Computational exploration and screening of novel Janus MA2Z4 (M = Sc−Zn, Y−Ag, Hf−Au; A=Si, Ge; Z=N, P) monolayers and potential application as a photocatalyst

Weibin Zhang, Woochul Yang, Yingkai Liu, Zhiyong Liu, Fuchun Zhang

PDF(13559 KB)
PDF(13559 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (6) : 63509. DOI: 10.1007/s11467-022-1199-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Computational exploration and screening of novel Janus MA2Z4 (M = Sc−Zn, Y−Ag, Hf−Au; A=Si, Ge; Z=N, P) monolayers and potential application as a photocatalyst

Author information +
History +

Abstract

By high-throughput calculations, 13 thermally and environmentally stable Janus MA2Z4 monolayers were screened from 104 types of candidates. The 13 stable monolayers have very high charge carrier concentrations (×1015 cm−2), which are better than those of the well-known graphene and TaS2. Because of their excellent conductivity, the 6 monolayers with band gaps less than 0.5 eV are identified as potential electrode materials for hydrogen evolution reaction applications. For potential applications as photoelectric or photocatalytic materials, bandgaps (Eg-HSE) higher than 0.5 eV remained, which resulted in 7 potential candidates. Based on optical absorption analysis in the visible-light range, H-HfSiGeP4 and H-MoSiGeP4 have higher absorption ability and optical conductivity, which is quite impressive for optoelectronic, solar cell device, and photocatalysis applications. Additionally, the transmittance coefficient of Janus MA2Z4 monolayers is approximately 70%−80% in the visible-light range, which implies that these monolayers show good light transmittance. For potential applications as photocatalysts, the redox potential and charge effective mass analysis indicate that H-HfSiGeP4, H-MoSiGeP4, T-ScSiGeN4, and T-ZrSiGeN4 are suitable photocatalysts for CO2 reduction reactions. Using high-throughput identification, 13 types of new and stable Janus MA2Z4 monolayers were explored, and the basic properties and potential applications were investigated, which can reduce the time for experiments and provide basic data for the material genome initiative.

Graphical abstract

Keywords

Janus MA2Z4 / high-throughput identification / charge carrier concentration / electronic structure / optical properties

Cite this article

Download citation ▾
Weibin Zhang, Woochul Yang, Yingkai Liu, Zhiyong Liu, Fuchun Zhang. Computational exploration and screening of novel Janus MA2Z4 (M = Sc−Zn, Y−Ag, Hf−Au; A=Si, Ge; Z=N, P) monolayers and potential application as a photocatalyst. Front. Phys., 2022, 17(6): 63509 https://doi.org/10.1007/s11467-022-1199-5

