Emerging weak antilocalization effect in Ta0.7Nb0.3Sb2 semimetal single crystals
Meng Xu, Lei Guo, Lei Chen, Ying Zhang, Shuang-Shuang Li, Weiyao Zhao, Xiaolin Wang, Shuai Dong, Ren-Kui Zheng
Emerging weak antilocalization effect in Ta0.7Nb0.3Sb2 semimetal single crystals
Weak antilocalization (WAL) effect is commonly observed in low-dimensional systems, three-dimensional (3D) topological insulators and semimetals. Here, we report the growth of high-quality Ta0.7Nb0.3Sb2 single crystals via the chemical vapor transport (CVT). Clear sign of the WAL effect is observed below 50 K, probably due to the strong spin−orbital coupling in 3D bulk. In addition, it is worth noting that a relatively large MR of 120% appears under 1 T magnetic field at T = 2 K. Hall measurements and two-band model fitting results reveal high carrier mobility (>1000 cm2·V−1·s−1 in 2–300 K region), and off-compensation electron/hole ratio of ~8:1. Due to the angular dependence of the WAL effect and the fermiology of the Ta0.7Nb0.3Sb2 crystals, interesting magnetic-field-induced changes of the symmetry of the anisotropic magnetoresistance (MR) from two-fold (≤ 0.6 T) to four-fold (0.8–1.5 T) and finally to two-fold (≥ 2 T) are observed. This phenomenon is attributed to the mechanism shift from the low-field WAL dominated MR to WAL and fermiology co-dominated MR and finally to high-field fermiology dominated MR. All these signs indicate that Ta0.7Nb0.3Sb2 may be a topological semimetal candidate, and these magnetotransport properties may attract more theoretical and experimental exploration of the (Ta,Nb)Sb2 family.
topological semimetal / magnetoresistance / weak antilocalization effect / spin−orbital coupling
[1] |
M. Z. Hasan, C. L. Kane. Colloquium: Topological insulators. Rev. Mod. Phys., 2010, 82(4): 3045
CrossRef
ADS
Google scholar
|
[2] |
M. He, H. Sun, Q. L. He. Topological insulator: Spintronics and quantum computations. Front. Phys., 2019, 14(4): 43401
CrossRef
ADS
Google scholar
|
[3] |
B. Yan, C. Felser. Topological materials: Weyl semimetals. Annu. Rev. Condens. Matter Phys., 2017, 8(1): 337
CrossRef
ADS
Google scholar
|
[4] |
B. Keimer, J. E. Moore. The physics of quantum materials. Nat. Phys., 2017, 13(11): 1045
CrossRef
ADS
Google scholar
|
[5] |
Y. Tokura, K. Yasuda, A. Tsukazaki. Magnetic topological insulators. Nat. Rev. Phys., 2019, 1(2): 126
CrossRef
ADS
Google scholar
|
[6] |
H. P. Sun, H. Z. Lu. Quantum transport in topological semimetals under magnetic fields (II). Front. Phys., 2019, 14(3): 33405
CrossRef
ADS
Google scholar
|
[7] |
L. Guo, Y. K. Liu, G. Y. Gao, Y. Y. Huang, H. Gao, L. Chen, W. Zhao, W. Ren, S. Y. Li, X. G. Li, S. Dong, R. K. Zheng. Extreme magnetoresistance and SdH oscillation in compensated semimetals of NbSb2 single crystals. J. Appl. Phys., 2018, 123(15): 155103
CrossRef
ADS
Google scholar
|
[8] |
Y. Zhou, C. Gu, X. Chen, Y. Zhou, C. An, Z. Yang. Structural and transport properties of the topological semimetal TaSb2 at high pressures. J. Solid State Chem., 2018, 265: 359
CrossRef
ADS
Google scholar
|
[9] |
K. Wang, D. Graf, L. Li, L. Wang, C. Petrovic. Anisotropic giant magnetoresistance in NbSb2. Sci. Rep., 2015, 4(1): 7328
CrossRef
ADS
Google scholar
|
[10] |
Y. Li, L. Li, J. Wang, T. Wang, X. Xu, C. Xi, C. Cao, J. Dai. Resistivity plateau and negative magnetoresistance in the topological semimetal TaSb2. Phys. Rev. B, 2016, 94(12): 121115(R)
