
Emerging weak antilocalization effect in Ta0.7Nb0.3Sb2 semimetal single crystals
Meng Xu, Lei Guo, Lei Chen, Ying Zhang, Shuang-Shuang Li, Weiyao Zhao, Xiaolin Wang, Shuai Dong, Ren-Kui Zheng
Front. Phys. ›› 2023, Vol. 18 ›› Issue (1) : 13304.
Emerging weak antilocalization effect in Ta0.7Nb0.3Sb2 semimetal single crystals
Weak antilocalization (WAL) effect is commonly observed in low-dimensional systems, three-dimensional (3D) topological insulators and semimetals. Here, we report the growth of high-quality Ta0.7Nb0.3Sb2 single crystals via the chemical vapor transport (CVT). Clear sign of the WAL effect is observed below 50 K, probably due to the strong spin−orbital coupling in 3D bulk. In addition, it is worth noting that a relatively large MR of 120% appears under 1 T magnetic field at T = 2 K. Hall measurements and two-band model fitting results reveal high carrier mobility (>1000 cm2·V−1·s−1 in 2–300 K region), and off-compensation electron/hole ratio of ~8:1. Due to the angular dependence of the WAL effect and the fermiology of the Ta0.7Nb0.3Sb2 crystals, interesting magnetic-field-induced changes of the symmetry of the anisotropic magnetoresistance (MR) from two-fold (≤ 0.6 T) to four-fold (0.8–1.5 T) and finally to two-fold (≥ 2 T) are observed. This phenomenon is attributed to the mechanism shift from the low-field WAL dominated MR to WAL and fermiology co-dominated MR and finally to high-field fermiology dominated MR. All these signs indicate that Ta0.7Nb0.3Sb2 may be a topological semimetal candidate, and these magnetotransport properties may attract more theoretical and experimental exploration of the (Ta,Nb)Sb2 family.
topological semimetal / magnetoresistance / weak antilocalization effect / spin−orbital coupling
Fig.1 (a) XRD pattern of the Ta0.7Nb0.3Sb2 single crystal. Inset: An optical image of the crystal. (b) XRD rocking curve taken on the ( |
Fig.2 (a) Zero-field resistivity (cyan points) and fitting results (red curve) of the Ta0.7Nb0.3Sb2 single crystal. Inset: schematic geometry of the directions of the magnetic field and the electric current. (b) Temperature dependence of the resistivity under different magnetic fields, as measured using the schematic geometry shown in the inset of (a). The grey shadow areas show the resistance plateau region and the pink dash arrow indicates the resistance minimum temperature (Tm). (c) ∂ρxx/∂T plotted as a function of temperature, taking B = 3 T as an example. Insert: Tm plotted as a function of the magnetic field B. |
Fig.3 (a) Hall resistivity as a function of the magnetic field at different fixed temperatures for the Ta0.7Nb0.3Sb2 single crystal. (b) Double-band model fitting of the Hall resistivity versus magnetic field curves. (c) Temperature dependence of the carrier’s density and mobility, obtained via the double-band fitting. |
