Emerging weak antilocalization effect in Ta0.7Nb0.3Sb2 semimetal single crystals

Meng Xu, Lei Guo, Lei Chen, Ying Zhang, Shuang-Shuang Li, Weiyao Zhao, Xiaolin Wang, Shuai Dong, Ren-Kui Zheng

PDF(7309 KB)
PDF(7309 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (1) : 13304. DOI: 10.1007/s11467-022-1198-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Emerging weak antilocalization effect in Ta0.7Nb0.3Sb2 semimetal single crystals

Author information +
History +

Abstract

Weak antilocalization (WAL) effect is commonly observed in low-dimensional systems, three-dimensional (3D) topological insulators and semimetals. Here, we report the growth of high-quality Ta0.7Nb0.3Sb2 single crystals via the chemical vapor transport (CVT). Clear sign of the WAL effect is observed below 50 K, probably due to the strong spin−orbital coupling in 3D bulk. In addition, it is worth noting that a relatively large MR of 120% appears under 1 T magnetic field at T = 2 K. Hall measurements and two-band model fitting results reveal high carrier mobility (>1000 cm2·V−1·s−1 in 2–300 K region), and off-compensation electron/hole ratio of ~8:1. Due to the angular dependence of the WAL effect and the fermiology of the Ta0.7Nb0.3Sb2 crystals, interesting magnetic-field-induced changes of the symmetry of the anisotropic magnetoresistance (MR) from two-fold (≤ 0.6 T) to four-fold (0.8–1.5 T) and finally to two-fold (≥ 2 T) are observed. This phenomenon is attributed to the mechanism shift from the low-field WAL dominated MR to WAL and fermiology co-dominated MR and finally to high-field fermiology dominated MR. All these signs indicate that Ta0.7Nb0.3Sb2 may be a topological semimetal candidate, and these magnetotransport properties may attract more theoretical and experimental exploration of the (Ta,Nb)Sb2 family.

Graphical abstract

Keywords

topological semimetal / magnetoresistance / weak antilocalization effect / spin−orbital coupling

Cite this article

Download citation ▾
Meng Xu, Lei Guo, Lei Chen, Ying Zhang, Shuang-Shuang Li, Weiyao Zhao, Xiaolin Wang, Shuai Dong, Ren-Kui Zheng. Emerging weak antilocalization effect in Ta0.7Nb0.3Sb2 semimetal single crystals. Front. Phys., 2023, 18(1): 13304 https://doi.org/10.1007/s11467-022-1198-6