References

[1]
A. Bafekry , M. Faraji , D. M. Hoat , M. Shahrokhi , M. M. Fadlallah , F. Shojaei , S. A. H. Feghhi , M. Ghergherehchi , D. Gogova . MoSi2N4 single-layer: A novel two-dimensional material with outstanding mechanical, thermal, electronic and optical properties. J. Phys. D, 2021, 54( 15): 155303
CrossRef ADS Google scholar
[2]
Y. Xiao , C. Shen , W. B. Zhang . Screening and prediction of metal-doped α-borophene monolayer for nitric oxide elimination. Mater. Today Chem., 2022, 25 : 100958
CrossRef ADS Google scholar
[3]
Y. Li , Z. Xia , Q. Yang , L. Wang , Y. Xing . Review on g-C3N4-based S-scheme heterojunction photocatalysts. J. Mater. Sci. Technol., 2022, 125 : 128
CrossRef ADS Google scholar
[4]
H. Li , H. Li , Z. Wu , L. Zhu , C. Li , S. Lin , X. Zhu , Y. Sun . Realization of high-purity 1T-MoS2 by hydrothermal synthesis through synergistic effect of nitric acid and ethanol for supercapacitors. J. Mater. Sci. Technol., 2022, 123 : 34
CrossRef ADS Google scholar
[5]
Y. L. Hong , Z. B. Liu , L. Wang , T. Y. Zhou , W. Ma , C. Xu , S. Feng , L. Chen , M. L. Chen , D. M. Sun , X. Q. Chen , H. M. Cheng , W. C. Ren . Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science, 2020, 369( 6504): 670
CrossRef ADS Google scholar
[6]
X. M. Li , Z. Z. Lin , L. R. Cheng , X. Chen . Layered MoSi2N4 as electrode material of Zn-air battery. Phys. Status Solidi Rapid Res. Lett., 2022, 16( 5): 2200007
CrossRef ADS Google scholar
[7]
C. Xiao , Z. Ma , R. Sa , Z. Cui , S. Gao , W. Du , X. Sun , Q. Li . Adsorption behavior of environmental gas molecules on pristine and defective MoSi2N4: Possible application as highly sensitive and reusable gas sensors. ACS Omega, 2022, 7( 10): 8706
CrossRef ADS Google scholar
[8]
B. Ye , X. Jiang , Y. Gu , G. Yang , Y. Liu , H. Zhao , X. Yang , C. Wei , X. Zhang , N. Lu . Quantum transport of short-gate MOSFETs based on monolayer MoSi2N4. Phys. Chem. Chem. Phys., 2022, 24( 11): 6616
CrossRef ADS Google scholar
[9]
C. Xiao , R. Sa , Z. Cui , S. Gao , W. Du , X. Sun , X. Zhang , Q. Li , Z. Ma . Enhancing the hydrogen evolution reaction by non-precious transition metal (Non-metal) atom doping in defective MoSi2N4 monolayer. Appl. Surf. Sci., 2021, 563 : 150388
CrossRef ADS Google scholar
[10]
A. Bafekry , M. Faraji , D. M. Hoat , M. Shahrokhi , M. M. Fadlallah , F. Shojaei , S. A. H. Feghhi , M. Ghergherehchi , D. Gogova . MoSi2N4 single-layer: A novel two-dimensional material with outstanding mechanical, thermal, electronic and optical properties. J. Phys. D, 2021, 54( 15): 155303
CrossRef ADS Google scholar
[11]
N. Mwankemwa , H. E. Wang , T. Zhu , Q. Fan , F. Zhang , W. Zhang . First principles calculations investigation of optoelectronic properties and photocatalytic CO2 reduction of (MoSi2N4)5−n/(MoSiGeN4)n in-plane heterostructures. Results Phys., 2022, 37 : 105549
CrossRef ADS Google scholar
[12]
T. Yang , J. Zhou , T. T. Song , L. Shen , Y. P. Feng , M. Yang . High-throughput identification of exfoliable two-dimensional materials with active basal planes for hydrogen evolution. ACS Energy Lett., 2020, 5( 7): 2313
CrossRef ADS Google scholar
[13]
R. Singh , G. Bester . Hydrofluorinated graphene: Two-dimensional analog of polyvinylidene fluoride. Phys. Rev. B, 2011, 84( 15): 155427
CrossRef ADS Google scholar
[14]
M. L. Sun , Q. Q. Ren , S. K. Wang , J. Yu , W. C. Tang . Electronic properties of Janus silicene: New direct band gap semiconductors. J. Phys. D, 2016, 49( 44): 445305
CrossRef ADS Google scholar
[15]
R. Peng , Y. Ma , B. Huang , Y. Dai . Two-dimensional Janus PtSSe for photocatalytic water splitting under the visible or infrared light. J. Mater. Chem. A, 2019, 7( 2): 603