Fig.4 (a) MR plotted as a function of the magnetic field B at different fixed temperatures for the Ta0.7Nb0.3Sb2 single crystal. (b) A zoom-in MR measurements below 50 K ranging from −3 T to 3 T. (c) MR plotted as a function of the magnetic field at various angles θ at T = 2 K. Insets: Schematic diagrams of the directions of the magnetic field, electric current and crystallographic orientation during different types of MR measurements. |
Fig.5 (a) Magnetoconductance |
[1] |
M. Z. Hasan, C. L. Kane. Colloquium: Topological insulators. Rev. Mod. Phys., 2010, 82(4): 3045
CrossRef
ADS
Google scholar
|
[2] |
M. He, H. Sun, Q. L. He. Topological insulator: Spintronics and quantum computations. Front. Phys., 2019, 14(4): 43401
CrossRef
ADS
Google scholar
|
[3] |
B. Yan, C. Felser. Topological materials: Weyl semimetals. Annu. Rev. Condens. Matter Phys., 2017, 8(1): 337
CrossRef
ADS
Google scholar
|
[4] |
B. Keimer, J. E. Moore. The physics of quantum materials. Nat. Phys., 2017, 13(11): 1045
CrossRef
ADS
Google scholar
|
[5] |
Y. Tokura, K. Yasuda, A. Tsukazaki. Magnetic topological insulators. Nat. Rev. Phys., 2019, 1(2): 126
CrossRef
ADS
Google scholar
|
[6] |
H. P. Sun, H. Z. Lu. Quantum transport in topological semimetals under magnetic fields (II). Front. Phys., 2019, 14(3): 33405
CrossRef
ADS
Google scholar
|
[7] |
L. Guo, Y. K. Liu, G. Y. Gao, Y. Y. Huang, H. Gao, L. Chen, W. Zhao, W. Ren, S. Y. Li, X. G. Li, S. Dong, R. K. Zheng. Extreme magnetoresistance and SdH oscillation in compensated semimetals of NbSb2 single crystals. J. Appl. Phys., 2018, 123(15): 155103
CrossRef
ADS
Google scholar
|
[8] |
Y. Zhou, C. Gu, X. Chen, Y. Zhou, C. An, Z. Yang. Structural and transport properties of the topological semimetal TaSb2 at high pressures. J. Solid State Chem., 2018, 265: 359
CrossRef
ADS
Google scholar
|
[9] |
K. Wang, D. Graf, L. Li, L. Wang, C. Petrovic. Anisotropic giant magnetoresistance in NbSb2. Sci. Rep., 2015, 4(1): 7328
CrossRef
ADS
Google scholar
|
[10] |
Y. Li, L. Li, J. Wang, T. Wang, X. Xu, C. Xi, C. Cao, J. Dai. Resistivity plateau and negative magnetoresistance in the topological semimetal TaSb2. Phys. Rev. B, 2016, 94(12): 121115(R)
CrossRef
ADS
Google scholar
|
[11] |
A. Pariari, R. Singha, S. Roy, B. Satpati, P. Mandal. Anisotropic transverse magnetoresistance and Fermi surface in TaSb2. Sci. Rep., 2018, 8(1): 10527
CrossRef
ADS
Google scholar
|
[12] |
L. Guo, M. Xu, L. Chen, X. Huang, X. Y. Shi, J. S. Ying, T. Zhang, W. Zhao, S. Dong, R. K. Zheng. Electronic transport properties of Nb1–xTaxSb2 single-crystal semimetals grown by a chemical vapor transport based high-throughput method. Cryst. Growth Des., 2021, 21(1): 653
CrossRef
ADS
Google scholar
|
[13] |
D. Gresch, Q. Wu, G. W. Winkler, A. A. Soluyanov. Hidden Weyl points in centrosymmetric paramagnetic metals. New J. Phys., 2017, 19(3): 035001
CrossRef
ADS
Google scholar
|
[14] |
C. Xu, J. Chen, G. X. Zhi, Y. Li, J. Dai, C. Cao, Electronic structures of transition metal dipnictides XPn2(X = Ta, Nb Pn = Sb). Phys. Rev. B, 2016, 93(19): 195106
CrossRef
ADS
Google scholar
|
[15] |
