Field-free switching through bulk spin−orbit torque inL10-FePt films deposited on vicinal substrates

Yongming Luo , Yanshan Zhuang , Zhongshu Feng , Haodong Fan , Birui Wu , Menghao Jin , Ziji Shao , Hai Li , Ru Bai , Yizheng Wu , Ningning Wang , Tiejun Zhou

Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 53511

PDF (10231KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 53511 DOI: 10.1007/s11467-022-1197-7
RESEARCH ARTICLE

Field-free switching through bulk spin−orbit torque inL10-FePt films deposited on vicinal substrates

Author information +
History +
PDF (10231KB)

Abstract

L10-FePt distinguishes itself for its ultrahigh perpendicular magnetic anisotropy (PMA), enabling thermally stabile memory cells to scale down to 3 nm. The recently discovered “bulk” spin−orbit torques inL10-FePt provide an efficient and scalable way to manipulate the L10-FePt magnetization. However, the existence of an external field during the switching limits its practical application, and therefore field-free switching of L10-FePt is highly demanded. In this manuscript, by growing the L10-FePt film on vicinal MgO (001) substrates, we realize the field-free switching of L10-FePt. This method is different from previously established strategies as it does not need to add other functional layers or create asymmetry in the film structure. The dependence on the vicinal angle, film thickness, and growth temperature demonstrates a wide operation window for the field-free switching of L10-FePt. We confirm the physical origin of the field-free switching is due to the tilted anisotropy of L10-FePt induced by the vicinal surface. We also quantitatively characterize the spin-orbit torques in the L10-FePt films. Our results extend beyond the established strategies to realize field-free switching, and potentially could be applied to mass production.

Graphical abstract

Keywords

spin−orbit torque / vicinal substrates / field-free switching

Cite this article

Download citation ▾
Yongming Luo, Yanshan Zhuang, Zhongshu Feng, Haodong Fan, Birui Wu, Menghao Jin, Ziji Shao, Hai Li, Ru Bai, Yizheng Wu, Ningning Wang, Tiejun Zhou. Field-free switching through bulk spin−orbit torque inL10-FePt films deposited on vicinal substrates. Front. Phys., 2022, 17(5): 53511 DOI:10.1007/s11467-022-1197-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S.Sun, C.B. Murray, D.Weller, L.Folks, A.Moser. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science , 2000, 287( 5460): 1989

[2]

M.Tang, K.Shen, S.Xu, H.Yang, S.Hu, W., C.Li, M.Li, Z.Yuan, S.J. Pennycook, K.Xia, A.Manchon, S.Zhou, X.Qiu. Bulk spin torque-driven perpendicular magnetization switching in L10 FePt single layer. Adv. Mater. , 2020, 32( 31): 2002607

[3]

L.Liu, J.Yu, R.Gonzalez-Hernandez, C.Li, J.Deng, W.Lin, C.Zhou, T.Zhou, J.Zhou, H.Wang, R.Guo, H.Y. Yoong, G.M. Chow, X.Han, B.Dupé, J.Železný, J.Sinova, J.Chen. Electrical switching of perpendicular magnetization in a single ferromagnetic layer. Phys. Rev. B , 2020, 101( 22): 220402

[4]

L.Zhu, D.C. Ralph, R.A. Buhrman. Unveiling the mechanism of bulk spin−orbit torques within chemically disordered FexPt1−x single layers. Adv. Funct. Mater. , 2021, 31( 36): 2103898

[5]

S.Q. Zheng, K.K. Meng, Q.B. Liu, J.K. Chen, J.Miao, X.G. Xu, Y.Jiang. Disorder dependent spin-orbit torques in L10 FePt single layer. Appl. Phys. Lett. , 2020, 117( 24): 242403

[6]

I.Mihai Miron, G.Gaudin, S.Auffret, B.Rodmacq, A.Schuhl, S.Pizzini, J.Vogel, P.Gambardella. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. , 2010, 9( 3): 230

[7]

L.Liu, O.J. Lee, T.J. Gudmundsen, D.C. Ralph, R.A. Buhrman. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. , 2012, 109( 9): 096602