CrossRef ADS Google scholar
[16]
A. Mogulkoc , Y. Mogulkoc , S. Jahangirov , E. Durgun , Characterization of Janus TiXY (X/Y = S . Se, and Te) Monolayers. J. Phys. Chem. C, 2019, 123( 49): 29922
CrossRef ADS Google scholar
[17]
L. X. Wang , Z. Lin , Y. K. An . Tunable valley polarization, magnetic anisotropy and dipole moment for layered Janus 2H-VSSe with intrinsic room temperature ferromagnetism. J. Alloys Compd., 2021, 854 : 157141
CrossRef ADS Google scholar
[18]
C. M. Zhang , Y. H. Nie , S. Sanvito , A. J. Du . First-principles prediction of a room-temperature ferromagnetic Janus VSSe monolayer with piezoelectricity, ferroelasticity, and large valley polarization. Nano Lett., 2019, 19( 2): 1366
CrossRef ADS Google scholar
[19]
S. D. Guo , X. S. Guo , R. Y. Han , Y. Deng . Predicted Janus SnSSe monolayer: A comprehensive first-principles study. Phys. Chem. Chem. Phys., 2019, 21( 44): 24620
CrossRef ADS Google scholar
[20]
Y. C. Cheng , Z. Y. Zhu , M. Tahir , U. Schwingenschlogl . Spin−orbit-induced spin splittings in polar transition metal dichalcogenide monolayers. Europhys. Lett., 2013, 102( 5): 57001
CrossRef ADS Google scholar
[21]
A. Y. Lu , H. Y. Zhu , J. Xiao , C. P. Chuu , Y. M. Han , M. H. Chiu , C. C. Cheng , C. W. Yang , K. H. Wei , Y. M. Yang , Y. Wang , D. Sokaras , D. Nordlund , P. D. Yang , D. A. Muller , M. Y. Chou , X. Zhang , L. J. Li . Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol., 2017, 12( 8): 744
CrossRef ADS Google scholar
[22]
Y. Guo , S. Zhou , Y. Z. Bai , J. J. Zhao . Enhanced piezoelectric effect in Janus group-III chalcogenide monolayers. Appl. Phys. Lett., 2017, 110( 16): 163102
CrossRef ADS Google scholar
[23]
S. D. Guo , W. Q. Mu , Y. T. Zhu , R. Y. Han , W. C. Ren . Predicted septuple-atomic-layer Janus MSiGeN4 (M = Mo and W) monolayers with Rashba spin splitting and high electron carrier mobilities. J. Mater. Chem. C, 2021, 9( 7): 2464
CrossRef ADS Google scholar
[24]
Y. D. Yu , J. Zhou , Z. L. Guo , Z. M. Sun . Novel two-dimensional Janus MoSiGeN4 and WSiGeN4 as highly efficient photocatalysts for spontaneous overall water splitting. ACS Appl. Mater. Interfaces, 2021, 13( 24): 28090
CrossRef ADS Google scholar
[25]
N. T. T. Binh , C. Q. Nguyen , T. V. Vu , C. V. Nguyen . Interfacial electronic properties and tunable contact types in graphene/Janus MoGeSiN4 heterostructures. J. Phys. Chem. Lett., 2021, 12( 16): 3934
CrossRef ADS Google scholar
[26]
G. Kresse , J. Furthmüller . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54( 16): 11169
CrossRef ADS Google scholar
[27]
B. Hammer , L. B. Hansen , J. K. Nørskov . Improved adsorption energetics within density-functional theory using revised Perdew−Burke−Ernzerhof functionals. Phys. Rev. B, 1999, 59( 11): 7413
CrossRef ADS Google scholar
[28]
J. P. Perdew , K. Burke , M. Ernzerhof . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77( 18): 3865
CrossRef ADS Google scholar
[29]
W. Zhang , S. Chen , M. He , G. Zhu , W. Yang , Y. Tian , Z. Zhang , S. Zhang , F. Zhang , Q. Wu . Enhanced photocatalytic properties of Bi4O5Br2 by Mn doping: A first principles study. Mater. Res. Express, 2018, 5( 7): 075512
CrossRef ADS Google scholar
[30]
L. Li , W. Wang , H. Liu , X. Liu , Q. Song , S. Ren . First principles calculations of electronic band structure and optical properties of Cr-doped ZnO. J. Phys. Chem. C, 2009, 113( 19): 8460
CrossRef ADS Google scholar
[31]
D. Ghosh , G. Periyasamy , S. K. Pati . Transition metal embedded two-dimensional C3N4–graphene nanocomposite: A multifunctional material. J. Phys. Chem. C, 2014, 118( 28): 15487