References

[1]
M. Z. Hasan, C. L. Kane. Colloquium: Topological insulators. Rev. Mod. Phys., 2010, 82(4): 3045
CrossRef ADS Google scholar
[2]
M. He, H. Sun, Q. L. He. Topological insulator: Spintronics and quantum computations. Front. Phys., 2019, 14(4): 43401
CrossRef ADS Google scholar
[3]
B. Yan, C. Felser. Topological materials: Weyl semimetals. Annu. Rev. Condens. Matter Phys., 2017, 8(1): 337
CrossRef ADS Google scholar
[4]
B. Keimer, J. E. Moore. The physics of quantum materials. Nat. Phys., 2017, 13(11): 1045
CrossRef ADS Google scholar
[5]
Y. Tokura, K. Yasuda, A. Tsukazaki. Magnetic topological insulators. Nat. Rev. Phys., 2019, 1(2): 126
CrossRef ADS Google scholar
[6]
H. P. Sun, H. Z. Lu. Quantum transport in topological semimetals under magnetic fields (II). Front. Phys., 2019, 14(3): 33405
CrossRef ADS Google scholar
[7]
L. Guo, Y. K. Liu, G. Y. Gao, Y. Y. Huang, H. Gao, L. Chen, W. Zhao, W. Ren, S. Y. Li, X. G. Li, S. Dong, R. K. Zheng. Extreme magnetoresistance and SdH oscillation in compensated semimetals of NbSb2 single crystals. J. Appl. Phys., 2018, 123(15): 155103
CrossRef ADS Google scholar
[8]
Y. Zhou, C. Gu, X. Chen, Y. Zhou, C. An, Z. Yang. Structural and transport properties of the topological semimetal TaSb2 at high pressures. J. Solid State Chem., 2018, 265: 359
CrossRef ADS Google scholar
[9]
K. Wang, D. Graf, L. Li, L. Wang, C. Petrovic. Anisotropic giant magnetoresistance in NbSb2. Sci. Rep., 2015, 4(1): 7328
CrossRef ADS Google scholar
[10]
Y. Li, L. Li, J. Wang, T. Wang, X. Xu, C. Xi, C. Cao, J. Dai. Resistivity plateau and negative magnetoresistance in the topological semimetal TaSb2. Phys. Rev. B, 2016, 94(12): 121115(R)
CrossRef ADS Google scholar
[11]
A. Pariari, R. Singha, S. Roy, B. Satpati, P. Mandal. Anisotropic transverse magnetoresistance and Fermi surface in TaSb2. Sci. Rep., 2018, 8(1): 10527
CrossRef ADS Google scholar
[12]
L. Guo, M. Xu, L. Chen, X. Huang, X. Y. Shi, J. S. Ying, T. Zhang, W. Zhao, S. Dong, R. K. Zheng. Electronic transport properties of Nb1–xTaxSb2 single-crystal semimetals grown by a chemical vapor transport based high-throughput method. Cryst. Growth Des., 2021, 21(1): 653
CrossRef ADS Google scholar
[13]
D. Gresch, Q. Wu, G. W. Winkler, A. A. Soluyanov. Hidden Weyl points in centrosymmetric paramagnetic metals. New J. Phys., 2017, 19(3): 035001
CrossRef ADS Google scholar
[14]
C. Xu, J. Chen, G. X. Zhi, Y. Li, J. Dai, C. Cao, Electronic structures of transition metal dipnictides XPn2(X = Ta, Nb Pn = Sb). Phys. Rev. B, 2016, 93(19): 195106
CrossRef ADS Google scholar
[15]
I. Belopolski, D. S. Sanchez, Y. Ishida, X. C. Pan, P. Yu, S. Y. Xu, G. Q. Chang, T. R. Chang, H. Zheng, N. Alidoust, G. Bian, M. Neupane, S. M. Huang, C. C. Lee, Y. Song, H. Bu, G. Wang, S. Li, G. Eda, H. T. Jeng, T. Kondo, H. Lin, Z. Liu, F. Song, S. Shin, M. Z. Hasan. Discovery of a new type of topological Weyl fermion semimetal state in MoxW1−xTe2. Nat. Commun., 2016, 7(1): 13643
CrossRef ADS Google scholar
[16]
T. R. Chang, S. Y. Xu, G. Chang, C. C. Lee, S. M. Huang, B. K. Wang, G. Bian, H. Zheng, D. S. Sanchez, I. Belopolski, N. Alidoust, M. Neupane, A. Bansil, H. T. Jeng, H. Lin, M. Z. Hasan. Prediction of an arc-tunable Weyl Fermion metallic state in MoxW1−xTe2. Nat. Commun., 2016, 7(1): 10639
CrossRef ADS Google scholar
[17]
Y. Wang, E. Liu, H. Liu, Y. Pan, L. Zhang, J. Zeng, Y. Fu, M. Wang, K. Xu, Z. Huang, Z. Wang, H. Z. Lu, D. Xing, B. Wang, X. Wan, F. Miao. Gate-tunable negative longitudinal magnetoresistance in the predicted type-II Weyl semimetal WTe2. Nat. Commun., 2016, 7(1): 13142
CrossRef ADS Google scholar
[18]
H. Liu, S. Liu, Y. Yi, H. He, J. Wang. Shubnikov–de Haas oscillations in n and p type Bi2Se3 flakes. 2D Mater., 2015, 2(4): 045002
CrossRef ADS Google scholar
[19]
Y. Xing, Y. Sun, M. Singh, Y. F. Zhao, M. H. W. Chan, J. Wang. Electronic transport properties of topological insulator films and low dimensional superconductors. Front. Phys., 2013, 8(5): 491
CrossRef ADS Google scholar
[20]