CrossRef
ADS
Google scholar
|
[11] |
A. Pariari, R. Singha, S. Roy, B. Satpati, P. Mandal. Anisotropic transverse magnetoresistance and Fermi surface in TaSb2. Sci. Rep., 2018, 8(1): 10527
CrossRef
ADS
Google scholar
|
[12] |
L. Guo, M. Xu, L. Chen, X. Huang, X. Y. Shi, J. S. Ying, T. Zhang, W. Zhao, S. Dong, R. K. Zheng. Electronic transport properties of Nb1–xTaxSb2 single-crystal semimetals grown by a chemical vapor transport based high-throughput method. Cryst. Growth Des., 2021, 21(1): 653
CrossRef
ADS
Google scholar
|
[13] |
D. Gresch, Q. Wu, G. W. Winkler, A. A. Soluyanov. Hidden Weyl points in centrosymmetric paramagnetic metals. New J. Phys., 2017, 19(3): 035001
CrossRef
ADS
Google scholar
|
[14] |
C. Xu, J. Chen, G. X. Zhi, Y. Li, J. Dai, C. Cao, Electronic structures of transition metal dipnictides XPn2(X = Ta, Nb Pn = Sb). Phys. Rev. B, 2016, 93(19): 195106
CrossRef
ADS
Google scholar
|
[15] |
I. Belopolski, D. S. Sanchez, Y. Ishida, X. C. Pan, P. Yu, S. Y. Xu, G. Q. Chang, T. R. Chang, H. Zheng, N. Alidoust, G. Bian, M. Neupane, S. M. Huang, C. C. Lee, Y. Song, H. Bu, G. Wang, S. Li, G. Eda, H. T. Jeng, T. Kondo, H. Lin, Z. Liu, F. Song, S. Shin, M. Z. Hasan. Discovery of a new type of topological Weyl fermion semimetal state in MoxW1−xTe2. Nat. Commun., 2016, 7(1): 13643
CrossRef
ADS
Google scholar
|
[16] |
T. R. Chang, S. Y. Xu, G. Chang, C. C. Lee, S. M. Huang, B. K. Wang, G. Bian, H. Zheng, D. S. Sanchez, I. Belopolski, N. Alidoust, M. Neupane, A. Bansil, H. T. Jeng, H. Lin, M. Z. Hasan. Prediction of an arc-tunable Weyl Fermion metallic state in MoxW1−xTe2. Nat. Commun., 2016, 7(1): 10639
CrossRef
ADS
Google scholar
|
[17] |
Y. Wang, E. Liu, H. Liu, Y. Pan, L. Zhang, J. Zeng, Y. Fu, M. Wang, K. Xu, Z. Huang, Z. Wang, H. Z. Lu, D. Xing, B. Wang, X. Wan, F. Miao. Gate-tunable negative longitudinal magnetoresistance in the predicted type-II Weyl semimetal WTe2. Nat. Commun., 2016, 7(1): 13142
CrossRef
ADS
Google scholar
|
[18] |
H. Liu, S. Liu, Y. Yi, H. He, J. Wang. Shubnikov–de Haas oscillations in n and p type Bi2Se3 flakes. 2D Mater., 2015, 2(4): 045002
CrossRef
ADS
Google scholar
|
[19] |
Y. Xing, Y. Sun, M. Singh, Y. F. Zhao, M. H. W. Chan, J. Wang. Electronic transport properties of topological insulator films and low dimensional superconductors. Front. Phys., 2013, 8(5): 491
CrossRef
ADS
Google scholar
|
[20] |
A. Laitinen, M. Kumar, P. J. Hakonen. Weak antilocalization of composite fermions in graphene. Phys. Rev. B, 2018, 97(7): 075113
CrossRef
ADS
Google scholar
|
[21] |
M. Jenderka, J. Barzola-Quiquia, Z. Zhang, H. Frenzel, M. Grundmann, M. Lorenz. Mott variable-range hopping and weak antilocalization effect in heteroepitaxial Na2IrO3 thin films. Phys. Rev. B, 2013, 88(4): 045111
CrossRef
ADS
Google scholar
|
[22] |
M. Xu, T. W. Chen, J. M. Yan, L. Guo, H. Wang, G. Y. Gao, H. S. Luo, Y. Chai, R. K. Zheng. Tunable magnetoresistance and charge carrier density in Cr: In2O3/PbMg1/3Nb2/3O3−PbTiO3 ferroelectric field-effect devices. Phys. Rev. Appl., 2020, 13(6): 064006
CrossRef
ADS
Google scholar
|
[23] |
Y. Gan, J. Liang, C. Cho, S. Li, Y. Guo, X. Ma, X. Wu, J. Wen, X. Du, M. He, C. Liu, S. A. Yang, K. Wang, L. Zhang. Bandgap opening in MoTe2 thin flakes induced by surface oxidation. Front. Phys., 2020, 15(3): 33602
CrossRef
ADS
Google scholar
|
[24] |