[8]

L.Liu, C.F. Pai, Y.Li, H.W. Tseng, D.C. Ralph, R.A. Buhrman. Spin-torque switching with the giant spin Hall effect of tantalum. Science , 2012, 336( 6081): 555

[9]

Q.Shao, P.Li, L.Liu, H.Yang, S.Fukami, A.Razavi, H.Wu, K.Wang, F.Freimuth, Y.Mokrousov, M.D. Stiles, S.Emori, A.Hoffmann, J.Akerman, K.Roy, J.P. Wang, S.H. Yang, K.Garello, W.Zhang. Roadmap of spin−orbit torques. IEEE Trans. Magn. , 2021, 57( 7): 1

[10]

W.Kong, C.Wan, X.Wang, B.Tao, L.Huang, C.Fang, C.Guo, Y.Guang, M.Irfan, X.Han. Spin-orbit torque switching in a T-type magnetic configuration with current orthogonal to easy axes. Nat. Commun. , 2019, 10( 1): 233

[11]

S.Fukami, C.Zhang, S.DuttaGupta, A.Kurenkov, H.Ohno. Magnetization switching by spin−orbit torque in an antiferromagnet−ferromagnet bilayer system. Nat. Mater. , 2016, 15( 5): 535

[12]

K.Eason, S.G. Tan, M.B. A. Jalil, J.Y. Khoo. Bistable perpendicular switching with in-plane spin polarization and without external fields. Phys. Lett. A , 2013, 377( 37): 2403

[13]

L.You, O.Lee, D.Bhowmik, D.Labanowski, J.Hong, J.Bokor, S.Salahuddin. Switching of perpendicularly polarized nanomagnets with spin−orbit torque without an external magnetic field by engineering a tilted anisotropy. Proc. Natl. Acad. Sci. USA , 2015, 112( 33): 10310

[14]

L.Liu, Q.Qin, W.Lin, C.Li, Q.Xie, S.He, X.Shu, C.Zhou, Z.Lim, J.Yu, W.Lu, M.Li, X.Yan, S.J. Pennycook, J.Chen. Current-induced magnetization switching in all-oxide heterostructures. Nat. Nanotechnol. , 2019, 14( 10): 939

[15]

F.Leroy, P.Mueller, J.J. Metois, O.Pierre-Louis. Vicinal silicon surfaces: From step density wave to faceting. Phys. Rev. B , 2007, 76( 4): 045402

[16]

C.Tegenkamp. Vicinal surfaces for functional nanostructures. J. Phys.: Condens. Matter , 2009, 21( 1): 013002

[17]

S.Ma, A.Tan, J.X. Deng, J.Li, Z.D. Zhang, C.Hwang, Z.Q. Qiu. Tailoring the magnetic anisotropy of Py/Ni bilayer films using well aligned atomic steps on Cu(001). Sci. Rep. , 2015, 5( 1): 1

[18]

R.K. Kawakami, E.J. Escorcia-Aparicio, Z.Q. Qiu. Symmetry-induced magnetic anisotropy in Fe films grown on stepped Ag(001). Phys. Rev. Lett. , 1996, 77( 12): 2570

[19]

S.Dhesi, H.Dürr, G.Van der Laan. Canted spin structures in Ni films on stepped Cu(001). Phys. Rev. B , 1999, 59( 13): 8408

[20]

J.Choi, J.Wu, Y.Z. Wu, C.Won, A.Scholl, A.Doran, T.Owens, Z.Q. Qiu. Effect of atomic steps on the interfacial interaction of FeMn/Co films grown on vicinal Cu(001). Phys. Rev. B , 2007, 76( 5): 054407

[21]

J.Zhu, Q.Li, J.X. Li, Z.Ding, J.H. Liang, X.Xiao, Y.M. Luo, C.Y. Hua, H.J. Lin, T.W. Pi, Z.Hu, C.Won, Y.Z. Wu. Antiferromagnetic spin reorientation transition in epitaxial NiO/CoO/MgO(001) systems. Phys. Rev. B , 2014, 90( 5): 054403