I. Belopolski, D. S. Sanchez, Y. Ishida, X. C. Pan, P. Yu, S. Y. Xu, G. Q. Chang, T. R. Chang, H. Zheng, N. Alidoust, G. Bian, M. Neupane, S. M. Huang, C. C. Lee, Y. Song, H. Bu, G. Wang, S. Li, G. Eda, H. T. Jeng, T. Kondo, H. Lin, Z. Liu, F. Song, S. Shin, M. Z. Hasan. Discovery of a new type of topological Weyl fermion semimetal state in MoxW1−xTe2. Nat. Commun., 2016, 7(1): 13643
CrossRef
ADS
Google scholar
|
[16] |
T. R. Chang, S. Y. Xu, G. Chang, C. C. Lee, S. M. Huang, B. K. Wang, G. Bian, H. Zheng, D. S. Sanchez, I. Belopolski, N. Alidoust, M. Neupane, A. Bansil, H. T. Jeng, H. Lin, M. Z. Hasan. Prediction of an arc-tunable Weyl Fermion metallic state in MoxW1−xTe2. Nat. Commun., 2016, 7(1): 10639
CrossRef
ADS
Google scholar
|
[17] |
Y. Wang, E. Liu, H. Liu, Y. Pan, L. Zhang, J. Zeng, Y. Fu, M. Wang, K. Xu, Z. Huang, Z. Wang, H. Z. Lu, D. Xing, B. Wang, X. Wan, F. Miao. Gate-tunable negative longitudinal magnetoresistance in the predicted type-II Weyl semimetal WTe2. Nat. Commun., 2016, 7(1): 13142
CrossRef
ADS
Google scholar
|
[18] |
H. Liu, S. Liu, Y. Yi, H. He, J. Wang. Shubnikov–de Haas oscillations in n and p type Bi2Se3 flakes. 2D Mater., 2015, 2(4): 045002
CrossRef
ADS
Google scholar
|
[19] |
Y. Xing, Y. Sun, M. Singh, Y. F. Zhao, M. H. W. Chan, J. Wang. Electronic transport properties of topological insulator films and low dimensional superconductors. Front. Phys., 2013, 8(5): 491
CrossRef
ADS
Google scholar
|
[20] |
A. Laitinen, M. Kumar, P. J. Hakonen. Weak antilocalization of composite fermions in graphene. Phys. Rev. B, 2018, 97(7): 075113
CrossRef
ADS
Google scholar
|
[21] |
M. Jenderka, J. Barzola-Quiquia, Z. Zhang, H. Frenzel, M. Grundmann, M. Lorenz. Mott variable-range hopping and weak antilocalization effect in heteroepitaxial Na2IrO3 thin films. Phys. Rev. B, 2013, 88(4): 045111
CrossRef
ADS
Google scholar
|
[22] |
M. Xu, T. W. Chen, J. M. Yan, L. Guo, H. Wang, G. Y. Gao, H. S. Luo, Y. Chai, R. K. Zheng. Tunable magnetoresistance and charge carrier density in Cr: In2O3/PbMg1/3Nb2/3O3−PbTiO3 ferroelectric field-effect devices. Phys. Rev. Appl., 2020, 13(6): 064006
CrossRef
ADS
Google scholar
|
[23] |
Y. Gan, J. Liang, C. Cho, S. Li, Y. Guo, X. Ma, X. Wu, J. Wen, X. Du, M. He, C. Liu, S. A. Yang, K. Wang, L. Zhang. Bandgap opening in MoTe2 thin flakes induced by surface oxidation. Front. Phys., 2020, 15(3): 33602
CrossRef
ADS
Google scholar
|
[24] |
K. Shrestha, M. Chou, D. Graf, H. D. Yang, B. Lorenz, C. W. Chu. Extremely large nonsaturating magnetoresistance and ultrahigh mobility due to topological surface states in the metallic Bi2Te3 topological insulator. Phys. Rev. B, 2017, 95(19): 195113
CrossRef
ADS
Google scholar
|
[25] |
O. Chiatti, C. Riha, D. Lawrenz, M. Busch, S. Dusari, J. Sanchez-Barriga, A. Mogilatenko, L. V. Yashina, S. Valencia, A. A. Unal, O. Rader, S. F. Fischer. 2D layered transport properties from topological insulator Bi2Se3 single crystals and micro flakes. Sci. Rep., 2016, 6(1): 27483
CrossRef
ADS
Google scholar
|
[26] |
C. Shekhar, C. E. ViolBarbosa, B. Yan, S. Ouardi, W. Schnelle, G. H. Fecher, C. Felser. Evidence of surface transport and weak antilocalization in a single crystal of the Bi2Te2Se topological insulator. Phys. Rev. B, 2014, 90(16): 165140
CrossRef
ADS
Google scholar
|
[27] |
K. Shrestha, D. Graf, V. Marinova, B. Lorenz, C. W. Chu. Weak antilocalization effect due to topological surface states in Bi2Se2.1Te0.9. J. Appl. Phys., 2017, 122(14): 145901
CrossRef
ADS
Google scholar
|
[28] |
W. Zhao, L. Chen, Z. Yue, Z. Li, D. Cortie, M. Fuhrer, X. Wang. Quantum oscillations of robust topological surface states up to 50 K in thick bulk-insulating topological insulator. npj Quantum Mater., 2019, 4(1): 56
CrossRef
ADS
Google scholar
|
[29] |
G. Xu, W. Wang, X. Zhang, Y. Du, E. Liu, S. Wang, G. Wu, Z. Liu, X. X. Zhang. Weak antilocalization effect and noncentrosymmetric superconductivity in a topologically nontrivial semimetal LuPdBi. Sci. Rep., 2015, 4(1): 5709
CrossRef
ADS
Google scholar
|
[30] |
O. Pavlosiuk, D. Kaczorowski, P. Wisniewski. Shubnikov−de Haas oscillations, weak antilocalization effect and large linear magnetoresistance in the putative topological superconductor LuPdBi. Sci. Rep., 2015, 5(1): 9158
CrossRef
ADS
Google scholar
|
[31] |
Z. Hou, Y. Wang, E. Liu, H. Zhang, W. Wang, G. Wu. Large low-field positive magnetoresistance in nonmagnetic half-Heusler ScPtBi single crystal. Appl. Phys. Lett., 2015, 107(20): 202103
CrossRef
ADS
Google scholar
|
[32] |
A. Laha, S. Malick, R. Singha, P. Mandal, P. Rambabu, V. Kanchana, Z. Hossain. Magnetotransport properties of the correlated topological nodal-line semimetal YbCdGe. Phys. Rev. B, 2019, 99(24): 241102(R)
CrossRef
ADS
Google scholar
|
[33] |
A. Laha, P. Rambabu, V. Kanchana, L. Petit, Z. Szotek, Z. Hossain. Experimental and theoretical study of the correlated compound YbCdSn: Evidence for large magnetoresistance and mass enhancement. Phys. Rev. B, 2020, 102(23): 235135
CrossRef
ADS
Google scholar
|
[34] |
S. Sasmal, R. Mondal, R. Kulkarni, A. Thamizhavel, B. Singh. Magnetotransport properties of noncentrosymmetric CaAgBi single crystal. J. Phys.: Condens. Matter, 2020, 32(33): 335701
CrossRef
ADS
Google scholar
|
[35] |
J. Zhang, Z. Hou, C. Zhang, J. Chen, P. Li, Y. Wen, Q. Zhang, W. Wang, X. Zhang. Weak antilocalization effect and high-pressure transport properties of ScPdBi single crystal. Appl. Phys. Lett., 2019, 115(17): 172407
CrossRef
ADS
Google scholar
|
[36] |
L. Deng, Z. H. Liu, X. Q. Ma, Z. P. Hou, E. K. Liu, X. K. Xi, W. H. Wang, G. H. Wu, X. X. Zhang. Observation of weak antilocalization effect in high-quality ScNiBi single crystal. J. Appl. Phys., 2017, 121(10): 105106
CrossRef
ADS
Google scholar
|
[37] |
J. Chen, H. Li, B. Ding, Z. Hou, E. Liu, X. Xi, H. Zhang, G. Wu, W. Wang. Structural and magnetotransport properties of topological trivial LuNiBi single crystals. J. Alloys Compd., 2019, 784: 822
CrossRef
ADS
Google scholar
|
[38] |
Z. Hou, Y. Wang, G. Xu, X. Zhang, E. Liu, W. Wang, Z. Liu, X. Xi, W. Wang, G. Wu. Transition from semiconducting to metallic-like conducting and weak antilocalization effect in single crystals of LuPtSb. Appl. Phys. Lett., 2015, 106(10): 102102
CrossRef
ADS
Google scholar