CrossRef ADS Google scholar
[32]
A. J. Samuels , J. D. Carey . Molecular doping and band-gap opening of bilayer graphene. ACS Nano, 2013, 7( 3): 2790
CrossRef ADS Google scholar
[33]
J. Bekaert , E. Khestanova , D. G. Hopkinson , J. Birkbeck , N. Clark , M. Zhu , D. A. Bandurin , R. Gorbachev , S. Fairclough , Y. Zou , M. Hamer , D. J. Terry , J. J. P. Peters , A. M. Sanchez , B. Partoens , S. J. Haigh , M. V. Milošević , I. V. Grigorieva . Enhanced superconductivity in few-layer TaS2 due to healing by oxygenation. Nano Lett., 2020, 20( 5): 3808
CrossRef ADS Google scholar
[34]
Z. Sun , J. Xu , N. Mwankemwa , W. Yang , X. Wu , Z. Yi , S. Chen , W. Zhang . Na, and K)-adsorbed MoSi2N4 monolayer: an investigation of its outstanding electronic, optical, and photocatalytic properties. Commum. Theor. Phys., 2022, 74( 1): 015503
CrossRef ADS Google scholar
[35]
J. Robertson . High dielectric constant oxides. Eur. Phys. J. Appl. Phys., 2004, 28( 3): 265
CrossRef ADS Google scholar
[36]
J. Wang , W. Zhang , Q. Wu , S. Gao , Y. Jin , Y. Xiao , Y. Chen . The electronic and optical properties of Au decorated( 101¯4) dolomite surface: A first principles calculations. Results Phys., 2021, 21 : 103827
CrossRef ADS Google scholar
[37]
Z. Zhao , Z. Li , Z. Zou . Electronic structure and optical properties of monoclinic clinobisvanite BiVO4. Phys. Chem. Chem. Phys., 2011, 13( 10): 4746
CrossRef ADS Google scholar
[38]
W. Yu , D. Xu , T. Peng . Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: A direct Z-scheme mechanism. J. Mater. Chem. A, 2015, 3( 39): 19936
CrossRef ADS Google scholar
[39]
L. Thulin , J. Guerra . Calculations of strain-modified anatase TiO2 band structures. Phys. Rev. B, 2008, 77( 19): 195112
CrossRef ADS Google scholar
[40]
A. Kudo , Y. Miseki . Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev., 2009, 38( 1): 253
CrossRef ADS Google scholar
[41]
X. Li , P. Wang , Y. Wu , Z. Liu , Q. Zhang , T. Zhang , Z. Wang , Y. Liu , Z. Zheng , B. Huang . ZnGeP2: A near-infrared-activated photocatalyst for hydrogen production. Front. Phys., 2020, 15( 2): 23604
CrossRef ADS Google scholar
[42]
W. Zhang , Z. Zhang , S. Kwon , F. Zhang , B. Stephen , K. K. Kim , R. Jung , S. Kwon , K. B. Chung , W. Yang . Photocatalytic improvement of Mn-adsorbed g-C3N4. Appl. Catal. B, 2017, 206 : 271
CrossRef ADS Google scholar
[43]
J. Liu . Origin of high photocatalytic efficiency in monolayer g-C3N4/CdS heterostructure: A hybrid DFT study. J. Phys. Chem. C, 2015, 119( 51): 28417
CrossRef ADS Google scholar
[44]
S. Chen , Y. Hu , S. Meng , X. Fu . Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3. Appl. Catal. B, 2014, 150– 151, 564
CrossRef ADS Google scholar
[45]
Z. Zhou , S. Yuan , J. Wang . Theoretical progress on direct Z-scheme photocatalysis of two-dimensional heterostructures. Front. Phys., 2021, 16( 4): 43203
CrossRef ADS Google scholar

Electronic supplementary material

The supplementary material is available in the online version of this article at https://doi.org/10.1007/s11467-022-1199-5 and https://journal.hep.com.cn/fop/EN/pdf/10.1007/s11467-022-1199-5 and is accessible for authorized users.

CRediT authorship contribution statement

Weibin Zhang: Data Curation, Investigation, Writing. Woochul Yang, Yingkai Liu & Zhiyong Liu: Review & Editing. Fuchun Zhang: Conceptualization, Methodology.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 52262042) and the Starting Funds for High-level Talents from Yunnan Normal University.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(13559 KB)

Accesses

Citations

Detail

Sections
Recommended

/