[22]

P.He, L.Ma, Z.Shi, G.Guo, J.G. Zheng, Y.Xin, S.Zhou. Chemical composition tuning of the anomalous Hall effect in isoelectronic L10 FePd1−xPtx alloy films. Phys. Rev. Lett. , 2012, 109( 6): 066402

[23]

S.Okamoto, N.Kikuchi, O.Kitakami, T.Miyazaki, Y.Shimada, K.Fukamichi. Chemical-order-dependent magnetic anisotropy and exchange stiffness constant of FePt (001) epitaxial films. Phys. Rev. B , 2002, 66( 2): 024413

[24]

Z.Zhao, A.K. Smith, M.Jamali, J.P. Wang. External-field-free spin Hall switching of perpendicular magnetic nanopillar with a dipole-coupled composite structure. Adv. Electron. Mater. , 2020, 6( 5): 1901368

[25]

A.van den Brink, G.Vermijs, A.Solignac, J.Koo, J.T. Kohlhepp, H.J. M. Swagten, B.Koopmans. Fieldfree magnetization reversal by spin-Hall effect and exchange bias. Nat. Commun. , 2016, 7( 1): 1

[26]

M.Hayashi, J.Kim, M.Yamanouchi, H.Ohno. Quantitative characterization of the spin-orbit torque using harmonic Hall voltage measurements. Phys. Rev. B , 2014, 89( 14): 144425

[27]

K.Garello, I.M. Miron, C.O. Avci, F.Freimuth, Y.Mokrousov, S.Blügel, S.Auffret, O.Boulle, G.Gaudin, P.Gambardella. Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures. Nat. Nanotechnol. , 2013, 8( 8): 587

[28]

C.O. Avci, A.Quindeau, C.F. Pai, M.Mann, L.Caretta, A.S. Tang, M.C. Onbasli, C.A. Ross, G.S. Beach. Current-induced switching in a magnetic insulator. Nat. Mater. , 2017, 16( 3): 309

[29]

L.Zhu, D.C. Ralph, R.A. Buhrman. Maximizing spinorbit torque generated by the spin Hall effect of Pt. Appl. Phys. Rev. , 2021, 8( 3): 031308

[30]

M.Filianina, J.P. Hanke, K.Lee, D.S. Han, S.Jaiswal, A.Rajan, G.Jakob, Y.Mokrousov, M.Kläui. Electric-field control of spin-orbit torques in perpendicularly magnetized W/CoFeB/MgO films. Phys. Rev. Lett. , 2020, 124( 21): 217701

[31]

X.G. Ye, P.F. Zhu, W.Z. Xu, N.Shang, K.Liu, Z.M. Liao. Orbit-transfer torque driven field-free switching of perpendicular magnetization. Chin. Phys. Lett. , 2022, 39( 3): 037303

[32]

D.Lee, D.Go, H.J. Park, W.Jeong, H.W. Ko, D.Yun, D.Jo, S.Lee, G.Go, J.H. Oh, K.J. Kim, B.G. Park, B.C. Min, H.C. Koo, H.W. Lee, O.J. Lee, K.J. Lee. Orbital torque in magnetic bilayers. Nat. Commun. , 2021, 12( 1): 6710

[33]

P.Perna, C.Rodrigo, E.Jiménez, N.Mikuszeit, F.J. Teran, L.Méchin, J.Camarero, R.Miranda. Magnetization reversal in half metallic La0.7Sr0.3MnO3 films grown onto vicinal surfaces. J. Appl. Phys. , 2011, 109 : 07B107

[34]

Y.Tao, C.Sun, W.Li, L.Yang, F.Jin, Y.Hui, H.Li, X.Wang, K.Dong. Field-free spin–orbit torque switching in L10-FePt single layer with tilted anisotropy. Appl. Phys. Lett. , 2022, 120( 10): 102405

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (10231KB)

Supplementary files

fop-21197-OF-zhoutiejun_suppl_1

2206

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/