K. Shrestha, M. Chou, D. Graf, H. D. Yang, B. Lorenz, C. W. Chu. Extremely large nonsaturating magnetoresistance and ultrahigh mobility due to topological surface states in the metallic Bi2Te3 topological insulator. Phys. Rev. B, 2017, 95(19): 195113
CrossRef
ADS
Google scholar
|
[25] |
O. Chiatti, C. Riha, D. Lawrenz, M. Busch, S. Dusari, J. Sanchez-Barriga, A. Mogilatenko, L. V. Yashina, S. Valencia, A. A. Unal, O. Rader, S. F. Fischer. 2D layered transport properties from topological insulator Bi2Se3 single crystals and micro flakes. Sci. Rep., 2016, 6(1): 27483
CrossRef
ADS
Google scholar
|
[26] |
C. Shekhar, C. E. ViolBarbosa, B. Yan, S. Ouardi, W. Schnelle, G. H. Fecher, C. Felser. Evidence of surface transport and weak antilocalization in a single crystal of the Bi2Te2Se topological insulator. Phys. Rev. B, 2014, 90(16): 165140
CrossRef
ADS
Google scholar
|
[27] |
K. Shrestha, D. Graf, V. Marinova, B. Lorenz, C. W. Chu. Weak antilocalization effect due to topological surface states in Bi2Se2.1Te0.9. J. Appl. Phys., 2017, 122(14): 145901
CrossRef
ADS
Google scholar
|
[28] |
W. Zhao, L. Chen, Z. Yue, Z. Li, D. Cortie, M. Fuhrer, X. Wang. Quantum oscillations of robust topological surface states up to 50 K in thick bulk-insulating topological insulator. npj Quantum Mater., 2019, 4(1): 56
CrossRef
ADS
Google scholar
|
[29] |
G. Xu, W. Wang, X. Zhang, Y. Du, E. Liu, S. Wang, G. Wu, Z. Liu, X. X. Zhang. Weak antilocalization effect and noncentrosymmetric superconductivity in a topologically nontrivial semimetal LuPdBi. Sci. Rep., 2015, 4(1): 5709
CrossRef
ADS
Google scholar
|
[30] |
O. Pavlosiuk, D. Kaczorowski, P. Wisniewski. Shubnikov−de Haas oscillations, weak antilocalization effect and large linear magnetoresistance in the putative topological superconductor LuPdBi. Sci. Rep., 2015, 5(1): 9158
CrossRef
ADS
Google scholar
|
[31] |
Z. Hou, Y. Wang, E. Liu, H. Zhang, W. Wang, G. Wu. Large low-field positive magnetoresistance in nonmagnetic half-Heusler ScPtBi single crystal. Appl. Phys. Lett., 2015, 107(20): 202103
CrossRef
ADS
Google scholar
|
[32] |
A. Laha, S. Malick, R. Singha, P. Mandal, P. Rambabu, V. Kanchana, Z. Hossain. Magnetotransport properties of the correlated topological nodal-line semimetal YbCdGe. Phys. Rev. B, 2019, 99(24): 241102(R)
CrossRef
ADS
Google scholar
|
[33] |
A. Laha, P. Rambabu, V. Kanchana, L. Petit, Z. Szotek, Z. Hossain. Experimental and theoretical study of the correlated compound YbCdSn: Evidence for large magnetoresistance and mass enhancement. Phys. Rev. B, 2020, 102(23): 235135
CrossRef
ADS
Google scholar
|
[34] |
S. Sasmal, R. Mondal, R. Kulkarni, A. Thamizhavel, B. Singh. Magnetotransport properties of noncentrosymmetric CaAgBi single crystal. J. Phys.: Condens. Matter, 2020, 32(33): 335701
CrossRef
ADS
Google scholar
|
[35] |
J. Zhang, Z. Hou, C. Zhang, J. Chen, P. Li, Y. Wen, Q. Zhang, W. Wang, X. Zhang. Weak antilocalization effect and high-pressure transport properties of ScPdBi single crystal. Appl. Phys. Lett., 2019, 115(17): 172407
CrossRef
ADS
Google scholar
|
[36] |
L. Deng, Z. H. Liu, X. Q. Ma, Z. P. Hou, E. K. Liu, X. K. Xi, W. H. Wang, G. H. Wu, X. X. Zhang. Observation of weak antilocalization effect in high-quality ScNiBi single crystal. J. Appl. Phys., 2017, 121(10): 105106
CrossRef
ADS
Google scholar
|
[37] |
J. Chen, H. Li, B. Ding, Z. Hou, E. Liu, X. Xi, H. Zhang, G. Wu, W. Wang. Structural and magnetotransport properties of topological trivial LuNiBi single crystals. J. Alloys Compd., 2019, 784: 822