|
[39] |
S. Hikami, A. I. Larkin, Y. Nagaoka. Spin−orbit interaction and magnetoresistance in the two dimensional random system. Prog. Theor. Phys., 1980, 63(2): 707
CrossRef
ADS
Google scholar
|
[40] |
B. A. Assaf, T. Cardinal, P. Wei, F. Katmis, J. S. Moodera, D. Heiman. Linear magnetoresistance in topological insulator thin films: Quantum phase coherence effects at high temperatures. Appl. Phys. Lett., 2013, 102(1): 012102
CrossRef
ADS
Google scholar
|
[41] |
A. Rehr, S. M. Kauzlarich. NbSb2. Acta Crystallogr. C, 1994, 50(8): 1177
CrossRef
ADS
Google scholar
|
[42] |
R. Singha, A. K. Pariari, B. Satpati, P. Mandal. Large nonsaturating magnetoresistance and signature of nondegenerate Dirac nodes in ZrSiS. Proc. Natl. Acad. Sci. USA, 2017, 114(10): 2468
CrossRef
ADS
Google scholar
|
[43] |
S. Sun, Q. Wang, P. J. Guo, K. Liu, H. Lei. Large magnetoresistance in LaBi: Origin of field-induced resistivity upturn and plateau in compensated semimetals. New J. Phys., 2016, 18(8): 082002
CrossRef
ADS
Google scholar
|
[44] |
F. F. Tafti, Q. D. Gibson, S. K. Kushwaha, N. Haldolaarachchige, R. J. Cava. Resistivity plateau and extreme magnetoresistance in LaSb. Nat. Phys., 2016, 12(3): 272
CrossRef
ADS
Google scholar
|
[45] |
L. Guo, T. W. Chen, C. Chen, L. Chen, Y. Zhang, G. Y. Gao, J. Yang, X. G. Li, W. Y. Zhao, S. Dong, R. K. Zheng. Electronic transport evidence for topological nodal-line semimetals of ZrGeSe single crystals. ACS Appl. Electron. Mater., 2019, 1(6): 869
CrossRef
ADS
Google scholar
|
[46] |
J.M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids, Oxford University Press, 1960
|
[47] |
Y. L. Wang, L. R. Thoutam, Z. L. Xiao, J. Hu, S. Das, Z. Q. Mao, J. Wei, R. Divan, A. Luican-Mayer, G. W. Crabtree, W. K. Kwok. Origin of the turn-on temperature behavior in WTe2. Phys. Rev. B, 2015, 92(18): 180402(R)
|
[48] |
Y. Kopelevich, J. C. M. Pantoja, R. R. da Silva, S. Moehlecke. Universal magnetic-field-driven metal−insulator−metal transformations in graphite and bismuth. Phys. Rev. B, 2006, 73(16): 165128
CrossRef
ADS
Google scholar
|
[49] |
C.M. Hurd, The Hall Effect in Metals and Alloys, Plenum, New York, 1972
|
[50] |
H. T. He, G. Wang, T. Zhang, I. K. Sou, G. K. L. Wong, J. N. Wang, H. Z. Lu, S. Q. Shen, F. C. Zhang. Impurity effect on weak antilocalization in the topological insulator Bi2Te3. Phys. Rev. Lett., 2011, 106(16): 166805
CrossRef
ADS
Google scholar
|
[51] |
Z. Yuan, H. Lu, Y. Liu, J. Wang, S. Jia. Large magnetoresistance in compensated semimetals TaAs2 and NbAs2. Phys. Rev. B, 2016, 93(18): 184405
CrossRef
ADS
Google scholar
|
[52] |
A. Collaudin, B. Fauqué, Y. Fuseya, W. Kang, K. Behnia. Angle dependence of the orbital magnetoresistance in Bismuth. Phys. Rev. X, 2015, 5(2): 021022
CrossRef
ADS
Google scholar
|
[53] |
Y. Luo, R. D. McDonald, P. F. S. Rosa, B. Scott, N. Wakeham, N. J. Ghimire, E. D. Bauer, J. D. Thompson, F. Ronning. Anomalous electronic structure and magnetoresistance in TaAs2. Sci. Rep., 2016, 6(1): 27294
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |