossRef
ADS
Google scholar
|
[51] |
Q.Li, H.Yang, R.Z. Huang. Lattice Boltzmann simulation of solidliquid phase change with nonlinear density variation. Phys. Fluids , 2021, 33( 12): 123302
CrossRef
ADS
Google scholar
|
[52] |
Z.D. Wang Y.K. Wen Y.H. Qian, A novel thermal lattice Boltzmann model with heat source and its application in incompressible flow, Appl. Math. Comput . 427, 127167 ( 2022)
|
[53] |
A.G. Xu, J.Chen, J.H. Song, D.W. Chen, Z.H. Chen. Progress of discrete Boltzmann study on multiphase complex flows. Acta Aerodyn. Sin. , 2021, 39 : 138
|
[54] |
A.G. Xu, J.H. Song, F.Chen, K.Xie, Y.J. Ying. Modeling and analysis methods for complex fields based on phase space. Chin. J. Comput. Phys. , 2021, 38 : 631
|
[55] |
A.G. Xu, Y.M. Shan, F.Chen, Y.B. Gan, C.D. Lin. Progress of mesoscale modeling and investigation of combustion multiphase flow. Acta Aero. Astro. Sin. , 2021, 42 : 625842
|
[56] |
G.P. Klaassen, W.R. Peltier. Evolution of finite amplitude Kelvin−Helmholtz billows in two spatial dimensions. J. Atmos. Sci. , 1985, 42( 12): 1321
CrossRef
ADS
Google scholar
|
[57] |
G.P. Klaassen, W.R. Peltier. The effect of prandtl number on the evolution and stability of Kelvin−Helmholtz billows. Geophys. Astrophys. Fluid Dyn. , 1985, 32( 1): 23
CrossRef
ADS
Google scholar
|
[58] |
R.Fatehi, M.S. Shadloo, M.T. Manzari. Numerical investigation of two-phase secondary Kelvin−Helmholtz instability. Proc. Instit. Mech. Eng. C:J. Mech. Eng. Sci. , 2014, 228( 11): 1913
CrossRef
ADS
Google scholar
|
[59] |
K.Kiuchi, P.Cerdá-Durán, K.Kyutoku, Y.Sekiguchi, M.Shibata. Efficient magnetic-field amplification due to the Kelvin−Helmholtz instability in binary neutron star mergers. Phys. Rev. D , 2015, 92( 12): 124034
CrossRef
ADS
Google scholar
|
[60] |
Y.D. Zhang, A.G. Xu, G.C. Zhang, C.M. Zhu, C.D. Lin. Kinetic modeling of detonation and effects of negative temperature coefficient. Combust. Flame , 2016, 173 : 483
CrossRef
ADS
Google scholar
|
[61] |
C.D. Lin K.H. Luo L.L. Fei S.Succi, A multi-component discrete Boltzmann model for nonequilibrium reactive flows, Sci. Rep . 7(1), 14580 ( 2017)
|
/
〈 | 〉 |