CrossRef
ADS
Google scholar
|
[38] |
Z. Hou, Y. Wang, G. Xu, X. Zhang, E. Liu, W. Wang, Z. Liu, X. Xi, W. Wang, G. Wu. Transition from semiconducting to metallic-like conducting and weak antilocalization effect in single crystals of LuPtSb. Appl. Phys. Lett., 2015, 106(10): 102102
CrossRef
ADS
Google scholar
|
[39] |
S. Hikami, A. I. Larkin, Y. Nagaoka. Spin−orbit interaction and magnetoresistance in the two dimensional random system. Prog. Theor. Phys., 1980, 63(2): 707
CrossRef
ADS
Google scholar
|
[40] |
B. A. Assaf, T. Cardinal, P. Wei, F. Katmis, J. S. Moodera, D. Heiman. Linear magnetoresistance in topological insulator thin films: Quantum phase coherence effects at high temperatures. Appl. Phys. Lett., 2013, 102(1): 012102
CrossRef
ADS
Google scholar
|
[41] |
A. Rehr, S. M. Kauzlarich. NbSb2. Acta Crystallogr. C, 1994, 50(8): 1177
CrossRef
ADS
Google scholar
|
[42] |
R. Singha, A. K. Pariari, B. Satpati, P. Mandal. Large nonsaturating magnetoresistance and signature of nondegenerate Dirac nodes in ZrSiS. Proc. Natl. Acad. Sci. USA, 2017, 114(10): 2468
CrossRef
ADS
Google scholar
|
[43] |
S. Sun, Q. Wang, P. J. Guo, K. Liu, H. Lei. Large magnetoresistance in LaBi: Origin of field-induced resistivity upturn and plateau in compensated semimetals. New J. Phys., 2016, 18(8): 082002
CrossRef
ADS
Google scholar
|
[44] |
F. F. Tafti, Q. D. Gibson, S. K. Kushwaha, N. Haldolaarachchige, R. J. Cava. Resistivity plateau and extreme magnetoresistance in LaSb. Nat. Phys., 2016, 12(3): 272
CrossRef
ADS
Google scholar
|
[45] |
L. Guo, T. W. Chen, C. Chen, L. Chen, Y. Zhang, G. Y. Gao, J. Yang, X. G. Li, W. Y. Zhao, S. Dong, R. K. Zheng. Electronic transport evidence for topological nodal-line semimetals of ZrGeSe single crystals. ACS Appl. Electron. Mater., 2019, 1(6): 869
CrossRef
ADS
Google scholar
|
[46] |
J.M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids, Oxford University Press, 1960
|
[47] |
Y. L. Wang, L. R. Thoutam, Z. L. Xiao, J. Hu, S. Das, Z. Q. Mao, J. Wei, R. Divan, A. Luican-Mayer, G. W. Crabtree, W. K. Kwok. Origin of the turn-on temperature behavior in WTe2. Phys. Rev. B, 2015, 92(18): 180402(R)
|
[48] |
Y. Kopelevich, J. C. M. Pantoja, R. R. da Silva, S. Moehlecke. Universal magnetic-field-driven metal−insulator−metal transformations in graphite and bismuth. Phys. Rev. B, 2006, 73(16): 165128
CrossRef
ADS
Google scholar
|
[49] |
C.M. Hurd, The Hall Effect in Metals and Alloys, Plenum, New York, 1972
|
[50] |
H. T. He, G. Wang, T. Zhang, I. K. Sou, G. K. L. Wong, J. N. Wang, H. Z. Lu, S. Q. Shen, F. C. Zhang. Impurity effect on weak antilocalization in the topological insulator Bi2Te3. Phys. Rev. Lett., 2011, 106(16): 166805
CrossRef
ADS
Google scholar
|
[51] |
Z. Yuan, H. Lu, Y. Liu, J. Wang, S. Jia. Large magnetoresistance in compensated semimetals TaAs2 and NbAs2. Phys. Rev. B, 2016, 93(18): 184405
CrossRef
ADS
Google scholar
|
[52] |
A. Collaudin, B. Fauqué, Y. Fuseya, W. Kang, K. Behnia. Angle dependence of the orbital magnetoresistance in Bismuth. Phys. Rev. X, 2015, 5(2): 021022
CrossRef
ADS
Google scholar
|
[53] |
Y. Luo, R. D. McDonald, P. F. S. Rosa, B. Scott, N. Wakeham, N. J. Ghimire, E. D. Bauer, J. D. Thompson, F. Ronning. Anomalous electronic structure and magnetoresistance in TaAs2. Sci. Rep., 2016, 6(1): 27294
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |