Field-free switching through bulk spin−orbit torque inL10-FePt films deposited on vicinal substrates

Yongming Luo, Yanshan Zhuang, Zhongshu Feng, Haodong Fan, Birui Wu, Menghao Jin, Ziji Shao, Hai Li, Ru Bai, Yizheng Wu, Ningning Wang, Tiejun Zhou

PDF(10231 KB)
PDF(10231 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 53511. DOI: 10.1007/s11467-022-1197-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Field-free switching through bulk spin−orbit torque inL10-FePt films deposited on vicinal substrates

Author information +
History +

Abstract

L10-FePt distinguishes itself for its ultrahigh perpendicular magnetic anisotropy (PMA), enabling thermally stabile memory cells to scale down to 3 nm. The recently discovered “bulk” spin−orbit torques inL10-FePt provide an efficient and scalable way to manipulate the L10-FePt magnetization. However, the existence of an external field during the switching limits its practical application, and therefore field-free switching of L10-FePt is highly demanded. In this manuscript, by growing the L10-FePt film on vicinal MgO (001) substrates, we realize the field-free switching of L10-FePt. This method is different from previously established strategies as it does not need to add other functional layers or create asymmetry in the film structure. The dependence on the vicinal angle, film thickness, and growth temperature demonstrates a wide operation window for the field-free switching of L10-FePt. We confirm the physical origin of the field-free switching is due to the tilted anisotropy of L10-FePt induced by the vicinal surface. We also quantitatively characterize the spin-orbit torques in the L10-FePt films. Our results extend beyond the established strategies to realize field-free switching, and potentially could be applied to mass production.

Graphical abstract

Keywords

spin−orbit torque / vicinal substrates / field-free switching

Cite this article

Download citation ▾
Yongming Luo, Yanshan Zhuang, Zhongshu Feng, Haodong Fan, Birui Wu, Menghao Jin, Ziji Shao, Hai Li, Ru Bai, Yizheng Wu, Ningning Wang, Tiejun Zhou. Field-free switching through bulk spin−orbit torque inL10-FePt films deposited on vicinal substrates. Front. Phys., 2022, 17(5): 53511 https://doi.org/10.1007/s11467-022-1197-7