A. Laitinen, M. Kumar, P. J. Hakonen. Weak antilocalization of composite fermions in graphene. Phys. Rev. B, 2018, 97(7): 075113
CrossRef ADS Google scholar
[21]
M. Jenderka, J. Barzola-Quiquia, Z. Zhang, H. Frenzel, M. Grundmann, M. Lorenz. Mott variable-range hopping and weak antilocalization effect in heteroepitaxial Na2IrO3 thin films. Phys. Rev. B, 2013, 88(4): 045111
CrossRef ADS Google scholar
[22]
M. Xu, T. W. Chen, J. M. Yan, L. Guo, H. Wang, G. Y. Gao, H. S. Luo, Y. Chai, R. K. Zheng. Tunable magnetoresistance and charge carrier density in Cr: In2O3/PbMg1/3Nb2/3O3−PbTiO3 ferroelectric field-effect devices. Phys. Rev. Appl., 2020, 13(6): 064006
CrossRef ADS Google scholar
[23]
Y. Gan, J. Liang, C. Cho, S. Li, Y. Guo, X. Ma, X. Wu, J. Wen, X. Du, M. He, C. Liu, S. A. Yang, K. Wang, L. Zhang. Bandgap opening in MoTe2 thin flakes induced by surface oxidation. Front. Phys., 2020, 15(3): 33602
CrossRef ADS Google scholar
[24]
K. Shrestha, M. Chou, D. Graf, H. D. Yang, B. Lorenz, C. W. Chu. Extremely large nonsaturating magnetoresistance and ultrahigh mobility due to topological surface states in the metallic Bi2Te3 topological insulator. Phys. Rev. B, 2017, 95(19): 195113
CrossRef ADS Google scholar
[25]
O. Chiatti, C. Riha, D. Lawrenz, M. Busch, S. Dusari, J. Sanchez-Barriga, A. Mogilatenko, L. V. Yashina, S. Valencia, A. A. Unal, O. Rader, S. F. Fischer. 2D layered transport properties from topological insulator Bi2Se3 single crystals and micro flakes. Sci. Rep., 2016, 6(1): 27483
CrossRef ADS Google scholar
[26]
C. Shekhar, C. E. ViolBarbosa, B. Yan, S. Ouardi, W. Schnelle, G. H. Fecher, C. Felser. Evidence of surface transport and weak antilocalization in a single crystal of the Bi2Te2Se topological insulator. Phys. Rev. B, 2014, 90(16): 165140
CrossRef ADS Google scholar
[27]
K. Shrestha, D. Graf, V. Marinova, B. Lorenz, C. W. Chu. Weak antilocalization effect due to topological surface states in Bi2Se2.1Te0.9. J. Appl. Phys., 2017, 122(14): 145901
CrossRef ADS Google scholar
[28]
W. Zhao, L. Chen, Z. Yue, Z. Li, D. Cortie, M. Fuhrer, X. Wang. Quantum oscillations of robust topological surface states up to 50 K in thick bulk-insulating topological insulator. npj Quantum Mater., 2019, 4(1): 56
CrossRef ADS Google scholar
[29]
G. Xu, W. Wang, X. Zhang, Y. Du, E. Liu, S. Wang, G. Wu, Z. Liu, X. X. Zhang. Weak antilocalization effect and noncentrosymmetric superconductivity in a topologically nontrivial semimetal LuPdBi. Sci. Rep., 2015, 4(1): 5709
CrossRef ADS Google scholar
[30]
O. Pavlosiuk, D. Kaczorowski, P. Wisniewski. Shubnikov−de Haas oscillations, weak antilocalization effect and large linear magnetoresistance in the putative topological superconductor LuPdBi. Sci. Rep., 2015, 5(1): 9158
CrossRef ADS Google scholar
[31]
Z. Hou, Y. Wang, E. Liu, H. Zhang, W. Wang, G. Wu. Large low-field positive magnetoresistance in nonmagnetic half-Heusler ScPtBi single crystal. Appl. Phys. Lett., 2015, 107(20): 202103
CrossRef ADS Google scholar
[32]
A. Laha, S. Malick, R. Singha, P. Mandal, P. Rambabu, V. Kanchana, Z. Hossain. Magnetotransport properties of the correlated topological nodal-line semimetal YbCdGe. Phys. Rev. B, 2019, 99(24): 241102(R)
CrossRef ADS Google scholar
[33]
A. Laha, P. Rambabu, V. Kanchana, L. Petit, Z. Szotek, Z. Hossain. Experimental and theoretical study of the correlated compound YbCdSn: Evidence for large magnetoresistance and mass enhancement. Phys. Rev. B, 2020, 102(23): 235135
CrossRef ADS Google scholar
[34]
S. Sasmal, R. Mondal, R. Kulkarni, A. Thamizhavel, B. Singh. Magnetotransport properties of noncentrosymmetric CaAgBi single crystal. J. Phys.: Condens. Matter, 2020, 32(33): 335701
CrossRef ADS Google scholar
[35]
J. Zhang, Z. Hou, C. Zhang, J. Chen, P. Li, Y. Wen, Q. Zhang, W. Wang, X. Zhang. Weak antilocalization effect and high-pressure transport properties of ScPdBi single crystal. Appl. Phys. Lett., 2019, 115(17): 172407
CrossRef ADS Google scholar
[36]
L. Deng, Z. H. Liu, X. Q. Ma, Z. P. Hou, E. K. Liu, X. K. Xi, W. H. Wang, G. H. Wu, X. X. Zhang. Observation of weak antilocalization effect in high-quality ScNiBi single crystal. J. Appl. Phys., 2017, 121(10): 105106
CrossRef ADS Google scholar
[37]
J. Chen, H. Li, B. Ding, Z. Hou, E. Liu, X. Xi, H. Zhang, G. Wu, W. Wang. Structural and magnetotransport properties of topological trivial LuNiBi single crystals. J. Alloys Compd., 2019, 784: 822
CrossRef ADS Google scholar
[38]
Z. Hou, Y. Wang, G. Xu, X. Zhang, E. Liu, W. Wang, Z. Liu, X. Xi, W. Wang, G. Wu. Transition from semiconducting to metallic-like conducting and weak antilocalization effect in single crystals of LuPtSb. Appl. Phys. Lett., 2015, 106(10): 102102
CrossRef ADS Google scholar
[39]
S. Hikami, A. I. Larkin, Y. Nagaoka. Spin−orbit interaction and magnetoresistance in the two dimensional random system. Prog. Theor. Phys., 1980, 63(2): 707
CrossRef ADS Google scholar
[40]
B. A. Assaf, T. Cardinal, P. Wei, F. Katmis, J. S. Moodera, D. Heiman. Linear magnetoresistance in topological insulator thin films: Quantum phase coherence effects at high temperatures. Appl. Phys. Lett., 2013, 102(1): 012102
CrossRef ADS Google scholar
[41]
A. Rehr, S. M. Kauzlarich. NbSb2. Acta Crystallogr. C, 1994, 50(8): 1177
CrossRef ADS Google scholar
[42]
R. Singha, A. K. Pariari, B. Satpati, P. Mandal. Large nonsaturating magnetoresistance and signature of nondegenerate Dirac nodes in ZrSiS. Proc. Natl. Acad. Sci. USA, 2017, 114(10): 2468
CrossRef ADS Google scholar
[43]
S. Sun, Q. Wang, P. J. Guo, K. Liu, H. Lei. Large magnetoresistance in LaBi: Origin of field-induced resistivity upturn and plateau in compensated semimetals. New J. Phys., 2016, 18(8): 082002
CrossRef ADS Google scholar
[44]
F. F. Tafti, Q. D. Gibson, S. K. Kushwaha, N. Haldolaarachchige, R. J. Cava. Resistivity plateau and extreme magnetoresistance in LaSb. Nat. Phys., 2016, 12(3): 272
CrossRef ADS Google scholar
[45]
L. Guo, T. W. Chen, C. Chen, L. Chen, Y. Zhang, G. Y. Gao, J. Yang, X. G. Li, W. Y. Zhao, S. Dong, R. K. Zheng. Electronic transport evidence for topological nodal-line semimetals of ZrGeSe single crystals. ACS Appl. Electron. Mater., 2019, 1(6): 869
CrossRef ADS Google scholar
[46]
J.M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids, Oxford University Press, 1960
[47]
Y. L. Wang, L. R. Thoutam, Z. L. Xiao, J. Hu, S. Das, Z. Q. Mao, J. Wei, R. Divan, A. Luican-Mayer, G. W. Crabtree, W. K. Kwok. Origin of the turn-on temperature behavior in WTe2. Phys. Rev. B, 2015, 92(18): 180402(R)
[48]
Y. Kopelevich, J. C. M. Pantoja, R. R. da Silva, S. Moehlecke. Universal magnetic-field-driven metal−insulator−metal transformations in graphite and bismuth. Phys. Rev. B, 2006, 73(16): 165128
CrossRef ADS Google scholar
[49]
C.M. Hurd, The Hall Effect in Metals and Alloys, Plenum, New York, 1972
[50]
H. T. He, G. Wang, T. Zhang, I. K. Sou, G. K. L. Wong, J. N. Wang, H. Z. Lu, S. Q. Shen, F. C. Zhang. Impurity effect on weak antilocalization in the topological insulator Bi2Te3. Phys. Rev. Lett., 2011, 106(16): 166805
CrossRef ADS Google scholar
[51]
Z. Yuan, H. Lu, Y. Liu, J. Wang, S. Jia. Large magnetoresistance in compensated semimetals TaAs2 and NbAs2. Phys. Rev. B, 2016, 93(18): 184405
CrossRef ADS Google scholar
[52]
A. Collaudin, B. Fauqué, Y. Fuseya, W. Kang, K. Behnia. Angle dependence of the orbital magnetoresistance in Bismuth. Phys. Rev. X, 2015, 5(2): 021022
CrossRef ADS Google scholar
[53]
Y. Luo, R. D. McDonald, P. F. S. Rosa, B. Scott, N. Wakeham, N. J. Ghimire, E. D. Bauer, J. D. Thompson, F. Ronning. Anomalous electronic structure and magnetoresistance in TaAs2. Sci. Rep., 2016, 6(1): 27294
CrossRef ADS Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11974155 and 12104128), the Natural Science Foundation of Jiangsu Province (Grant No. BK20210360), the Postdoctoral Research Program of Jiangsu Province (Grant No. 2021K581C), and the Fundamental Research Funds for the Central Universities (Grant No. B210201026). W. Z. and X. W. acknowledge the support from ARC Centre of Excellence in Future Low-Energy Electronic Technologies (No. CE170100039).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(7309 KB)

Accesses

Citations

Detail

Sections
Recommended

/