References

[1]
S.Sun, C.B. Murray, D.Weller, L.Folks, A.Moser. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science , 2000, 287( 5460): 1989
CrossRef ADS Google scholar
[2]
M.Tang, K.Shen, S.Xu, H.Yang, S.Hu, W.Lü, C.Li, M.Li, Z.Yuan, S.J. Pennycook, K.Xia, A.Manchon, S.Zhou, X.Qiu. Bulk spin torque-driven perpendicular magnetization switching in L10 FePt single layer. Adv. Mater. , 2020, 32( 31): 2002607
CrossRef ADS Google scholar
[3]
L.Liu, J.Yu, R.Gonzalez-Hernandez, C.Li, J.Deng, W.Lin, C.Zhou, T.Zhou, J.Zhou, H.Wang, R.Guo, H.Y. Yoong, G.M. Chow, X.Han, B.Dupé, J.Železný, J.Sinova, J.Chen. Electrical switching of perpendicular magnetization in a single ferromagnetic layer. Phys. Rev. B , 2020, 101( 22): 220402
CrossRef ADS Google scholar
[4]
L.Zhu, D.C. Ralph, R.A. Buhrman. Unveiling the mechanism of bulk spin−orbit torques within chemically disordered FexPt1−x single layers. Adv. Funct. Mater. , 2021, 31( 36): 2103898
CrossRef ADS Google scholar
[5]
S.Q. Zheng, K.K. Meng, Q.B. Liu, J.K. Chen, J.Miao, X.G. Xu, Y.Jiang. Disorder dependent spin-orbit torques in L10 FePt single layer. Appl. Phys. Lett. , 2020, 117( 24): 242403
CrossRef ADS Google scholar
[6]
I.Mihai Miron, G.Gaudin, S.Auffret, B.Rodmacq, A.Schuhl, S.Pizzini, J.Vogel, P.Gambardella. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. , 2010, 9( 3): 230
CrossRef ADS Google scholar
[7]
L.Liu, O.J. Lee, T.J. Gudmundsen, D.C. Ralph, R.A. Buhrman. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. , 2012, 109( 9): 096602
CrossRef ADS Google scholar
[8]
L.Liu, C.F. Pai, Y.Li, H.W. Tseng, D.C. Ralph, R.A. Buhrman. Spin-torque switching with the giant spin Hall effect of tantalum. Science , 2012, 336( 6081): 555
CrossRef ADS Google scholar
[9]
Q.Shao, P.Li, L.Liu, H.Yang, S.Fukami, A.Razavi, H.Wu, K.Wang, F.Freimuth, Y.Mokrousov, M.D. Stiles, S.Emori, A.Hoffmann, J.Akerman, K.Roy, J.P. Wang, S.H. Yang, K.Garello, W.Zhang. Roadmap of spin−orbit torques. IEEE Trans. Magn. , 2021, 57( 7): 1
CrossRef ADS Google scholar
[10]
W.Kong, C.Wan, X.Wang, B.Tao, L.Huang, C.Fang, C.Guo, Y.Guang, M.Irfan, X.Han. Spin-orbit torque switching in a T-type magnetic configuration with current orthogonal to easy axes. Nat. Commun. , 2019, 10( 1): 233
CrossRef ADS Google scholar
[11]
S.Fukami, C.Zhang, S.DuttaGupta, A.Kurenkov, H.Ohno. Magnetization switching by spin−orbit torque in an antiferromagnet−ferromagnet bilayer system. Nat. Mater. , 2016, 15( 5): 535
CrossRef ADS Google scholar
[12]
K.Eason, S.G. Tan, M.B. A. Jalil, J.Y. Khoo. Bistable perpendicular switching with in-plane spin polarization and without external fields. Phys. Lett. A , 2013, 377( 37): 2403
CrossRef ADS Google scholar
[13]
L.You, O.Lee, D.Bhowmik, D.Labanowski, J.Hong, J.Bokor, S.Salahuddin. Switching of perpendicularly polarized nanomagnets with spin−orbit torque without an external magnetic field by engineering a tilted anisotropy. Proc. Natl. Acad. Sci. USA , 2015, 112( 33): 10310
CrossRef ADS Google scholar
[14]
L.Liu, Q.Qin, W.Lin, C.Li, Q.Xie, S.He, X.Shu, C.Zhou, Z.Lim, J.Yu, W.Lu, M.Li, X.Yan, S.J. Pennycook, J.Chen. Current-induced magnetization switching in all-oxide heterostructures. Nat. Nanotechnol. , 2019, 14( 10): 939
CrossRef ADS Google scholar
[15]
F.Leroy, P.Mueller, J.J. Metois, O.Pierre-Louis. Vicinal silicon surfaces: From step density wave to faceting. Phys. Rev. B , 2007, 76( 4): 045402
CrossRef ADS Google scholar
[16]
C.Tegenkamp. Vicinal surfaces for functional nanostructures. J. Phys.: Condens. Matter , 2009, 21( 1): 013002
CrossRef ADS Google scholar
[17]
S.Ma, A.Tan, J.X. Deng, J.Li, Z.D. Zhang, C.Hwang, Z.Q. Qiu. Tailoring the magnetic anisotropy of Py/Ni bilayer films using well aligned atomic steps on Cu(001). Sci. Rep. , 2015, 5( 1): 1
CrossRef ADS Google scholar
[18]
R.K. Kawakami, E.J. Escorcia-Aparicio, Z.Q. Qiu. Symmetry-induced magnetic anisotropy in Fe films grown on stepped Ag(001). Phys. Rev. Lett. , 1996, 77( 12): 2570
CrossRef ADS Google scholar
[19]
S.Dhesi, H.Dürr, G.Van der Laan. Canted spin structures in Ni films on stepped Cu(001). Phys. Rev. B , 1999, 59( 13): 8408
CrossRef ADS Google scholar
[20]
J.Choi, J.Wu, Y.Z. Wu, C.Won, A.Scholl, A.Doran, T.Owens, Z.Q. Qiu. Effect of atomic steps on the interfacial interaction of FeMn/Co films grown on vicinal Cu(001). Phys. Rev. B , 2007, 76( 5): 054407
CrossRef ADS Google scholar
[21]
J.Zhu, Q.Li, J.X. Li, Z.Ding, J.H. Liang, X.Xiao, Y.M. Luo, C.Y. Hua, H.J. Lin, T.W. Pi, Z.Hu, C.Won, Y.Z. Wu. Antiferromagnetic spin reorientation transition in epitaxial NiO/CoO/MgO(001) systems. Phys. Rev. B , 2014, 90( 5): 054403
CrossRef ADS Google scholar
[22]
P.He, L.Ma, Z.Shi, G.Guo, J.G. Zheng, Y.Xin, S.Zhou. Chemical composition tuning of the anomalous Hall effect in isoelectronic L10 FePd1−xPtx alloy films. Phys. Rev. Lett. , 2012, 109( 6): 066402
CrossRef ADS Google scholar
[23]
S.Okamoto, N.Kikuchi, O.Kitakami, T.Miyazaki, Y.Shimada, K.Fukamichi. Chemical-order-dependent magnetic anisotropy and exchange stiffness constant of FePt (001) epitaxial films. Phys. Rev. B , 2002, 66( 2): 024413
CrossRef ADS Google scholar
[24]
Z.Zhao, A.K. Smith, M.Jamali, J.P. Wang. External-field-free spin Hall switching of perpendicular magnetic nanopillar with a dipole-coupled composite structure. Adv. Electron. Mater. , 2020, 6( 5): 1901368
CrossRef ADS Google scholar
[25]
A.van den Brink, G.Vermijs, A.Solignac, J.Koo, J.T. Kohlhepp, H.J. M. Swagten, B.Koopmans. Fieldfree magnetization reversal by spin-Hall effect and exchange bias. Nat. Commun. , 2016, 7( 1): 1
CrossRef ADS Google scholar
[26]
M.Hayashi, J.Kim, M.Yamanouchi, H.Ohno. Quantitative characterization of the spin-orbit torque using harmonic Hall voltage measurements. Phys. Rev. B , 2014, 89( 14): 144425
CrossRef ADS Google scholar
[27]
K.Garello, I.M. Miron, C.O. Avci, F.Freimuth, Y.Mokrousov, S.Blügel, S.Auffret, O.Boulle, G.Gaudin, P.Gambardella. Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures. Nat. Nanotechnol. , 2013, 8( 8): 587
CrossRef ADS Google scholar
[28]
C.O. Avci, A.Quindeau, C.F. Pai, M.Mann, L.Caretta, A.S. Tang, M.C. Onbasli, C.A. Ross, G.S. Beach. Current-induced switching in a magnetic insulator. Nat. Mater. , 2017, 16( 3): 309
CrossRef ADS Google scholar
[29]
L.Zhu, D.C. Ralph, R.A. Buhrman. Maximizing spinorbit torque generated by the spin Hall effect of Pt. Appl. Phys. Rev. , 2021, 8( 3): 031308
CrossRef ADS Google scholar
[30]
M.Filianina, J.P. Hanke, K.Lee, D.S. Han, S.Jaiswal, A.Rajan, G.Jakob, Y.Mokrousov, M.Kläui. Electric-field control of spin-orbit torques in perpendicularly magnetized W/CoFeB/MgO films. Phys. Rev. Lett. , 2020, 124( 21): 217701
CrossRef ADS Google scholar
[31]
X.G. Ye, P.F. Zhu, W.Z. Xu, N.Shang, K.Liu, Z.M. Liao. Orbit-transfer torque driven field-free switching of perpendicular magnetization. Chin. Phys. Lett. , 2022, 39( 3): 037303
CrossRef ADS Google scholar
[32]
D.Lee, D.Go, H.J. Park, W.Jeong, H.W. Ko, D.Yun, D.Jo, S.Lee, G.Go, J.H. Oh, K.J. Kim, B.G. Park, B.C. Min, H.C. Koo, H.W. Lee, O.J. Lee, K.J. Lee. Orbital torque in magnetic bilayers. Nat. Commun. , 2021, 12( 1): 6710
CrossRef ADS Google scholar
[33]
P.Perna, C.Rodrigo, E.Jiménez, N.Mikuszeit, F.J. Teran, L.Méchin, J.Camarero, R.Miranda. Magnetization reversal in half metallic La0.7Sr0.3MnO3 films grown onto vicinal surfaces. J. Appl. Phys. , 2011, 109 : 07B107
CrossRef ADS Google scholar
[34]
Y.Tao, C.Sun, W.Li, L.Yang, F.Jin, Y.Hui, H.Li, X.Wang, K.Dong. Field-free spin–orbit torque switching in L10-FePt single layer with tilted anisotropy. Appl. Phys. Lett. , 2022, 120( 10): 102405
CrossRef ADS Google scholar

Electronic supplementary material

The supplementary material is available in the online version of this article at https://doi.org/10.1007/s11467-022-1197-7 and https://journal.hep.com.cn/fop/EN/pdf/10.1007/s11467-022-1197-7 and is accessible for authorized users.

Acknowledgements

We thank Drs. Xuefeng Zhang, Jian Zhang, Lianze Ji, Shuai Huang for their help of lithography, XRD characterization and helpful discussion. This work was supported by the “Pioneer” and “Leading Goose” RD Program of Zhejiang Province (Grant No. 2022C01053), the National Natural Science Foundation of China (Grant No. 12274108, 11874135 and 12104119), the Key Research and Development Program of Zhejiang Province (Grant No. 2021C01039), and the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LQ20F040005 and LQ21A050001).

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(10231 KB)

Accesses

Citations

Detail

Sections
Recommended

/